1
|
Kosaka AH, Huang CY, Lu ZY, Hsing HZ, Choonnasard A, Ringo RS, Chuang KP, Saito A. Divergent Effects of Circoviridae Capsid Proteins on Type I Interferon Signaling. Pathogens 2025; 14:68. [PMID: 39861029 PMCID: PMC11768430 DOI: 10.3390/pathogens14010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/17/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Viruses in the Circoviridae family can infect mammals and birds. Porcine circovirus type 2 (PCV2) significantly affects the livestock industry by causing porcine circovirus-associated diseases, such as postweaning multisystem wasting syndrome, respiratory disease complex, and dermatitis nephropathy syndrome. Additionally, beak and feather disease virus in parrots, canine circovirus in dogs, and columbid circovirus (pigeon circovirus) in racing pigeons induce immunosuppression, followed by secondary infections in these hosts. Although the PCV2 capsid protein has been demonstrated to inhibit type I interferon (IFN) signaling, the molecular mechanisms of Circoviridae-induced immunosuppression are largely unknown. In this study, we examined whether these functions are conserved across Circoviridae capsid proteins. Our results illustrated that although the nuclear localization of capsid proteins is conserved, their effects on IFN-β signaling vary by species, revealing the diverse roles of Circoviridae capsid proteins in modulating immune responses.
Collapse
Affiliation(s)
- Anon H. Kosaka
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan; (A.H.K.); (A.C.); (R.S.R.)
| | - Chen-Yu Huang
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan; (C.-Y.H.); (Z.-Y.L.); (H.-Z.H.); (K.P.C.)
| | - Zih-Ying Lu
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan; (C.-Y.H.); (Z.-Y.L.); (H.-Z.H.); (K.P.C.)
| | - Hua-Zhen Hsing
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan; (C.-Y.H.); (Z.-Y.L.); (H.-Z.H.); (K.P.C.)
| | - Amonrat Choonnasard
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan; (A.H.K.); (A.C.); (R.S.R.)
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Rissar Siringo Ringo
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan; (A.H.K.); (A.C.); (R.S.R.)
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Kuo Pin Chuang
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan; (C.-Y.H.); (Z.-Y.L.); (H.-Z.H.); (K.P.C.)
| | - Akatsuki Saito
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan; (A.H.K.); (A.C.); (R.S.R.)
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
- Center for Animal Disease Control, University of Miyazaki, Miyazaki 889-2192, Japan
| |
Collapse
|
2
|
Wang D, Song J, Wang J, Quan R. Quantitative proteomic analysis of PK-15 cells infected with porcine circovirus type 3 using 4D-DIA approach. Vet Res Commun 2024; 48:3593-3603. [PMID: 39172195 PMCID: PMC11538264 DOI: 10.1007/s11259-024-10501-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024]
Abstract
Porcine circovirus type 3 (PCV3) infection is clinically related to various diseases, including porcine dermatitis and nephrotic syndrome (PDNS)-like disease, respiratory disease, reproductive disorders, and gastrointestinal and neurological diseases. Since PCV3 infection was discovered in 2016, it has developed rapidly and has attracted much attention worldwide. However, specific preventive and therapeutic interventions are currently lacking. In this study, four-dimensional (4D) data-independent acquisition (DIA)-based quantitative proteomics detection combined with bioinformatics analysis were employed to quantitatively identify the differentially expressed proteins in PK-15 cells from the PCV3-infected group compared with those from the uninfected control group. A total of 194 cellular proteins were significantly altered in response to PCV3 infection, including 58 upregulated proteins and 136 downregulated proteins. In our Gene Ontology (GO) enrichment analysis, these differentially expressed proteins were mostly associated with cellular anatomical entities, binding, cellular processes, biological regulation, catalytic activity, metabolic processes, developmental processes, protein-containing complexes and responses to stimuli. Our Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that the DEPs were predominantly involved in metabolic pathways, the cAMP signaling pathway, protein processing in the endoplasmic reticulum, the PI3K-Akt signaling pathway, and the calcium signaling pathway. For the experiments, Western blotting (WB) was used to confirm the changes in important molecules. The differentially expressed proteins identified should contribute to a greater understanding of the mechanism of PCV3 replication and pathogenesis, as well as the host response.
