1
|
Zhang S, Li H, Wang X, Sun P, Zhang H, Yin W, Fan K, Yang H, Zhang Z, Zhong J, Sun Y, Sun N. The effect and mechanism of sanguinarine against PCV2 based on the analysis of network pharmacology and TMT quantitative proteomics. Int J Biol Macromol 2025; 296:139767. [PMID: 39800034 DOI: 10.1016/j.ijbiomac.2025.139767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/24/2024] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
Porcine circovirus type 2 (PCV2) is highly prevalent in nature and serves as the primary pathogen responsible for porcine circovirus-associated disease (PCVD/PCVAD), posing a significant threat to pig production. Currently, vaccination alone could not provide the complete protection for PCV2 infection. The active ingredients of traditional Chinese medicine have shown a positive effect in combating viral infections. This study employed tandem mass tag (TMT) labeled proteomic analyses and network pharmacology to examine the effect and mechanism of sanguinarine against PCV2. IFIH1, IFITM1, p38α, and JNK were identified as the key targets of sanguinarine against PCV2 based on proteomics and network pharmacology. Using PCV2-infected PK-15 cells, it was discovered that sanguinarine inhibited the expression of the PCV2 CAP gene by upregulating IFIH1, thereby promoting STAT1 phosphorylation and activating MAVS expression. This, in turn, facilitated IRF3 phosphorylation, leading to increase IFITM1 expression. Simultaneously, sanguinarine suppressed the expression of the PCV2 CAP gene by inhibiting the expression of p38α, JNK, and p-JNK protein. In conclusion, the results of this study suggest that sanguinarine exerts anti-PCV2 effects through different targets and pathways, which lays the foundation for the subsequent development of new anti-PCV2 veterinary drugs.
Collapse
Affiliation(s)
- Sihuan Zhang
- Shanxi Key Lab. for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Hongquan Li
- Shanxi Key Lab. for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Xuzhen Wang
- Shanxi Animal Husbandry and Veterinary School, Taiyuan 030024, Shanxi, China
| | - Panpan Sun
- Shanxi Key Lab. for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Hua Zhang
- Shanxi Key Lab. for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Wei Yin
- Shanxi Key Lab. for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Kuohai Fan
- Laboratory Animal Center, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Huizhen Yang
- Shanxi Key Lab. for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Zhenbiao Zhang
- Shanxi Key Lab. for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Jia Zhong
- Shanxi Key Lab. for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Yaogui Sun
- Shanxi Key Lab. for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Na Sun
- Shanxi Key Lab. for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
| |
Collapse
|
2
|
Xiao Y, Yang Y, Xiong H, Dong G. The implications of FASN in immune cell biology and related diseases. Cell Death Dis 2024; 15:88. [PMID: 38272906 PMCID: PMC10810964 DOI: 10.1038/s41419-024-06463-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/27/2024]
Abstract
Fatty acid metabolism, particularly fatty acid synthesis, is a very important cellular physiological process in which nutrients are used for energy storage and biofilm synthesis. As a key enzyme in the fatty acid metabolism, fatty acid synthase (FASN) is receiving increasing attention. Although previous studies on FASN have mainly focused on various malignancies, many studies have recently reported that FASN regulates the survival, differentiation, and function of various immune cells, and subsequently participates in the occurrence and development of immune-related diseases. However, few studies to date systematically summarized the function and molecular mechanisms of FASN in immune cell biology and related diseases. In this review, we discuss the regulatory effect of FASN on immune cells, and the progress in research on the implications of FASN in immune-related diseases. Understanding the function of FASN in immune cell biology and related diseases can offer insights into novel treatment strategies for clinical diseases.
Collapse
Affiliation(s)
- Yucai Xiao
- Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, 272067, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, 272067, Shandong, China
| | - Yonghong Yang
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, 272007, Shandong, China
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, 272067, Shandong, China.
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, 272067, Shandong, China.
| | - Guanjun Dong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, 272067, Shandong, China.
