1
|
Stubberfield E, AbuOun M, Card RM, Welchman D, Anjum MF. Molecular characterization of antimicrobial resistance in Brachyspira species isolated from UK chickens: Identification of novel variants of pleuromutilin and beta-lactam resistance genes. Vet Microbiol 2024; 290:109992. [PMID: 38306769 DOI: 10.1016/j.vetmic.2024.109992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 12/21/2023] [Accepted: 01/10/2024] [Indexed: 02/04/2024]
Abstract
Brachyspira species are Gram negative, anaerobic bacteria that colonise the gut of many animals, including poultry. In poultry, Brachyspira species can be commensal (B. innocens, B. murdochii, 'B. pulli') or pathogenic (B. pilosicoli, B. intermedia, B. alvinipulli or rarely B. hyodysenteriae), the latter causing avian intestinal spirochaetosis (AIS). Antimicrobial therapy options for treatment is limited, frequently involving administration of the pleuromutilin, tiamulin, in water. In this study 38 Brachyspira isolates from chickens in the UK, representing both commensal and pathogenic species, were whole genome sequenced to identify antimicrobial resistance (AMR) mechanisms and the minimum inhibitory concentration (MIC) to a number of antimicrobials was also determined. We identified several new variants of blaOXA in B. pilosicoli and B. pulli isolates, and variations in tva which led to two new tva variants in B.murdochii and B.pulli. A number of isolates also harboured mutations known to encode AMR in the 16S and 23S rRNA genes. The percentage of isolates that were genotypically multi-drug resistance (MDR) was 16%, with the most common resistance profile being: tetracycline, pleuromutilin and beta-lactam, which were found in three 'B. pulli' and one B. pilosicoli. There was good correlation with the genotype and the corresponding antibiotic MIC phenotypes: pleuromutilins (tiamulin and valnemulin), macrolides (tylosin and tylvalosin), lincomycin and doxycycline. The occurrence of resistance determinants identified in this study in pathogenic Brachyspira, especially those which were MDR, is likely to impact treatment of AIS and clearance of infections on farm.
Collapse
Affiliation(s)
- Emma Stubberfield
- Animal and Plant Health Agency Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Manal AbuOun
- Animal and Plant Health Agency Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK.
| | - Roderick M Card
- Animal and Plant Health Agency Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - David Welchman
- Animal and Plant Health Agency Winchester, Itchen Abbas, Winchester SO21 1BX, UK
| | - Muna F Anjum
- Animal and Plant Health Agency Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK
| |
Collapse
|
2
|
Hakimi M, Ye F, Stinman CC, Sahin O, Burrough ER. Antimicrobial susceptibility of U.S. porcine Brachyspira isolates and genetic diversity of B. hyodysenteriae by multilocus sequence typing. J Vet Diagn Invest 2024; 36:62-69. [PMID: 37968893 PMCID: PMC10734594 DOI: 10.1177/10406387231212189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023] Open
Abstract
Swine dysentery, caused by Brachyspira hyodysenteriae and the newly recognized Brachyspira hampsonii in grower-finisher pigs, is a substantial economic burden in many swine-rearing countries. Antimicrobial therapy is the only commercially available measure to control and prevent Brachyspira-related colitis. However, data on antimicrobial susceptibility trends and genetic diversity of Brachyspira species from North America is limited. We evaluated the antimicrobial susceptibility profiles of U.S. Brachyspira isolates recovered between 2013 and 2022 to tiamulin, tylvalosin, lincomycin, doxycycline, bacitracin, and tylosin. In addition, we performed multilocus sequence typing (MLST) on 64 B. hyodysenteriae isolates. Overall, no distinct alterations in the susceptibility patterns over time were observed among Brachyspira species. However, resistance to the commonly used antimicrobials was seen sporadically with a higher resistance frequency to tylosin compared to other tested drugs. B. hampsonii was more susceptible to the tested drugs than B. hyodysenteriae and B. pilosicoli. MLST revealed 16 different sequence types (STs) among the 64 B. hyodysenteriae isolates tested, of which 5 STs were previously known, whereas 11 were novel. Most isolates belonged to the known STs: ST93 (n = 32) and ST107 (n = 13). Our findings indicate an overall low prevalence of resistance to clinically important antimicrobials other than tylosin and bacitracin, and high genetic diversity among the clinical Brachyspira isolates from pigs in the United States during the past decade. Further molecular, epidemiologic, and surveillance studies are needed to better understand the infection dynamics of Brachyspira on swine farms and to help develop effective control measures.