Collapse
Affiliation(s)
- Dan Wang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jiangwei Song
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jing Wang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Rong Quan
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
| |
Collapse
|
3
|
Shuai J, Song S, Wang Z, Zeng R, Han X, Zhang X. MALDI-TOF nucleic acid mass spectrometry for simultaneously detection of fourteen porcine viruses and its application. J Virol Methods 2024; 329:114990. [PMID: 38925439 DOI: 10.1016/j.jviromet.2024.114990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Mixed infections of multiple viruses significantly contribute to the prevalence of swine diseases, adversely affecting global livestock production and the economy. However, effectively monitoring multiple viruses and detecting mixed infection samples remains challenging. This study describes a method that combines single-base extension PCR with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to detect important porcine viruses. RESULTS Our approach accurately and simultaneously identified 14 porcine viruses, including porcine circovirus types 1-3, porcine bocaviruses groups 1-3, African swine fever virus, pseudorabies virus, porcine parvovirus, torque teno sus virus, swine influenza virus, porcine reproductive and respiratory syndrome virus, classical swine fever virus, and foot-and-mouth disease virus. The low limit of detection for multiplex identification ranges from 13.54 to 1.59 copies/μL. Inter- and intra-assay stability was found to be ≥98.3 %. In a comprehensive analysis of 114 samples, the assay exhibited overall agreement with qPCR results of 97.9 %. CONCLUSIONS The developed MALDI-TOF NAMS assay exhibits high sensitivity, specificity, and reliability in detecting and distinguishing a wide spectrum of porcine viruses in complex matrix samples. This underscores its potential as an efficient diagnostic tool for porcine-derived virus surveillance and swine disease control.
Collapse
Affiliation(s)
- Jiangbing Shuai
- Hangzhou Customs Technical Center, Hangzhou 311202, China; Zhejiang Academy of Science & Technology for Inspection & Quarantine, Hangzhou 310016, China
| | - Shiqi Song
- Zhejiang Digena Diagnostic Technology Co., Ltd., Hangzhou 311100, China
| | - Zhongcai Wang
- Hangzhou Customs Technical Center, Hangzhou 311202, China
| | - Ruoxue Zeng
- Hangzhou Customs Technical Center, Hangzhou 311202, China
| | - Xiao Han
- Zhejiang Academy of Science & Technology for Inspection & Quarantine, Hangzhou 310016, China
| | - Xiaofeng Zhang
- Hangzhou Customs Technical Center, Hangzhou 311202, China; Zhejiang Academy of Science & Technology for Inspection & Quarantine, Hangzhou 310016, China.
| |
Collapse
|
4
|
Peng Q, Shi J, Lang Y, Zhu Y, Huang X, Cao S, Yan Q, Zhao S. Phylogenetic Analysis and Serological Investigation of Porcine Circovirus Indicates Frequent Infection with Various Subtypes. Int J Mol Sci 2023; 24:15850. [PMID: 37958833 PMCID: PMC10649267 DOI: 10.3390/ijms242115850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 11/15/2023] Open
Abstract
Porcine circoviruses (PCVs) are notorious for triggering severe diseases in pigs and causing serious economic losses to the swine industry. In the present study, we undertook a comprehensive approach for the investigation of PCV prevalence, including the phylogenetic analysis of obtained PCV sequences, the determination of major circulating genotypes and serological screening based on different recombinant Cap proteins with specific immunoreactivity. Epidemiological surveillance data indicate that PCV2d and PCV3a are widely distributed in Southwest China, while PCV4 has only sporadic circulation. Meanwhile, serological investigations showed high PCV2 antibody positivity in collected serum samples (>50%), followed by PCV4 (nearly 50%) and PCV3 (30-35%). The analysis supports different circulation patterns of PCV2, PCV3 and PCV4 and illustrates the PCV2/PCV3 genetic evolution characteristics on a nationwide basis. Taken together, our findings add up to the current understanding of PCV epidemiology and provide new tools and insight for PCV antiviral intervention.
