1
|
Wang X, Bi J, Yang Y, Li L, Zhang R, Li Y, Cheng M, Li W, Yang G, Lin Y, Liu J, Yin G. RACK1 promotes porcine reproductive and respiratory syndrome virus infection in Marc-145 cells through ERK1/2 activation. Virology 2023; 588:109886. [PMID: 37806007 DOI: 10.1016/j.virol.2023.109886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 10/10/2023]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is an acute infectious disease that spreads rapidly among pigs and seriously threatens the pig industry. Activation of ERK1/2 is a hallmark of most viral infections. RACK1 interacts with a variety of kinases and membrane receptors that closely associated with viral infections and the development and progression of cancer. However, no studies have clearly defined whether RACK1 can regulate PRRSV infection through ERK1/2 activation. In our study, using RT-qPCR, immunoblotting, indirect fluorescent staining, siRNA knockdown and protein overexpression techniques, we found that downregulation of cellular RACK1 inhibited ERK1/2 activation and subsequently suppressed PRRSV infection, while overexpression of RACK1 enhanced ERK1/2 activation and PRRSV infection. Bioinformatic and Co-immunoprecipitation experimental analysis revealed that cellular RACK1 could interact with viral N protein to exert its function. We elaborated that RACK1 promoted PRRSV replication in Marc-145 cells through ERK1/2 activation. Our study provides new insights into regulating the innate antiviral immune responses during PRRSV infection and contributes to further understanding of the molecular mechanisms underlying PRRSV replication.
Collapse
Affiliation(s)
- Xinxian Wang
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Junlong Bi
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Ying Yang
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Lijun Li
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Runting Zhang
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Yongneng Li
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Meiling Cheng
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Wenying Li
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Guishu Yang
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Yingbo Lin
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, 17176, Sweden
| | - Jianping Liu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| | - Gefen Yin
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
| |
Collapse
|
2
|
Wang X, Bi J, Yang C, Li Y, Yang Y, Deng J, Wang L, Gao X, Lin Y, Liu J, Yin G. Long non-coding RNA LOC103222771 promotes infection of porcine reproductive and respiratory syndrome virus in Marc-145 cells by downregulating Claudin-4. Vet Microbiol 2023; 286:109890. [PMID: 37857013 DOI: 10.1016/j.vetmic.2023.109890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/12/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is an important swine disease caused by infection of porcine reproductive and respiratory syndrome virus (PRRSV), which leads to huge loss in swine industry. How to effectively control PRRS is challenging. Long non-coding RNA (lncRNA) are key regulator of viral infections and anti-virus immunological responses, therefore, further understanding of lncRNAs will aid to identification of novel regulators of viral infections and better design of prevention and control strategies to viral infection related diseases and immune disorders. We demonstrated that PRRSV infection upregulated the expression of lncRNA LOC103222771 in Marc-145 cells and porcine alveolar macrophage cells (PAMs) and that LOC103222771 is mainly located in cytoplasm. Knockdown of LOC103222771 could inhibit the PRRSV infection in Marc-145 cells. RNA-seq analysis and subsequent validation revealed increased expression of Claudin-4 (CLDN4) in Marc-145 when LOC103222771 was specifically downregulated,suggesting that LOC103222771 might be an upstream regulator of CLDN4, an important component of tight junctions for establishment of the paracellular barrier that controls the flow of molecules in the intercellular space between epithelial cells. We and others showed that Downregulation of CLDN4 could boost the infection of PRRSV. Collectively, LOC103222771/CLDN4 signal axis might be a novel mechanism of PRRSV pathogenesis, implying a potential therapeutic target against PRRSV infection.
Collapse
Affiliation(s)
- Xinxian Wang
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Junlong Bi
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Chao Yang
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Yongneng Li
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Ying Yang
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Junwen Deng
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Lei Wang
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Xiaolin Gao
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Yingbo Lin
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm 17176, Sweden
| | - Jianping Liu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China.
| | - Gefen Yin
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan 650201, China.
| |
Collapse
|
3
|
Hernando-Amado S, Laborda P, Martínez JL. Tackling antibiotic resistance by inducing transient and robust collateral sensitivity. Nat Commun 2023; 14:1723. [PMID: 36997518 PMCID: PMC10063638 DOI: 10.1038/s41467-023-37357-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/13/2023] [Indexed: 04/03/2023] Open
Abstract
Collateral sensitivity (CS) is an evolutionary trade-off traditionally linked to the mutational acquisition of antibiotic resistance (AR). However, AR can be temporally induced, and the possibility that this causes transient, non-inherited CS, has not been addressed. Mutational acquisition of ciprofloxacin resistance leads to robust CS to tobramycin in pre-existing antibiotic-resistant mutants of Pseudomonas aeruginosa. Further, the strength of this phenotype is higher when nfxB mutants, over-producing the efflux pump MexCD-OprJ, are selected. Here, we induce transient nfxB-mediated ciprofloxacin resistance by using the antiseptic dequalinium chloride. Notably, non-inherited induction of AR renders transient tobramycin CS in the analyzed antibiotic-resistant mutants and clinical isolates, including tobramycin-resistant isolates. Further, by combining tobramycin with dequalinium chloride we drive these strains to extinction. Our results support that transient CS could allow the design of new evolutionary strategies to tackle antibiotic-resistant infections, avoiding the acquisition of AR mutations on which inherited CS depends.
