1
|
Kurniawan Y, Tyasningsih W, Rahmahani J, Puspitasari Y, Kusnoto K, Azzahra F, Tobing TM, Aswin A, Diyantoro D, Maulana FK, Susilowati H, Kuncorojakti S, Rantam FA. Protein characterization of an Indonesian isolate of foot and mouth disease virus inactivated with formaldehyde and binary ethylenimine. Vet World 2024; 17:1836-1845. [PMID: 39328437 PMCID: PMC11422645 DOI: 10.14202/vetworld.2024.1836-1845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/16/2024] [Indexed: 09/28/2024] Open
Abstract
Background and Aim Foot-and-mouth disease (FMD) is a highly contagious viral disease of cloven-footed animals. It is a major threat to livestock production worldwide, causing significant economic losses. Inactivation of FMD virus (FMDV) is crucial for vaccine development and control of outbreaks. However, traditional inactivation methods can sometimes damage the viral protein, affecting vaccine efficacy. Therefore, finding new inactivating agents that effectively inactivate the virus while preserving the integrity of its proteins is an important research area. This study investigated the optimal materials (0.04% formaldehyde, 0.001 M binary ethylenimine [BEI], or a combination) for inactivating and preserving the specific molecular weight of Serotype O FMDV protein. Materials and Methods This study used serotype O FMDV isolated from several areas of East Java. The virus was inoculated into baby hamster kidney-21 cells, and the titer was calculated using the TCID50 Assay. The virus was inactivated using 0.04% formaldehyde, 0.001 M BEI, or a combination of 0.04% formaldehyde and 0.001 M BEI. Inactive viral proteins were characterized using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and western blotting. Results Serotype O FMDV can be inactivated using 0.04% formaldehyde while preserving specific FMDV proteins, specifically VP0 and VP3 with a molecular weight (MW) of 36 kDa and VP3 with a MW of 24 kDa. Serotype O FMDV can be inactivated by 0.001 M BEI while preserving specific FMDV proteins, specifically VP0 with a MW of 35 kDa, VP3 with a MW of 28 kDa, and VP1 with a MW of 23 kDa. FMDV serotype O can be inactivated using a combination of 0.04% formaldehyde and 0.001 M BEI while preserving specific FMDV proteins, specifically VP0 and VP3 with a MW of 36 kDa and VP3 with a MW of 24 kDa. Conclusion This study found that 0.04% formaldehyde, alone or in combination with 0.001 M BEI, was effective for inactivating and preserving the specific molecular weight of Serotype O FMDV protein. The limitation of this study was the inactivations of the virus have not yet been tested for their potency on experimental animals. Further research is warranted to investigate the inactivation kinetics of these materials, including their potency on experimental animals. Additionally, a comparison of the inactivation rates between 0.04% formaldehyde alone and the combination with BEI would help to determine the optimal inactivation agent for future applications.
Collapse
Affiliation(s)
- Yudha Kurniawan
- Magister Program in Vaccinology and Immunotherapeutic, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Wiwiek Tyasningsih
- Division of Veterinary Microbiology, Department of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Jola Rahmahani
- Division of Veterinary Microbiology, Department of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Yulianna Puspitasari
- Division of Veterinary Microbiology, Department of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Kusnoto Kusnoto
- Department of Parasitology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Fadia Azzahra
- Bachelor Program in Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Talenta Miracle Tobing
- Bachelor Program in Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Ahmad Aswin
- Research Centre for Vaccine Technology and Development, Institute of Tropical Disease, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Diyantoro Diyantoro
- Research Centre for Vaccine Technology and Development, Institute of Tropical Disease, Universitas Airlangga, Surabaya, East Java, Indonesia
- Faculty of Vocational Studies, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Firdausy Kurnia Maulana
- Research Centre for Vaccine Technology and Development, Institute of Tropical Disease, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Helen Susilowati
- Research Centre for Vaccine Technology and Development, Institute of Tropical Disease, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Suryo Kuncorojakti
- Research Centre for Vaccine Technology and Development, Institute of Tropical Disease, Universitas Airlangga, Surabaya, East Java, Indonesia
- Division of Veterinary Anatomy, Department of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Fedik Abdul Rantam
- Division of Veterinary Microbiology, Department of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
- Research Centre for Vaccine Technology and Development, Institute of Tropical Disease, Universitas Airlangga, Surabaya, East Java, Indonesia
| |
Collapse
|
2
|
Tobing TM, Rantam FA, Widiyatno TV, Tacharina MR, Rahmahani J, Triakoso N, Kuncorojakti S, Puspitasari H, Susilowati H, Diyantoro D, Azzahra F, Kurniawan Y, Aswin A, Susila EB. Inactivation of an Indonesian isolate of foot-and-mouth disease virus using formaldehyde. Vet World 2024; 17:1190-1195. [PMID: 39077448 PMCID: PMC11283601 DOI: 10.14202/vetworld.2024.1190-1195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/06/2024] [Indexed: 07/31/2024] Open