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, 272067, Shandong, China.
| |
Collapse
|
3
|
Suo X, Wang J, Wang D, Fan G, Zhu M, Fan B, Yang X, Li B. DHA and EPA inhibit porcine coronavirus replication by alleviating ER stress. J Virol 2023; 97:e0120923. [PMID: 37843366 PMCID: PMC10688372 DOI: 10.1128/jvi.01209-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
IMPORTANCE Porcine epidemic diarrhea caused by porcine coronaviruses remains a major threat to the global swine industry. Fatty acids are extensively involved in the whole life of the virus. In this study, we found that docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) significantly reduced the viral load of porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), and porcine delta coronavirus (PDCoV) and acted on the replication of the viruses rather than attachment and entry. We further confirmed that DHA and EPA inhibited PEDV replication by alleviating the endoplasmic reticulum stress. Meanwhile, DHA and EPA alleviate PEDV-induced inflammation and reactive oxygen species (ROS) levels and enhance the cellular antioxidant capacity. These data indicate that DHA and EPA have antiviral effects on porcine coronaviruses and provide a molecular basis for the development of new fatty acid-based therapies to control porcine coronavirus infection and transmission.
Collapse
Affiliation(s)
- Xiaoyi Suo
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jing Wang
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Danping Wang
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Guoqiang Fan
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Mingjun Zhu
- Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Nanjing, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Baochao Fan
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Nanjing, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaojing Yang
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Bin Li
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Nanjing, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
4
|
Rostami M, Kolahi Azar H, Salehi M, Abedin Dargoush S, Rostamani H, Jahed-Khaniki G, Alikord M, Aghabeigi R, Ahmadi A, Beheshtizadeh N, Webster TJ, Rezaei N. The food and biomedical applications of curcumin-loaded electrospun nanofibers: A comprehensive review. Crit Rev Food Sci Nutr 2023; 64:12383-12410. [PMID: 37691403 DOI: 10.1080/10408398.2023.2251584] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Encapsulating curcumin (CUR) in nanocarriers such as liposomes, polymeric micelles, silica nanoparticles, protein-based nanocarriers, solid lipid nanoparticles, and nanocrystals could be efficient for a variety of industrial and biomedical applications. Nanofibers containing CUR represent a stable polymer-drug carrier with excellent surface-to-volume ratios for loading and cell interactions, tailored porosity for controlled CUR release, and diverse properties that fit the requirements for numerous applications. Despite the mentioned benefits, electrospinning is not capable of producing fibers from multiple polymers and biopolymers, and the product's effectiveness might be affected by various machine- and material-dependent parameters like the voltage and the flow rate of the electrospinning process. This review delves into the current and innovative recent research on nanofibers containing CUR and their various applications.
Collapse
Affiliation(s)
- Mohammadreza Rostami
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Food Science and Nutrition Group (FSAN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hanieh Kolahi Azar
- Department of Pathology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mojdeh Salehi
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Hosein Rostamani
- Department of Biomedical Engineering-Biomaterials, Islamic Azad University, Mashhad, Iran
| | - Gholamreza Jahed-Khaniki
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Alikord
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Aghabeigi
- Department of Medical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azam Ahmadi
- Department of Food Sciences and Technology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nima Beheshtizadeh
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Thomas J Webster
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, China
- Programa de Pós-Graduação em Ciência e Engenharia dos Materiais, Universidade Federal do Piauí, Teresina, Brazil
- School of Engineering, Saveetha University, Chennai, India
| | - Nima Rezaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
5
|
Wang Z, Cai X, Ren Z, Shao Y, Xu Y, Fu L, Zhu Y. Piceatannol as an Antiviral Inhibitor of PRV Infection In Vitro and In Vivo. Animals (Basel) 2023; 13:2376. [PMID: 37508153 PMCID: PMC10375968 DOI: 10.3390/ani13142376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Pseudorabies virus (PRV) belongs to the family Herpesviridae. PRV has a wide host range and can cause cytopathic effects (CPEs) in PK-15 cells. Therefore, PRV was used as a model to study the antiviral activity of piceatannol. The results showed that piceatannol could restrain PRV multiplication in PK-15 cells in a dose-dependent manner. The 50% inhibitory concentration (IC50) was 0.0307 mg/mL, and the selectivity index (SI, CC50/IC50) was 3.68. Piceatannol could exert an anti-PRV effect by reducing the transcription level of viral genes, inhibiting PRV-induced apoptosis and elevating the levels of IL-4, TNF-α and IFN-γ in the serum of mice. Animal experiments showed that piceatannol could delay the onset of disease, reduce the viral load in the brain and kidney and reduce the pathological changes in the tissues and organs of the mice to improve the survival rate of the mice (14.3%). Therefore, the anti-PRV activity of piceatannol in vivo and in vitro was systematically evaluated in this study to provide scientific data for developing a new alternative measure for controlling PRV infection.