Collapse
Affiliation(s)
- Qianling Peng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiqiang Shi
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yifei Lang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yulan Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaobo Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Sanjie Cao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Qigui Yan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shan Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
5
|
Yang X, Du Q, Wang X, Shi J, Wang T, Li P, Zhong J, Tong D, Huang Y. Porcine circovirus type 2 infection inhibits macrophage M1 polarization induced by other pathogens via viral capsid protein and host gC1qR protein. Vet Microbiol 2023; 285:109871. [PMID: 37672899 DOI: 10.1016/j.vetmic.2023.109871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023]
Abstract
Porcine circovirus type 2 (PCV2) has been proven to co-infect with a variety of pathogens and cause immunosuppression. Previously, we have reported that PCV2 infection attenuates the production of pro-inflammatory cytokines induced by other pathogens in porcine macrophages. However, whether PCV2 can affect M1-type macrophage polarization induced by other pathogens is less well reported. Herein, we found that PCV2 infection suppressed M1 macrophage production induced by porcine reproductive and respiratory syndrome virus (PRRSV) and Haemophilus parasuis (H. parasuis) in the lung and promoted the proliferation of these pathogens in the piglets. Consistently, we confirmed that PCV2 inhibits M1 macrophage production and its associated gene expression in porcine alveolar macrophages (PAMs) both ex vivo and in vitro. Meanwhile, PCV2 inhibited lipopolysaccharide (LPS)-induced pro-inflammatory cytokines in vitro in a time- and dose-dependent manner. In PCV2-infected cells, LPS-induced signal transducer and activator of transcription (STAT1) phosphorylation and its nuclear translocation were decreased. Based on these findings, we further identified a role for PCV2 capsid protein (Cap) in LPS-induced M1 macrophage-associated genes and found that PCV2 Cap can significantly reduce STAT1 phosphorylation and its nuclear translocation, as well as the production of M1 macrophage-related genes. As the binding protein of PCV2 Cap, gC1qR protein was also associated with this inhibition process. gC1qR-binding activity-deficient PCV2 Cap mutated protein (Cap RmA) appeared an attenuated inhibitory effect on other pathogen-induced polarization of M1-type macrophages, suggesting that the inhibitory effect of PCV2 infection on M1-type macrophage polarization induced by other pathogens is dependent on Cap protein and the host gC1qR protein. Altogether, our results demonstrate that PCV2 infection inhibits macrophage M1 polarization induced by other pathogens via capsid and host gC1qR protein modulating JAK/STAT signaling.
Collapse
Affiliation(s)
- Xuefeng Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Qian Du
- College of Veterinary Medicine, Northwest A&F University, Yangling, China; Engineering Research Center of Efficient New Vaccines for Animals, Ministry of Education, Yangling, China; Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Yangling, China; Engineering Research Center of Efficient New Vaccines for Animals, Universities of Shaanxi Province, Yangling, China
| | - Xiaofen Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jun Shi
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Tongtong Wang
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Peixuan Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jianhui Zhong
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Dewen Tong
- College of Veterinary Medicine, Northwest A&F University, Yangling, China; Engineering Research Center of Efficient New Vaccines for Animals, Ministry of Education, Yangling, China; Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Yangling, China; Engineering Research Center of Efficient New Vaccines for Animals, Universities of Shaanxi Province, Yangling, China.
| | - Yong Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China; Engineering Research Center of Efficient New Vaccines for Animals, Ministry of Education, Yangling, China; Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Yangling, China; Engineering Research Center of Efficient New Vaccines for Animals, Universities of Shaanxi Province, Yangling, China.