Collapse
Affiliation(s)
| | - Pablo Laborda
- Centro Nacional de Biotecnología, CSIC, 28049, Madrid, Spain
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
- Department of Clinical Microbiology 9301, Rigshospitalet, 2100, Copenhagen, Denmark
| | | |
Collapse
|
4
|
Li S, Zhang X, Yao Y, Zhu Y, Zheng X, Liu F, Feng W. Inducible miR-150 Inhibits Porcine Reproductive and Respiratory Syndrome Virus Replication by Targeting Viral Genome and Suppressor of Cytokine Signaling 1. Viruses 2022; 14:1485. [PMID: 35891465 PMCID: PMC9318191 DOI: 10.3390/v14071485] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 12/11/2022] Open
Abstract
Hosts exploit various approaches to defend against porcine reproductive and respiratory syndrome virus (PRRSV) infection. microRNAs (miRNAs) have emerged as key negative post-transcriptional regulators of gene expression and have been reported to play important roles in regulating virus infection. Here, we identified that miR-150 was differentially expressed in virus permissive and non-permissive cells. Subsequently, we demonstrated that PRRSV induced the expression of miR-150 via activating the protein kinase C (PKC)/c-Jun amino-terminal kinases (JNK)/c-Jun pathway, and overexpression of miR-150 suppressed PRRSV replication. Further analysis revealed that miR-150 not only directly targeted the PRRSV genome, but also facilitated type I IFN signaling. RNA immunoprecipitation assay demonstrated that miR-150 targeted the suppressor of cytokine signaling 1 (SOCS1), which is a negative regulator of Janus activated kinase (JAK)/signal transducer and activator of the transcription (STAT) signaling pathway. The inverse correlation between miR-150 and SOCS1 expression implies that miR-150 plays a role in regulating ISG expression. In conclusion, miR-150 expression is upregulated upon PRRSV infection. miR-150 feedback positively targets the PRRSV genome and promotes type I IFN signaling, which can be seen as a host defensive strategy.
Collapse
Affiliation(s)
- Sihan Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (S.L.); (X.Z.); (Y.Y.); (Y.Z.); (X.Z.); (F.L.)
- Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xuan Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (S.L.); (X.Z.); (Y.Y.); (Y.Z.); (X.Z.); (F.L.)
- Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yao Yao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (S.L.); (X.Z.); (Y.Y.); (Y.Z.); (X.Z.); (F.L.)
- Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yingqi Zhu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (S.L.); (X.Z.); (Y.Y.); (Y.Z.); (X.Z.); (F.L.)
- Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaojie Zheng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (S.L.); (X.Z.); (Y.Y.); (Y.Z.); (X.Z.); (F.L.)
- Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Fang Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (S.L.); (X.Z.); (Y.Y.); (Y.Z.); (X.Z.); (F.L.)
- Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Wenhai Feng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (S.L.); (X.Z.); (Y.Y.); (Y.Z.); (X.Z.); (F.L.)
- Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
5
|
Wang X, Yang Y, Yang X, Liu X, Wang X, Gao L, Yang C, Lan R, Bi J, Zhao Q, Yang G, Wang J, Lin Y, Liu J, Yin G. Classical swine fever virus infection suppresses claudin-1 expression to facilitate its replication in PK-15 cells. Microb Pathog 2021; 157:105012. [PMID: 34062228 DOI: 10.1016/j.micpath.2021.105012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/16/2021] [Accepted: 05/24/2021] [Indexed: 11/18/2022]
Abstract
Classical swine fever (CSF) is one of the most epidemic viral diseases in swine industry. The causative pathogen is CSF virus (CSFV), a small enveloped RNA virus of Flaviviridae family. Claudin-1 was reported to be involved in the infections of a number of viruses, including many from Flaviviridae family, but no studies have investigated the role of porcine claudin-1 during CSFV infection in PK-15 cells. In this study, on the one hand, we demonstrated that CSFV infection reduced the claudin-1 expression at both mRNA and protein levels; on the other hand, CSFV infection was enhanced after claudin-1 knockdown, but inhibited by claudin-1 overexpression in a dose-dependent manner. Furthermore, negative correlation was demonstrated between the claudin-1 expression and CSFV titer. In conclusion, claudin-1 might be a barrier for CSFV infection in PK-15 cells, while CSFV bypasses the barrier through lysosome mediated degradation of claudin-1, which could be repressed by bafilomycin A1. Although the elaborate mechanisms how claudin-1 plays its roles in CSFV infection require further investigations, this study may advance our understanding of the molecular host-pathogen interaction mechanisms underlying CSFV infection and suggests enhancement of porcine claudin-1 as a potential preventive or therapeutic strategy for CSF control.