Abstract
Background and Aim Foot-and-mouth disease (FMD) is a highly contagious viral disease that endangers livestock and the environment with significant economic consequences. This study aimed to validate the inactivation of the Indonesian isolate of foot-and-mouth disease virus (FMDV) with various formaldehyde concentration. Materials and Methods The experiment started with FMDV being adapted on BHK-21 cells until cytopathic effects (CPE) appeared. The biological titer of the virus was determined using the 50% tissue culture infectious dose (TCID50) assay. The virus was inactivated by exposing the isolate to different formaldehyde (FA) concentrations (0.025%, 0.05%, 0.1%, and 0.2%) at 37°C for 24 h, and residual infectivity was assessed using CPE scoring of reinoculated BHK-21 cells. Results 72 h post-inoculation, the virulence of the FMDV isolate was indicated by complete CPE on BHK-21 monolayer cells, with a TCID50 value of 109/mL; CPE scoring did not signify significant differences (p < 0.05) among 0.025%, 0.05%, 0.1%, 0.2% FA, and the negative control. All treatment groups showed significant differences (p < 0.05) from the positive control (C+). FA concentrations inactivated the FMDV isolate under the given conditions. 0.025% and 0.05% FA continued to display CPE through the third passage, while 0.2% FA did not significantly differ from 0.1% FA (p > 0.05). 0.1% FA is the optimal concentration for safely and effectively inactivating FMDV. Conclusion All of the formaldehyde concentrations can completely inactivate the FMDV isolate, with the most optimal and safe concentration being 0.1%.
Collapse
Affiliation(s)
- Talenta Miracle Tobing
- Undergraduate Student of Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Fedik Abdul Rantam
- Division of Veterinary Microbiology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
- Research Center for Vaccine Technology and Development, Institute of Tropical Disease, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Thomas Valentinus Widiyatno
- Division of Veterinary Pathology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Martia Rani Tacharina
- Division of Veterinary Microbiology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Jola Rahmahani
- Division of Veterinary Microbiology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Nusdianto Triakoso
- Division of Veterinary Clinical Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Suryo Kuncorojakti
- Research Center for Vaccine Technology and Development, Institute of Tropical Disease, Universitas Airlangga, Surabaya, East Java, Indonesia
- Division of Veterinary Anatomy, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Heni Puspitasari
- Institute of Tropical Disease, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Helen Susilowati
- Research Center for Vaccine Technology and Development, Institute of Tropical Disease, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Diyantoro Diyantoro
- Research Center for Vaccine Technology and Development, Institute of Tropical Disease, Universitas Airlangga, Surabaya, East Java, Indonesia
- Department of Health, Faculty of Vocational Studies, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Fadia Azzahra
- Undergraduate Student of Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Yudha Kurniawan
- Magister Program in Vaccinology and Immunotherapeutic, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Ahmad Aswin
- Research Center for Vaccine Technology and Development, Institute of Tropical Disease, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Edy Budi Susila
- Pusvetma Veterinary Farma Big Center, Directorate General of Livestock and Animal Health, Ministry of Agriculture, Indonesia
| |
Collapse
|
3
|
Kim JY, Park SY, Lee G, Park SH, Jin JS, Kim D, Park JH, Jeong SY, Ko YJ. Determination of Optimal Antigen Yield and Virus Inactivation Conditions for the Production of the Candidate Foot-and-Mouth Disease Recombinant Vaccine Strain Asia1 Shamir-R in a Bioreactor. Viruses 2024; 16:457. [PMID: 38543822 PMCID: PMC10974838 DOI: 10.3390/v16030457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 05/23/2024] Open
Abstract
Since the foot-and-mouth disease (FMD) outbreak in South Korea in 2010-2011, vaccination policies utilizing inactivated FMD vaccines composed of types O and A have been implemented nationwide. However, because type Asia1 occurred in North Korea in 2007 and intermittently in neighboring countries, the risk of type Asia1 introduction cannot be ruled out. This study evaluated the antigen yield and viral inactivation kinetics of the recombinant Asia1 Shamir vaccine strain (Asia1 Shamir-R). When Asia1 Shamir-R was proliferated in shaking flasks (1 L), a 2 L bioreactor (1 L), and a wave bioreactor (25 L), the antigen yields were 7.5 μg/mL, 5.2 μg/mL, and 3.8 μg/mL, respectively. The optimal FMDV inactivation conditions were 2 mM BEI at 26 °C and 1.0 mM BEI at 37 °C. There was no antigen loss due to BEI treatment, and only a decrease in antigen levels was observed during storage. The sera from pigs immunized with antigen derived from a bioreactor exhibited a neutralizing antibody titer of approximately 1/1000 against Asia1 Shamir and Asia1/MOG/05 viruses; therefore, Asia1 Shamir-R is expected to provide sufficient protection against both viruses. If an FMD vaccine production facility is established, this Asia1 Shamir-R can be employed for domestic antigen banks in South Korea.