Collapse
Affiliation(s)
- Zhiying Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150038, China
| | - Xiaojing Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150038, China
| | - Zhiyuan Ren
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150038, China
| | - Yi Shao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150038, China
| | - Yongkang Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150038, China
| | - Lian Fu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150038, China
| | - Yan Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150038, China
| |
Collapse
|
6
|
Chen N, Jiang D, Shao B, Bai T, Chen J, Liu Y, Zhang Z, Zhou Y, Wang X, Zhu Z. Anti-BVDV Activity of Traditional Chinese Medicine Monomers Targeting NS5B (RNA-Dependent RNA Polymerase) In Vitro and In Vivo. Molecules 2023; 28:3413. [PMID: 37110647 PMCID: PMC10145726 DOI: 10.3390/molecules28083413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Natural products have emerged as "rising stars" for treating viral diseases and useful chemical scaffolds for developing effective therapeutic agents. The nonstructural protein NS5B (RNA-dependent RNA polymerase) of NADL strain BVDV was used as the action target based on a molecular docking technique to screen herbal monomers for anti-BVDV viral activity. The in vivo and in vitro anti-BVDV virus activity studies screened the Chinese herbal monomers with significant anti-BVDV virus effects, and their antiviral mechanisms were initially explored. The molecular docking screening showed that daidzein, curcumin, artemisinine, and apigenin could interact with BVDV-NADL-NS5B with the best binding energy fraction. In vitro and in vivo tests demonstrated that none of the four herbal monomers significantly affected MDBK cell activity. Daidzein and apigenin affected BVDV virus replication mainly in the attachment and internalization phases, artemisinine mainly in the replication phase, and curcumin was active in the attachment, internalization, replication, and release phases. In vivo tests demonstrated that daidzein was the most effective in preventing and protecting BALB/C mice from BVDV infection, and artemisinine was the most effective in treating BVDV infection. This study lays the foundation for developing targeted Chinese pharmaceutical formulations against the BVDV virus.
Collapse
Affiliation(s)
- Nannan Chen
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (N.C.); (B.S.); (T.B.); (J.C.); (Y.L.); (Z.Z.); (Y.Z.); (X.W.)
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
| | - Dongjun Jiang
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining 272067, China;
| | - Baihui Shao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (N.C.); (B.S.); (T.B.); (J.C.); (Y.L.); (Z.Z.); (Y.Z.); (X.W.)
| | - Tongtong Bai
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (N.C.); (B.S.); (T.B.); (J.C.); (Y.L.); (Z.Z.); (Y.Z.); (X.W.)
| | - Jinwei Chen
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (N.C.); (B.S.); (T.B.); (J.C.); (Y.L.); (Z.Z.); (Y.Z.); (X.W.)
| | - Yu Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (N.C.); (B.S.); (T.B.); (J.C.); (Y.L.); (Z.Z.); (Y.Z.); (X.W.)
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
- Engineering Research Center for Prevention and Control of Cattle Diseases, Daqing 163319, China
| | - Zecai Zhang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (N.C.); (B.S.); (T.B.); (J.C.); (Y.L.); (Z.Z.); (Y.Z.); (X.W.)
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
- Engineering Research Center for Prevention and Control of Cattle Diseases, Daqing 163319, China
| | - Yulong Zhou
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (N.C.); (B.S.); (T.B.); (J.C.); (Y.L.); (Z.Z.); (Y.Z.); (X.W.)
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
- Engineering Research Center for Prevention and Control of Cattle Diseases, Daqing 163319, China
| | - Xue Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (N.C.); (B.S.); (T.B.); (J.C.); (Y.L.); (Z.Z.); (Y.Z.); (X.W.)
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
- Engineering Research Center for Prevention and Control of Cattle Diseases, Daqing 163319, China
| | - Zhanbo Zhu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (N.C.); (B.S.); (T.B.); (J.C.); (Y.L.); (Z.Z.); (Y.Z.); (X.W.)