Collapse
Affiliation(s)
- Xiangmin Wang
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Yu'ai Yang
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Xiaoying Yang
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Xiao Liu
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China; Department of Oncology-Pathology, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Xiaochun Wang
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Libo Gao
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Chao Yang
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Rui Lan
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Junlong Bi
- Institute of Science and Technology, Chuxiong Normal University, 546 Lucheng South Rd, Chuxiong, 675000, Yunnna, China
| | - Qian Zhao
- Center for Animal Disease Control and Prevention, Chuxiong, 675000, Yunnan, China
| | - Guishu Yang
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Jing Wang
- School of Clinical Medicine, Dali University, Dali, 671003, Yunnan, China
| | - Yingbo Lin
- Department of Oncology-Pathology, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Jianping Liu
- School of Clinical Medicine, Dali University, Dali, 671003, Yunnan, China.
| | - Gefen Yin
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
| |
Collapse
|
6
|
Small molecule screening identified cepharanthine as an inhibitor of porcine reproductive and respiratory syndrome virus infection in vitro by suppressing integrins/ILK/RACK1/PKCα/NF-κB signalling axis. Vet Microbiol 2021; 255:109016. [PMID: 33677370 DOI: 10.1016/j.vetmic.2021.109016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/14/2021] [Indexed: 12/18/2022]
Abstract
Porcine Reproductive and Respiratory Syndrome (PRRS) is a devastating disease among the most notorious threats to the swine industry worldwide and is characterized by respiratory distress and reproductive failure. Highly evolving porcine reproductive and respiratory syndrome virus (PRRSV) strains with complicated genetic diversity make the current vaccination strategy far from cost-effective and thus urge identification of potent lead candidates to provide prevention and treatment approaches. From an in vitro small molecule screening with the TargetMol Natural Compound Library comprising 623 small molecules, cytopathic effect (CPE) observations and RT-qPCR analysis of viral ORF7 gene expression identified cepharanthine (CEP) to be one of the most protent inhibitors of PRRSV infection in Marc-145 cells. When compared with tilmicosin, which is one of the most commonly used antibiotics in swine industry to inhibit infections, CEP more prominently inhibited PRRSV infection represented by both RNA and protein levels, further reduced the TCID50 by 5.6 times, and thus more remarkably protected Marc-145 cells against PRRSV infection. Mechanistically, western blot analyses of the Marc-145 cells and the porcine alveolar macrophages (PAMs) with or without CEP treatment and PRRSV infection at various time points revealed that CEP can inhibit the expression of integrins β1 and β3, integrin-linked kinase (ILK), RACK1 and PKCα, leading to NF-κB suppression and consequent alleviation of PRRSV infection. Collectively, our small molecule screening identified cepharanthine as an inhibitor of PRRSV infection in vitro by suppressing Integrins/ILK/RACK1/PKCα/NF-κB signalling axis, which may enlighten the deeper understanding of the molecular pathogenesis of PRRSV infection and more importantly, suggested CEP as a potential promising drug for PRRS control in veterinary clinics.
Collapse
|
7
|
Bailly C. Medicinal applications and molecular targets of dequalinium chloride. Biochem Pharmacol 2021; 186:114467. [PMID: 33577890 DOI: 10.1016/j.bcp.2021.114467] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/23/2022]
Abstract
For more than 60 years dequalinium chloride (DQ) has been used as anti-infective drug, mainly to treat local infections. It is a standard drug to treat bacterial vaginosis and an active ingredient of sore-throat lozenges. As a lipophilic bis-quaternary ammonium molecule, the drug displays membrane effects and selectively targets mitochondria to deplete DNA and to block energy production in cells. But beyond its mitochondriotropic property, DQ can interfere with the correct functioning of diverse proteins. A dozen of DQ protein targets have been identified and their implication in the antibacterial, antiviral, antifungal, antiparasitic and anticancer properties of the drug is discussed here. The anticancer effects of DQ combine a mitochondrial action, a selective inhibition of kinases (PKC-α/β, Cdc7/Dbf4), and a modulation of Ca2+-activated K+ channels. At the bacterial level, DQ interacts with different multidrug transporters (QacR, AcrB, EmrE) and with the transcriptional regulator RamR. Other proteins implicated in the antiviral (MPER domain of gp41 HIV-1) and antiparasitic (chitinase A from Vibrio harveyi) activities have been identified. DQ also targets α -synuclein oligomers to restrict protofibrils formation implicated in some neurodegenerative disorders. In addition, DQ is a typical bolaamphiphile molecule, well suited to form liposomes and nanoparticules useful for drug entrapment and delivery (DQAsomes and others). Altogether, the review highlights the many pharmacological properties and therapeutic benefits of this old 'multi-talented' drug, which may be exploited further. Its multiple sites of actions in cells should be kept in mind when using DQ in experimental research.
Collapse
|