Collapse
Affiliation(s)
- Jae Young Kim
- Animal and Plant Quarantine Agency, Gimcheon-si 39660, Republic of Korea; (J.Y.K.); (G.L.); (D.K.)
- Department of Biomedical Science, Graduate School, Catholic University of Daegu, Daegu 38430, Republic of Korea;
| | - Sun Young Park
- Animal and Plant Quarantine Agency, Gimcheon-si 39660, Republic of Korea; (J.Y.K.); (G.L.); (D.K.)
| | - Gyeongmin Lee
- Animal and Plant Quarantine Agency, Gimcheon-si 39660, Republic of Korea; (J.Y.K.); (G.L.); (D.K.)
| | - Sang Hyun Park
- Animal and Plant Quarantine Agency, Gimcheon-si 39660, Republic of Korea; (J.Y.K.); (G.L.); (D.K.)
| | - Jong-Sook Jin
- Animal and Plant Quarantine Agency, Gimcheon-si 39660, Republic of Korea; (J.Y.K.); (G.L.); (D.K.)
| | - Dohyun Kim
- Animal and Plant Quarantine Agency, Gimcheon-si 39660, Republic of Korea; (J.Y.K.); (G.L.); (D.K.)
| | - Jong-Hyeon Park
- Animal and Plant Quarantine Agency, Gimcheon-si 39660, Republic of Korea; (J.Y.K.); (G.L.); (D.K.)
| | - Seong-Yun Jeong
- Department of Biomedical Science, Graduate School, Catholic University of Daegu, Daegu 38430, Republic of Korea;
| | - Young-Joon Ko
- Animal and Plant Quarantine Agency, Gimcheon-si 39660, Republic of Korea; (J.Y.K.); (G.L.); (D.K.)
| |
Collapse
|
4
|
Kim JY, Park SY, Park SH, Lee G, Jin JS, Kim D, Park JH, Jeong SY, Ko YJ. Evaluation of Foot-and-Mouth Disease (FMD) Virus Asia1 Genotype-V as an FMD Vaccine Candidate: Study on Vaccine Antigen Production Yield and Inactivation Kinetics. Vaccines (Basel) 2024; 12:185. [PMID: 38400168 PMCID: PMC10892639 DOI: 10.3390/vaccines12020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
South Korea has experienced outbreaks of foot-and-mouth disease (FMD) of serotypes O and A, leading to nationwide vaccination with a bivalent vaccine. Since the FMD virus (FMDV) Asia1 group-V genotype occurred in North Korea in 2007, an Asia1/MOG/05 vaccine strain belonging to the Asia1 group-V genotype was developed using a genetic recombination method (Asia1/MOG/05-R). This study aimed to evaluate the antigen productivity and viral inactivation kinetics of Asia1/MOG/05-R to assess its commercial viability. The antigen yield of Asia1/MOG/05-R produced in flasks and bioreactors was approximately 4.0 μg/mL. Binary ethylenimine (BEI) inactivation kinetics of Asia1/MOG/05-R showed that 2 mM and 1.0 mM BEI treatment at 26 °C and 37 °C, respectively, resulted in a virus titer <10-7 TCID50/mL within 24 h, meeting the inactivation kinetics criteria. During incubation at 26 °C and 37 °C, 10% antigen loss occurred, but not due to BEI treatment. When pigs were inoculated twice with the Asia1/MOG/05-R antigen, the virus neutralization titer increased to approximately 1:1000; therefore, it can sufficiently protect against Asia1/MOG/05-R and Asia1 Shamir viruses. The Asia1/MOG/05-R will be useful as a vaccine strain for domestic antigen banks.