| |
Collapse
|
6
|
Burgher Pulgaron Y, Provost C, Pesant MJ, Gagnon CA. Porcine Circovirus Modulates Swine Influenza Virus Replication in Pig Tracheal Epithelial Cells and Porcine Alveolar Macrophages. Viruses 2023; 15:v15051207. [PMID: 37243291 DOI: 10.3390/v15051207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
The pathogenesis of porcine circovirus type 2b (PCV2b) and swine influenza A virus (SwIV) during co-infection in swine respiratory cells is poorly understood. To elucidate the impact of PCV2b/SwIV co-infection, newborn porcine tracheal epithelial cells (NPTr) and immortalized porcine alveolar macrophages (iPAM 3D4/21) were co-infected with PCV2b and SwIV (H1N1 or H3N2 genotype). Viral replication, cell viability and cytokine mRNA expression were determined and compared between single-infected and co-infected cells. Finally, 3'mRNA sequencing was performed to identify the modulation of gene expression and cellular pathways in co-infected cells. It was found that PCV2b significantly decreased or improved SwIV replication in co-infected NPTr and iPAM 3D4/21 cells, respectively, compared to single-infected cells. Interestingly, PCV2b/SwIV co-infection synergistically up-regulated IFN expression in NPTr cells, whereas in iPAM 3D4/21 cells, PCV2b impaired the SwIV IFN induced response, both correlating with SwIV replication modulation. RNA-sequencing analyses revealed that the modulation of gene expression and enriched cellular pathways during PCV2b/SwIV H1N1 co-infection is regulated in a cell-type-dependent manner. This study revealed different outcomes of PCV2b/SwIV co-infection in porcine epithelial cells and macrophages and provides new insights on porcine viral co-infections pathogenesis.
Collapse
Affiliation(s)
- Yaima Burgher Pulgaron
- Swine and Poultry Infectious Diseases Research Center (CRIPA-FRQ), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Chantale Provost
- Molecular Diagnostic Laboratory, Centre de Diagnostic Vétérinaire de l'Université de Montréal (CDVUM), Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Marie-Jeanne Pesant
- Swine and Poultry Infectious Diseases Research Center (CRIPA-FRQ), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Carl A Gagnon
- Swine and Poultry Infectious Diseases Research Center (CRIPA-FRQ), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Molecular Diagnostic Laboratory, Centre de Diagnostic Vétérinaire de l'Université de Montréal (CDVUM), Saint-Hyacinthe, QC J2S 2M2, Canada
| |
Collapse
|
7
|
Du Q, Shi T, Wang H, Zhu C, Yang N, Tong D, Huang Y. The ultrasonically treated nanoliposomes containing PCV2 DNA vaccine expressing gC1qR binding site mutant Cap is efficient in mice. Front Microbiol 2023; 13:1077026. [PMID: 36713188 PMCID: PMC9874303 DOI: 10.3389/fmicb.2022.1077026] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023] Open
Abstract
Nowadays, vaccines are broadly used to prevent porcine circovirus type 2 (PCV2) infection-induced expenditures, but the virus is still spreading among pigs. The current PCV2 vaccines all rely on the immunogenicity of Cap, yet our previous studies found that Cap is also the major component mediating the PCV2 infection-induced immune suppression through its interaction with host gC1qR. Thereby, new vaccines are still necessary for PCV2 prevention and control. In this study, we constructed a new PCV2 DNA vaccine expressing the gC1qR binding site mutant Cap. We introduced the Intron A and WPRE elements into the vector to improve the Cap expression level, and fused the IL-2 secretory signal peptides to the N-terminal of Cap to mediate the secretion of Cap. We also screened and selected chemokines CXCL12, CCL22, and CCL25 to migrate dendritic cells. In addition, we contained the vectors with PEI and then ultrasonic them into nano size to enhance the entrance of the vectors. Finally, the animal experiments showed that the new PCV2 DNA vaccine expressing the gC1qR binding site mutant Cap could induce stronger humoral and cellular immune responses than the PCV2 DNA vaccine expressing the wild-type Cap and the non-ultrasonic treated PCV2 DNA vaccine in mice, and protect the mice from PCV2 infection and lung lesions. The results indicate the new PCV2 DNA vaccine expressing the gC1qR binding site mutant Cap has a certain development value, and provide new insight into the development of novel PCV2 vaccines.