Collapse
Affiliation(s)
- Maria Hakimi
- Departments of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, USA
| | - Fangshu Ye
- Statistics, Iowa State University, Ames, IA, USA
| | - Chloe C. Stinman
- Veterinary Diagnostic Laboratory, Iowa State University, Ames, IA, USA
| | - Orhan Sahin
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA
| | - Eric R. Burrough
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA
| |
Collapse
|
3
|
Kulathunga DGRS, Harding JCS, Rubin JE. Antimicrobial susceptibility of western Canadian Brachyspira isolates: Development and standardization of an agar dilution susceptibility test method. PLoS One 2023; 18:e0286594. [PMID: 37390052 PMCID: PMC10313021 DOI: 10.1371/journal.pone.0286594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/19/2023] [Indexed: 07/02/2023] Open
Abstract
The re-emergence of Brachyspira-associated disease in pigs since the late 2000s has illuminated some of the diagnostic challenges associated with this genus; notably, the lack of standardized antimicrobial susceptibility testing (AST) methods and interpretive criteria. Consequently, laboratories have relied heavily on highly variable in-house developed methods. There are currently no published investigations describing the antimicrobial susceptibility of Brachyspira isolates collected from pigs in Canada. The first objective of this study was therefore to develop a standardized protocol for conducting agar dilution susceptibility testing of Brachyspira spp., including determining the optimal standardized inoculum density, a key test variable that impacts test performance. The second objective was to determine the susceptibility of a collection of western Canadian Brachyspira isolates using the standardized methodology. After assessing multiple media, an agar dilution test was standardized in terms of starting inoculum (1-2 × 108 CFU/ml), incubation temperature and time, and assessed for repeatability. The antimicrobial susceptibility of a collection of clinical porcine Brachyspira isolates (n = 87) collected between 2009-2016 was then determined. This method was highly reproducible; repeat susceptibility testing yielded identical results 92% of the time. Although most of the isolates had very low MICs to the commonly used antimicrobials to treat Brachyspira-associated infections, several isolates with elevated MICs (>32 μg/ml) for tiamulin, valnemulin, tylosin, tylvalosin, and lincomycin were identified. Overall, this study underscores the importance of establishing CLSI approved clinical breakpoints for Brachyspira to facilitate the interpretation of test results and support the evidence-based selection of antimicrobials in swine industry.
Collapse
Affiliation(s)
- D. G. R. S. Kulathunga
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - John C. S. Harding
- Department of Large Animal Clinical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Joseph E. Rubin
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
4
|
Predictive Power of Long-Read Whole-Genome Sequencing for Rapid Diagnostics of Multidrug-Resistant Brachyspira hyodysenteriae Strains. Microbiol Spectr 2023; 11:e0412322. [PMID: 36602320 PMCID: PMC9927316 DOI: 10.1128/spectrum.04123-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Infections with Brachyspira hyodysenteriae, the etiological agent of swine dysentery, result in major economic losses in the pig industry worldwide. Even though microbial differentiation of various Brachyspira species can be obtained via PCR, no quick diagnostics for antimicrobial susceptibility testing are in place, which is mainly due to the time-consuming (4 to 7 days) anaerobic growth requirements of these organisms. Veterinarians often rely on a clinical diagnosis for initiating antimicrobial treatment. These treatments are not always effective, which may be due to high levels of acquired resistance in B. hyodysenteriae field isolates. By using long-read-only whole-genome sequencing and a custom-trained Bonito base-calling model, 81 complete B. hyodysenteriae genomes with median Q51 scores and 99% completeness were obtained from 86 field strains. This allowed the assessment of the predictive potential of genetic markers in relation to the observed acquired resistance phenotypes obtained via agar dilution susceptibility testing. Multidrug resistance was observed in 77% and 21% of the tested strains based on epidemiological cutoff and clinical breakpoint values, respectively. The predictive power of genetic hallmarks (genes and/or gene mutations) for antimicrobial susceptibility testing was promising. Sensitivity and specificity for tiamulin [tva(A) and 50SL3N148S, 99% and 67%], valnemulin [tva(A), 97% and 92%), lincomycin (23SA2153T/G and lnuC, 94% and 100%), tylvalosin (23SA2153T/G, 99% and 93%), and doxycycline (16SG1026C, 93% and 87%) were determined. The predictive power of these genetic hallmarks is promising for use in sequencing-based workflows to speed up swine dysentery diagnostics in veterinary medicine and determine proper antimicrobial use. IMPORTANCE Diagnostics for swine dysentery rely on the identification of Brachyspira species using molecular techniques. Nevertheless, no quick diagnostic tools are available for antimicrobial susceptibility testing due to extended growth requirements (7 to 14 days). To enable practitioners to tailor antimicrobial treatment to specific strains, long-read sequencing-based methods are expected to lead to rapid methods in the future. Nevertheless, their potential implementation should be validated extensively. This mainly implies assessing sequencing accuracy and the predictive power of genetic hallmarks in relation to their observed (multi)resistance phenotypes.