Collapse
Affiliation(s)
- Jae Young Kim
- Center for FMD Vaccine Research, Animal and Plant Quarantine Agency, Gimcheon-si 177, Republic of Korea; (J.Y.K.); (S.Y.P.); (S.H.P.); (G.L.); (J.-S.J.); (D.K.); (J.-H.P.)
- Department of Biomedical Science, Graduate School, Catholic University of Daegu, Daegu 38430, Republic of Korea;
| | - Sun Young Park
- Center for FMD Vaccine Research, Animal and Plant Quarantine Agency, Gimcheon-si 177, Republic of Korea; (J.Y.K.); (S.Y.P.); (S.H.P.); (G.L.); (J.-S.J.); (D.K.); (J.-H.P.)
| | - Sang Hyun Park
- Center for FMD Vaccine Research, Animal and Plant Quarantine Agency, Gimcheon-si 177, Republic of Korea; (J.Y.K.); (S.Y.P.); (S.H.P.); (G.L.); (J.-S.J.); (D.K.); (J.-H.P.)
| | - Gyeongmin Lee
- Center for FMD Vaccine Research, Animal and Plant Quarantine Agency, Gimcheon-si 177, Republic of Korea; (J.Y.K.); (S.Y.P.); (S.H.P.); (G.L.); (J.-S.J.); (D.K.); (J.-H.P.)
| | - Jong-Sook Jin
- Center for FMD Vaccine Research, Animal and Plant Quarantine Agency, Gimcheon-si 177, Republic of Korea; (J.Y.K.); (S.Y.P.); (S.H.P.); (G.L.); (J.-S.J.); (D.K.); (J.-H.P.)
| | - Dohyun Kim
- Center for FMD Vaccine Research, Animal and Plant Quarantine Agency, Gimcheon-si 177, Republic of Korea; (J.Y.K.); (S.Y.P.); (S.H.P.); (G.L.); (J.-S.J.); (D.K.); (J.-H.P.)
| | - Jong-Hyeon Park
- Center for FMD Vaccine Research, Animal and Plant Quarantine Agency, Gimcheon-si 177, Republic of Korea; (J.Y.K.); (S.Y.P.); (S.H.P.); (G.L.); (J.-S.J.); (D.K.); (J.-H.P.)
| | - Seong-Yun Jeong
- Department of Biomedical Science, Graduate School, Catholic University of Daegu, Daegu 38430, Republic of Korea;
| | - Young-Joon Ko
- Center for FMD Vaccine Research, Animal and Plant Quarantine Agency, Gimcheon-si 177, Republic of Korea; (J.Y.K.); (S.Y.P.); (S.H.P.); (G.L.); (J.-S.J.); (D.K.); (J.-H.P.)
| |
Collapse
|
5
|
Kabir A, Ullah K, Ali Kamboh A, Abubakar M, Shafiq M, Wang L. The Pathogenesis of Foot-and-Mouth Disease Virus Infection: How the Virus Escapes from Immune Recognition and Elimination. Arch Immunol Ther Exp (Warsz) 2024; 72:aite-2024-0013. [PMID: 38910298 DOI: 10.2478/aite-2024-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 04/22/2024] [Indexed: 06/25/2024]
Abstract
Foot-and-mouth disease virus (FMDV) is a highly contagious and economically devastating pathogen that affects cloven-hoofed animals worldwide. FMDV infection causes vesicular lesions in the mouth, feet, and mammary glands, as well as severe systemic symptoms such as fever, salivation, and lameness. The pathogenesis of FMDV infection involves complex interactions between the virus and the host immune system, which determine the outcome of the disease. FMDV has evolved several strategies to evade immune recognition and elimination, such as antigenic variation, receptor switching, immune suppression, and subversion of innate and adaptive responses. This review paper summarizes the current knowledge on the pathogenesis of FMDV infection and the mechanisms of immune evasion employed by the virus. It also discusses the challenges and opportunities for developing effective vaccines and therapeutics against this important animal disease.