Collapse
Affiliation(s)
- Qian Du
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China,Engineering Research Center of Efficient New Vaccines for Animals, Ministry of Education, Xianyang, China
| | - Tengfei Shi
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China,Engineering Research Center of Efficient New Vaccines for Animals, Ministry of Education, Xianyang, China
| | - Huaxin Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China,Engineering Research Center of Efficient New Vaccines for Animals, Ministry of Education, Xianyang, China
| | - Changlei Zhu
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China,Engineering Research Center of Efficient New Vaccines for Animals, Ministry of Education, Xianyang, China
| | - Nan Yang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China,Engineering Research Center of Efficient New Vaccines for Animals, Ministry of Education, Xianyang, China
| | - Dewen Tong
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China,Engineering Research Center of Efficient New Vaccines for Animals, Ministry of Education, Xianyang, China,*Correspondence: Dewen Tong,
| | - Yong Huang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China,Engineering Research Center of Efficient New Vaccines for Animals, Ministry of Education, Xianyang, China,Yong Huang,
| |
Collapse
|
8
|
The gC1qR Binding Site Mutant PCV2 Is a Potential Vaccine Strain That Does Not Impair Memory CD4 + T-Cell Generation by Vaccines. J Virol 2022; 96:e0095922. [PMID: 36121300 PMCID: PMC9555195 DOI: 10.1128/jvi.00959-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PCV2 has been reported to reduce the protective effects of various vaccines on immunized pigs. Our previous studies showed that the interaction of Cap and host protein gC1qR mediated the PCV2 infection-induced suppression of immune response. Thus, we wondered whether the gC1qR binding site mutant PCV2RmA could be a vaccine strain and whether this mutant PCV2RmA impairs other vaccines. Herein, we showed that PCV2 infection reduced the classic swine fever virus (CSFV) vaccine-induced generation of memory CD4+ T cells through the interaction of Cap with gC1qR. PCV2RmA can effectively induce the production of PCV2-specific antibodies, neutralizing antibodies, and peripheral blood lymphocyte proliferation in piglets at the same levels as the commercial inactivated PCV2 vaccine. The PCV2RmA-induced anti-PCV2 immune responses could eliminate the serum virus and would not lead to pathological lesions like wild-type PCV2. Moreover, compared to the commercial inactivated PCV2 vaccine, PCV2RmA is capable of inducing more durable protective immunity against PCV2 that induced production of PCV2-specific antibodies and neutralizing antibodies for a longer time via stronger induction of memory CD4+ T cells. Importantly, PCV2RmA infection did not impair the CSFV vaccine-induced generation of memory CD4+ T cells. Collectively, our findings showed that PCV2 infection impairs memory CD4+ T-cell generation to affect vaccination and provide evidence for the use of PCV2RmA as an efficient vaccine to prevent PCV2 infection. IMPORTANCE PCV2 is one of the costliest pathogens in pigs worldwide. Usage of PCV2 vaccines can prevent the PCV2 infection-induced clinical syndromes but not the viral spread. Our previous work found that PCV2 infection suppresses the host type I interferon innate immune response and CD4+ T-cell-mediated Th1 immune response through the interaction of Cap with host gC1qR. Here, we showed that the gC1qR binding site mutant PCV2RmA could effectively induce anti-PCV2 immunity and provide more durable protective immunity against wild-type PCV2 infection in pigs. PCV2RmA would not impair the generation of memory CD4+ T cells induced by classic swine fever virus (CSFV) vaccines as wild-type PCV2 did. Therefore, PCV2RmA can serve as a potential vaccine strain to better protect pigs against PCV2 infection.