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
- Engineering Research Center for Prevention and Control of Cattle Diseases, Daqing 163319, China
| |
Collapse
|
7
|
Wang X, Wang X, Zhang J, Shan Q, Zhu Y, Xu C, Wang J. Prediction and Verification of Curcumin as a Potential Drug for Inhibition of PDCoV Replication in LLC-PK1 Cells. Int J Mol Sci 2023; 24:ijms24065870. [PMID: 36982944 PMCID: PMC10058215 DOI: 10.3390/ijms24065870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/03/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging swine enteropathogenic coronavirus (CoV) that causes lethal watery diarrhea in neonatal pigs and poses economic and public health burdens. Currently, there are no effective antiviral agents against PDCoV. Curcumin is the active ingredient extracted from the rhizome of turmeric, which has a potential pharmacological value because it exhibits antiviral properties against several viruses. Here, we described the antiviral effect of curcumin against PDCoV. At first, the potential relationships between the active ingredients and the diarrhea-related targets were predicted through a network pharmacology analysis. Twenty-three nodes and 38 edges were obtained using a PPI analysis of eight compound-targets. The action target genes were closely related to the inflammatory and immune related signaling pathways, such as the TNF signaling pathway, Jak-STAT signaling pathway, and so on. Moreover, IL-6, NR3C2, BCHE and PTGS2 were identified as the most likely targets of curcumin by binding energy and 3D protein-ligand complex analysis. Furthermore, curcumin inhibited PDCoV replication in LLC-PK1 cells at the time of infection in a dose-dependent way. In poly (I:C) pretreated LLC-PK1 cells, PDCoV reduced IFN-β production via the RIG-I pathway to evade the host's antiviral innate immune response. Meanwhile, curcumin inhibited PDCoV-induced IFN-β secretion by inhibiting the RIG-I pathway and reduced inflammation by inhibiting IRF3 or NF-κB protein expression. Our study provides a potential strategy for the use of curcumin in preventing diarrhea caused by PDCoV in piglets.
Collapse
Affiliation(s)
- Xuefei Wang
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Xue Wang
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Jialu Zhang
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Qiang Shan
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Yaohong Zhu
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Chuang Xu
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Jiufeng Wang
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| |
Collapse
|
8
|
Pan S, Yan J, Xu X, Chen Y, Chen X, Li F, Xing H. Current Development and Future Application Prospects of Plants-Derived Polyphenol Bioactive Substance Curcumin as a Novel Feed Additive in Livestock and Poultry. Int J Mol Sci 2022; 23:ijms231911905. [PMID: 36233207 PMCID: PMC9570258 DOI: 10.3390/ijms231911905] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/16/2022] [Accepted: 09/30/2022] [Indexed: 11/23/2022] Open
Abstract
Curcumin (CUR) is a kind of natural orange-yellow phenolic compound mainly extracted from the stems and roots of turmeric plants and other species in the genus Curcuma, furthermore, it is also the most important active ingredient exerting pharmacological functions in turmeric. In recent years, CUR has been frequently reported and has attracted widespread attention from scholars all over the world due to its numerous biological functions and good application prospects, such as anti-inflammatory, anticancer, antioxidant and providing lipid-lowering effects, etc. In addition, adding a certain dose of CUR to livestock and poultry feed is important for animal growth and development, which plays a key role in animal metabolism, reproduction, immunity and clinical health care. This review aims to summarize, based on the published papers and our own observations, the physical and chemical properties and the biological functions of the plant-derived bioactive ingredient CUR, especially regarding the latest research progress in regulating intestinal health as well as its current development and future application prospects in livestock and poultry as a novel feed additive, so as to provide theoretical and practical references for the further study of the application of CUR as a novel feed additive and a potential new antibiotic substitute, thereby improving the research field of plant-derived bioactive ingredients and promoting the healthy development of livestock and poultry.
Collapse
Affiliation(s)
- Shifeng Pan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Department of Animal Science, Washington State University, Pullman, WA 99163, USA
- Correspondence: ; Tel.: +86-5148-7979-274; Fax: +86-514-8797-2218
| | - Jie Yan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xingyu Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Yongfang Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xinyu Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Fei Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Hua Xing
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
9
|
Zou X, Lin F, Yang Y, Chen J, Zhang H, Li L, Ouyang H, Pang D, Tang X. Cholesterol Biosynthesis Modulates CSFV Replication. Viruses 2022; 14:v14071450. [PMID: 35891429 PMCID: PMC9316236 DOI: 10.3390/v14071450] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 12/13/2022] Open
Abstract
Classical swine fever (CSF) caused by the classical swine fever virus (CSFV) has resulted in severe losses to the pig industry worldwide. It has been proposed that lipid synthesis is essential for viral replication, and lipids are involved in viral protein maturation and envelope production. However, the specific crosstalk between CSFV and host cell lipid metabolism is still unknown. In this study, we found that CSFV infection increased intracellular cholesterol levels in PK-15 cells. Further analysis demonstrated that CSFV infection upregulated PCSK9 expression to block the uptake of exogenous cholesterol by LDLR and enhanced the cholesterol biosynthesis pathway, which disrupted the type I IFN response in PK-15 cells. Our findings provide new insight into the mechanisms underpinning the pathogenesis of CSFV and hint at methods for controlling the disease.