Collapse
Affiliation(s)
- Abdul Kabir
- 1Department of Veterinary Microbiology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University Tandojam, Sindh, Pakistan
| | - Kalim Ullah
- 2Laboratory of Human Virology and Oncology, Center of Pathogen Biology and Immunology, Institute of Basic Medical Research, Shantou University Medical College, Shantou, Guangdong, China
| | - Asghar Ali Kamboh
- 1Department of Veterinary Microbiology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University Tandojam, Sindh, Pakistan
| | - Muhammad Abubakar
- 3Department of Microbiology, National Veterinary Laboratories, NVL, Islamabad, Pakistan
| | - Muhammad Shafiq
- 4Department of Pharmacology, Research Institute of Clinical Pharmacy, Shantou University Medical College, Shantou, China
| | - Li Wang
- 5Department of Dermatology, Beijing University of Chinese Medicine Shenzhen Hospital, Longgang, Shenzen, China
- 6Department of Dermatology, Shenzhen University General Hospital, Shenzhen University, Shenzen, China
| |
Collapse
|
6
|
Kim JY, Lee JH, Yang JM, Lee SY, Park SY, Jin JS, Kim D, Park JW, Park JH, Park SH, Ko YJ. Production of Foot-and-Mouth Disease Type O and A Vaccine Antigens on a Pilot Scale and Determination of Optimal Amount of Antigen for Monovalent Vaccines. Vaccines (Basel) 2023; 11:1156. [PMID: 37514972 PMCID: PMC10383391 DOI: 10.3390/vaccines11071156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Foot-and-mouth disease (FMD) is a highly infectious disease affecting cloven-hoofed animals and causes significant economic losses to the livestock industry. The Type O PanAsia-2 (O PA-2) vaccine strain is protective against a wide range of serotype O FMD virus (FMDV) strains in East Asia, and A22 Iraq/24/64 (A22 IRQ) is the most widely used vaccine strain in FMD vaccine antigen banks. The aim of this study was to produce antigens from O PA-2 and A22 IRQ viruses using a 100 L bioreactor and evaluate the protective efficacy of varying antigen concentrations in pigs. More than 2 μg/mL of the antigen was recovered from the O PA-2 and A22 IRQ virus-infected supernatants. Further, inactivation of O PA-2 and A22 IRQ by binary ethyleneimine revealed that the viral titers decreased below 10-7 TCID50/mL within 13 h and 9 h, respectively. The O PA-2 and A22 IRQ vaccines, containing 10 μg and 5 μg of antigen, respectively, provided protection against homologous viruses in pigs. This is the first report demonstrating that the antigens obtained from the pilot-scale production of O PA-2 and A22 IRQ are viable candidate vaccines. These results will pave the way for industrial-scale FMD vaccine production in South Korea.
Collapse
Affiliation(s)
- Jae Young Kim
- Animal and Plant Quarantine Agency, Gimcheon-si 39660, Republic of Korea
| | - Ji-Hye Lee
- Department of Research and Development, FVC, Gimcheon-si 39660, Republic of Korea
| | - Jong Min Yang
- Department of Research and Development, FVC, Gimcheon-si 39660, Republic of Korea
| | - Seo-Yong Lee
- Department of Development, SNC Bio, Hanam-si 12930, Republic of Korea
| | - Sun Young Park
- Animal and Plant Quarantine Agency, Gimcheon-si 39660, Republic of Korea
| | - Jong Sook Jin
- Animal and Plant Quarantine Agency, Gimcheon-si 39660, Republic of Korea
| | - Dohyun Kim
- Animal and Plant Quarantine Agency, Gimcheon-si 39660, Republic of Korea
| | - Jung-Won Park
- Animal and Plant Quarantine Agency, Gimcheon-si 39660, Republic of Korea
| | - Jong-Hyeon Park
- Animal and Plant Quarantine Agency, Gimcheon-si 39660, Republic of Korea
| | - Sang Hyun Park
- Animal and Plant Quarantine Agency, Gimcheon-si 39660, Republic of Korea
| | - Young-Joon Ko
- Animal and Plant Quarantine Agency, Gimcheon-si 39660, Republic of Korea
| |
Collapse
|
7
|
Kim JY, Park SY, Jin JS, Kim D, Park JH, Park SH, Ko YJ. Efficacy of Binary Ethylenimine in the Inactivation of Foot-and-Mouth Disease Virus for Vaccine Production in South Korea. Pathogens 2023; 12:760. [PMID: 37375450 DOI: 10.3390/pathogens12060760] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/16/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Foot-and-mouth disease (FMD) vaccines must be produced in a biosafety level 3 facility, so the FMD virus (FMDV) must be completely inactivated after amplification. The inactivation kinetics of FMDV during vaccine antigen production were assessed by evaluating whether the viral titer dropped below 10-7 TCID50/mL within 24 h of binary ethyleneimine (BEI) treatment. This study dealt with four FMD vaccine candidate strains for the efficacy of BEI treatment at different concentrations and temperatures to determine the optimal inactivation condition of each virus. Two domestic isolates, O/SKR/Boeun/2017 (O BE) and A/SKR/Yeoncheon/2017 (A YC), and two recombinant viruses, PAK/44/2008 (O PA-2) and A22/Iraq/24/64 (A22 IRQ), were investigated. The O BE and A22 IRQ required 2 mM BEI at 26 °C and 0.5 mM BEI at 37 °C for complete inactivation. The O PA-2 and A YC required 2 mM BEI at 26 °C and 1 mM BEI at 37 °C. Crucially, the yield of FMD virus particles (146S) in the viral infection supernatant was higher (>4.0 µg/mL) than those previously reported; additionally, there was little antigen loss, even after 24 h of treatment with 3 mM BEI. Overall, it is considered economical to produce FMD vaccines using these four kinds of viruses; therefore, these candidate strains will be prioritized for the manufacture of FMD vaccines in South Korea.