Collapse
|
5
|
Vega C, Pérez-Pérez L, Argüello H, Gómez-García M, Puente H, Fernández-Usón I, Rubio P, Carvajal A. In vitro evaluation of gentamicin activity against Spanish field isolates of Brachyspira hyodysenteriae. Porcine Health Manag 2022; 8:48. [DOI: 10.1186/s40813-022-00291-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/14/2022] [Indexed: 12/02/2022] Open
Abstract
Abstract
Background
The treatment of swine dysentery (SD) has become constrained in recent years due to the limited availability of effective drugs combined with a rise in antimicrobial resistance. Gentamicin, an aminoglycoside antibiotic, is authorised for the control of this disease in several European countries but has not been extensively used so far. In this study, the in vitro susceptibility of 56 Brachyspira hyodysenteriae field isolates was evaluated against gentamicin using a broth microdilution test. The molecular basis of decreased susceptibility to gentamicin was also investigated by sequencing the 16S rRNA gene and phylogenetic relatedness by multiple-locus variable number tandem-repeat analysis (MLVA).
Results
Most B. hyodysenteriae isolates presented low minimum inhibitory concentration (MIC) values to gentamicin, with a mode of 2 µg/mL, a median or MIC50 of 4 µg/mL and percentile 90 or MIC90 of 16 µg/mL. The distribution of these values over the period studied (2011–2019) did not show a tendency towards the development of resistance to gentamicin. Differences in susceptibility among isolates could be explained by two point-mutations in the 16S rRNA gene, C990T and A1185G, which were only present in isolates with high MICs. These isolates were typed in three different MLVA clusters. Analyses of co-resistance between gentamicin and antimicrobials commonly used for the treatment of SD revealed that resistance to tiamulin and valnemulin was associated with low MICs for gentamicin.
Conclusions
The results provide an accurate characterisation of antimicrobial sensitivity to gentamicin and possible mechanisms of resistance in Spanish B. hyodysenteriae isolates. These findings allow us to propose gentamicin as an alternative in the antibiotic management of SD, particularly in outbreaks caused by pleuromutilin resistant isolates.
Collapse
|
6
|
Arnold M, Schmitt S, Collaud A, Rossano A, Hübschke E, Zeeh F, Nathues H, Perreten V. Distribution, genetic heterogeneity, and antimicrobial susceptibility of Brachyspira pilosicoli in Swiss pig herds. Vet Microbiol 2022; 269:109421. [DOI: 10.1016/j.vetmic.2022.109421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/27/2022] [Accepted: 04/01/2022] [Indexed: 10/18/2022]
|
7
|
Dual Antimicrobial Effect of Medium-Chain Fatty Acids against an Italian Multidrug Resistant Brachyspira hyodysenteriae Strain. Microorganisms 2022; 10:microorganisms10020301. [PMID: 35208756 PMCID: PMC8875639 DOI: 10.3390/microorganisms10020301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/05/2022] [Accepted: 01/24/2022] [Indexed: 01/27/2023] Open
Abstract
The fastidious nature of Brachyspira hyodysenteriae limits an accurate in vitro pre-screening of conventionally used antibiotics and other candidate alternative antimicrobials. This results in a non-judicious use of antibiotics, leading to an exponential increase of the antibiotic resistance issue and a slowdown in the research for new molecules that might stop this serious phenomenon. In this study we tested four antibiotics (tylosin, lincomycin, doxycycline, and tiamulin) and medium-chain fatty acids (MCFA; hexanoic, octanoic, decanoic, and dodecanoic acid) against an Italian field strain of B. hyodysenteriae and the ATCC 27164 strain as reference. We determined the minimal inhibitory concentrations of these substances, underlining the multidrug resistance pattern of the field strain and, on the contrary, a consistent and stable inhibitory effect of the tested MCFA against both strains. Then, sub-inhibitory concentrations of antibiotics and MCFA were examined in modulating a panel of B. hyodysenteriae virulence genes (tlyA, tlyB, bhlp16, bhlp29.7, and bhmp39f). Results of gene expression analysis were variable, with up- and downregulations not properly correlated with particular substances or target genes. Decanoic and dodecanoic acid with their direct and indirect antimicrobial property were the most effective among MCFA, suggesting them as good candidates for subsequent in vivo trials.
Collapse
|