Collapse
Affiliation(s)
- Xiaodong Zou
- College of Animal Sciences, Jilin University, Changchun 130062, China; (X.Z.); (F.L.); (Y.Y.); (J.C.); (H.Z.); (L.L.); (H.O.); (D.P.)
| | - Feng Lin
- College of Animal Sciences, Jilin University, Changchun 130062, China; (X.Z.); (F.L.); (Y.Y.); (J.C.); (H.Z.); (L.L.); (H.O.); (D.P.)
| | - Yang Yang
- College of Animal Sciences, Jilin University, Changchun 130062, China; (X.Z.); (F.L.); (Y.Y.); (J.C.); (H.Z.); (L.L.); (H.O.); (D.P.)
| | - Jiahuan Chen
- College of Animal Sciences, Jilin University, Changchun 130062, China; (X.Z.); (F.L.); (Y.Y.); (J.C.); (H.Z.); (L.L.); (H.O.); (D.P.)
| | - Huanyu Zhang
- College of Animal Sciences, Jilin University, Changchun 130062, China; (X.Z.); (F.L.); (Y.Y.); (J.C.); (H.Z.); (L.L.); (H.O.); (D.P.)
| | - Linquan Li
- College of Animal Sciences, Jilin University, Changchun 130062, China; (X.Z.); (F.L.); (Y.Y.); (J.C.); (H.Z.); (L.L.); (H.O.); (D.P.)
| | - Hongsheng Ouyang
- College of Animal Sciences, Jilin University, Changchun 130062, China; (X.Z.); (F.L.); (Y.Y.); (J.C.); (H.Z.); (L.L.); (H.O.); (D.P.)
- Chongqing Research Institute, Jilin University, Chongqing 401120, China
| | - Daxin Pang
- College of Animal Sciences, Jilin University, Changchun 130062, China; (X.Z.); (F.L.); (Y.Y.); (J.C.); (H.Z.); (L.L.); (H.O.); (D.P.)
- Chongqing Research Institute, Jilin University, Chongqing 401120, China
| | - Xiaochun Tang
- College of Animal Sciences, Jilin University, Changchun 130062, China; (X.Z.); (F.L.); (Y.Y.); (J.C.); (H.Z.); (L.L.); (H.O.); (D.P.)
- Chongqing Research Institute, Jilin University, Chongqing 401120, China
- Correspondence:
| |
Collapse
|
10
|
Discovery and synthesis of 1,2,4-oxadiazole derivatives as novel inhibitors of Zika, dengue, Japanese encephalitis, and classical swine fever virus infections. Arch Pharm Res 2022; 45:280-293. [PMID: 35441964 DOI: 10.1007/s12272-022-01380-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/28/2022] [Indexed: 11/02/2022]
Abstract
Zika virus (ZIKV), an arbovirus of the Flaviviridae family, has emerged as a significant public health concern owing to its association with congenital abnormalities and severe neurological sequelae. Thus, there is an urgent need to develop effective therapeutic approaches to efficiently treat ZIKV infections. This study used phenotypic screening to identify a series of 1,2,4-oxadiazole derivatives that possess antiviral activity against ZIKV infection. Subsequently, 28 new derivatives were designed, synthesized, and evaluated for this purpose. Among these compounds, 4-(5-phenyl-1,2,4-oxadiazol-3-yl)-N-(pyridin-3-ylmethyl)aniline (5d) had potent antiviral activity against ZIKV infections. Furthermore, a structure-activity relationship analysis indicated that a benzyl substitution on the aniline nitrogen of this compound improved potency while augmenting its drug-like properties. In addition, 5d exhibited antiviral activity against various viruses of Flaviviridae family of worldwide public health importance, such as dengue, Japanese encephalitis and classical swine fever viruses, indicating its potential as a lead compound for generating 1,2,4-oxadiazole derivatives with broad-spectrum anti-flaviviral properties.
Collapse
|