Collapse
Affiliation(s)
- Jae Young Kim
- Center for FMD Vaccine Research, Animal and Plant Quarantine Agency, 177 Hyeoksin-8-ro, Gimcheon-si 39660, Republic of Korea
| | - Sun Young Park
- Center for FMD Vaccine Research, Animal and Plant Quarantine Agency, 177 Hyeoksin-8-ro, Gimcheon-si 39660, Republic of Korea
| | - Jong Sook Jin
- Center for FMD Vaccine Research, Animal and Plant Quarantine Agency, 177 Hyeoksin-8-ro, Gimcheon-si 39660, Republic of Korea
| | - Dohyun Kim
- Center for FMD Vaccine Research, Animal and Plant Quarantine Agency, 177 Hyeoksin-8-ro, Gimcheon-si 39660, Republic of Korea
| | - Jong-Hyeon Park
- Center for FMD Vaccine Research, Animal and Plant Quarantine Agency, 177 Hyeoksin-8-ro, Gimcheon-si 39660, Republic of Korea
| | - Sang Hyun Park
- Center for FMD Vaccine Research, Animal and Plant Quarantine Agency, 177 Hyeoksin-8-ro, Gimcheon-si 39660, Republic of Korea
| | - Young-Joon Ko
- Center for FMD Vaccine Research, Animal and Plant Quarantine Agency, 177 Hyeoksin-8-ro, Gimcheon-si 39660, Republic of Korea
| |
Collapse
|
8
|
Ghattas M, Dwivedi G, Lavertu M, Alameh MG. Vaccine Technologies and Platforms for Infectious Diseases: Current Progress, Challenges, and Opportunities. Vaccines (Basel) 2021; 9:1490. [PMID: 34960236 PMCID: PMC8708925 DOI: 10.3390/vaccines9121490] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/02/2021] [Accepted: 12/11/2021] [Indexed: 01/09/2023] Open
Abstract
Vaccination is a key component of public health policy with demonstrated cost-effective benefits in protecting both human and animal populations. Vaccines can be manufactured under multiple forms including, inactivated (killed), toxoid, live attenuated, Virus-like Particles, synthetic peptide, polysaccharide, polysaccharide conjugate (glycoconjugate), viral vectored (vector-based), nucleic acids (DNA and mRNA) and bacterial vector/synthetic antigen presenting cells. Several processes are used in the manufacturing of vaccines and recent developments in medical/biomedical engineering, biology, immunology, and vaccinology have led to the emergence of innovative nucleic acid vaccines, a novel category added to conventional and subunit vaccines. In this review, we have summarized recent advances in vaccine technologies and platforms focusing on their mechanisms of action, advantages, and possible drawbacks.
Collapse
Affiliation(s)
- Majed Ghattas
- Department of Chemical Engineering, Polytechnique Montreal, Montreal, QC H3T 1J4, Canada;
- Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC H3T 1J4, Canada
| | - Garima Dwivedi
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
| | - Marc Lavertu
- Department of Chemical Engineering, Polytechnique Montreal, Montreal, QC H3T 1J4, Canada;
- Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC H3T 1J4, Canada
| | - Mohamad-Gabriel Alameh
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- AexeRNA Therapeutics, Washington, DC 20001, USA
| |
Collapse
|