1
|
Liu H, Tian H, Hao P, Du H, Wang K, Qiu Y, Yin X, Wu N, Du Q, Tong D, Huang Y. PoRVA G9P[23] and G5P[7] infections differentially promote PEDV replication by reprogramming glutamine metabolism. PLoS Pathog 2024; 20:e1012305. [PMID: 38905309 PMCID: PMC11221755 DOI: 10.1371/journal.ppat.1012305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 07/03/2024] [Accepted: 05/29/2024] [Indexed: 06/23/2024] Open
Abstract
PoRVA and PEDV coinfections are extremely common in clinical practice. Although coinfections of PoRVA and PEDV are known to result in increased mortality, the underlying mechanism remains unknown. Here, we found that PoRVA infection promoted PEDV infection in vivo and in vitro and that PoRVA G9P[23] (RVA-HNNY strain) enhanced PEDV replication more significantly than did PoRVA G5P[7] (RVA-SXXA strain). Metabolomic analysis revealed that RVA-HNNY more efficiently induced an increase in the intracellular glutamine content in porcine small intestinal epithelial cells than did RVA-SXXA, which more markedly promoted ATP production to facilitate PEDV replication, whereas glutamine deprivation abrogated the effect of PoRVA infection on promoting PEDV replication. Further studies showed that PoRVA infection promoted glutamine uptake by upregulating the expression of the glutamine transporter protein SLC1A5. In SLC1A5 knockout cells, PoRVA infection neither elevated intracellular glutamine nor promoted PEDV replication. During PoRVA infection, the activity and protein expression levels of glutamine catabolism-related enzymes (GLS1 and GLUD1) were also significantly increased promoting ATP production through glutamine anaplerosis into the TCA cycle. Consistent with that, siRNAs or inhibitors of GLS1 and GLUD1 significantly inhibited the promotion of PEDV replication by PoRVA. Notably, RVA-HNNY infection more markedly promoted SLC1A5, GLS1 and GLUD1 expression to more significantly increase the uptake and catabolism of glutamine than RVA-SXXA infection. Collectively, our findings illuminate a novel mechanism by which PoRVA infection promotes PEDV infection and reveal that the modulation of glutamine uptake is key for the different efficiencies of PoRVA G9P[23] and PoRVA G5P[7] in promoting PEDV replication.
Collapse
Affiliation(s)
- Haixin Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Engineering Research Center of Efficient New Vaccines for Animals, Ministry of Education of the People’s Republic of China, Yangling, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Yangling, China
- Engineering Research Center of Efficient New Vaccines for Animals, Universities of Shaanxi Province, Yangling, China
| | - Haolun Tian
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Engineering Research Center of Efficient New Vaccines for Animals, Ministry of Education of the People’s Republic of China, Yangling, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Yangling, China
- Engineering Research Center of Efficient New Vaccines for Animals, Universities of Shaanxi Province, Yangling, China
| | - Pengcheng Hao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Huimin Du
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Kun Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yudong Qiu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xiangrui Yin
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Nana Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Qian Du
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Engineering Research Center of Efficient New Vaccines for Animals, Ministry of Education of the People’s Republic of China, Yangling, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Yangling, China
- Engineering Research Center of Efficient New Vaccines for Animals, Universities of Shaanxi Province, Yangling, China
| | - Dewen Tong
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Engineering Research Center of Efficient New Vaccines for Animals, Ministry of Education of the People’s Republic of China, Yangling, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Yangling, China
- Engineering Research Center of Efficient New Vaccines for Animals, Universities of Shaanxi Province, Yangling, China
| | - Yong Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Engineering Research Center of Efficient New Vaccines for Animals, Ministry of Education of the People’s Republic of China, Yangling, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Yangling, China
- Engineering Research Center of Efficient New Vaccines for Animals, Universities of Shaanxi Province, Yangling, China
| |
Collapse
|
2
|
Study of the effect of intestinal immunity in neonatal piglets coinfected with porcine deltacoronavirus and porcine epidemic diarrhea virus. Arch Virol 2022; 167:1649-1657. [PMID: 35661915 PMCID: PMC9166669 DOI: 10.1007/s00705-022-05461-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 03/20/2022] [Indexed: 11/20/2022]
Abstract
Porcine deltacoronavirus (PDCoV) and porcine epidemic diarrhea virus (PEDV) have often been detected simultaneously in piglets with coronavirus diarrhea. However, the intestinal immune response to the interaction between circulating PDCoV and PEDV is unknown. Therefore, this study was conducted to investigate the intestinal immunity of neonatal piglets that were exposed first to PDCoV and then to PEDV. The amounts and distribution of CD3+ T lymphocytes, B lymphocytes, and goblet cells (GCs) in the small intestine were analyzed by immunohistochemistry and periodic acid–Schiff staining, respectively. The expression levels of pattern recognition receptors and downstream mediator cytokines were analyzed by qPCR and ELISA. The results showed that the numbers of GCs, CD3+ T lymphocytes, and B lymphocytes in the duodenum and jejunum of the PDCoV + PEDV coinoculated piglets were increased compared with those of piglets inoculated with PEDV alone. The piglets in the PDCoV + PEDV group had significantly upregulated IFN-α and IFN-λ1 compared with the PEDV single-inoculated piglets. These results suggest that PDCoV + PEDV-coinfected piglets can activate intestinal antiviral immunity more strongly than piglets infected with PEDV alone, which provides new insight into the pathogenesis mechanism of swine enteric coronavirus coinfection that may be used for vaccination in the future.
Collapse
|