Collapse
|
9
|
Du S, Xu F, Lin Y, Wang Y, Zhang Y, Su K, Li T, Li H, Song Q. Detection of Porcine Circovirus Type 2a and Pasteurella multocida Capsular Serotype D in Growing Pigs Suffering from Respiratory Disease. Vet Sci 2022; 9:vetsci9100528. [PMID: 36288141 PMCID: PMC9607208 DOI: 10.3390/vetsci9100528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/11/2022] [Accepted: 09/22/2022] [Indexed: 11/19/2022] Open
Abstract
In order to diagnose a respiratory disease in a pig farm, the lungs, spleen, and lymph nodes of three dead pigs were collected for pathogen detection by PCR and isolation on the basis of preliminary clinical diagnosis. The virus isolate was identified by gene sequence analysis and Immunoperoxidase monolayer assay (IPMA). The bacterial isolate was identified by biochemical tests, 16S rDNA sequence analysis, and species- and serotype-specific PCR, and the pathogenicity was analyzed. Porcine circovirus type 2a (PCV2a) genotype from the lungs, spleen, and lymph nodes and Pasteurella (P.) multocida capsular serotypes D from the lungs were found. The PCV2a isolates could specifically bound the anti-PCV2-Cap polyclonal antibody. The 16S rDNA sequence of P. multocida isolates had 99.9% identity with that of the strain from cattle, and the isolate was highly pathogenic to mice. The results showed that the co-infection of PCV2a and P. Multocida capsular serotypes D should be responsible for the disease. The uncommon PCV2a is still prevalent in some pig farms besides the dominant PCV2d genotype. This study could provide important etiological information for effective control and treatment of the disease in pig farms.
Collapse
Affiliation(s)
- Shuailong Du
- Hebei Veterinary Biotechnology Innovation Center, College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Fan Xu
- Hebei Veterinary Biotechnology Innovation Center, College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Yidan Lin
- Hebei Veterinary Biotechnology Innovation Center, College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Yawen Wang
- Hebei Veterinary Biotechnology Innovation Center, College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Yanan Zhang
- Hebei Veterinary Biotechnology Innovation Center, College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Kai Su
- Hebei Veterinary Biotechnology Innovation Center, College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Tanqing Li
- Hebei Veterinary Biotechnology Innovation Center, College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Huanrong Li
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
- Correspondence: (H.L.); (Q.S.); Tel.: +86-136-8149-3570 (H.L.); +86-135-8220-3502 (Q.S.)
| | - Qinye Song
- Hebei Veterinary Biotechnology Innovation Center, College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
- Correspondence: (H.L.); (Q.S.); Tel.: +86-136-8149-3570 (H.L.); +86-135-8220-3502 (Q.S.)
| |
Collapse
|
10
|
Li X, Chen S, Zhang L, Niu G, Zhang X, Yang L, Ji W, Ren L. Coinfection of Porcine Circovirus 2 and Pseudorabies Virus Enhances Immunosuppression and Inflammation through NF-κB, JAK/STAT, MAPK, and NLRP3 Pathways. Int J Mol Sci 2022; 23:ijms23084469. [PMID: 35457287 PMCID: PMC9029761 DOI: 10.3390/ijms23084469] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/16/2022] [Accepted: 04/17/2022] [Indexed: 02/04/2023] Open
Abstract
Porcine circovirus 2 (PCV2) and pseudorabies virus (PRV) are economically important pathogens in swine. PCV2 and PRV coinfection can cause more severe neurological and respiratory symptoms and higher mortality of piglets. However, the exact mechanism involved in the coinfection of PRV and PCV2 and its pathogenesis remain unknown. Here, porcine kidney cells (PK-15) were infected with PCV2 and/or PRV, and then the activation of immune and inflammatory pathways was evaluated to clarify the influence of the coinfection on immune and inflammatory responses. We found that the coinfection of PCV2 and PRV can promote the activation of nuclear factor-κB (NF-κB), c-Jun N-terminal protein kinases (JNK), p38, and nod-like receptor protein 3 (NLRP3) pathways, thus enhancing the expression of interferon-γ (IFN-γ), interferon-λ1 (IFN-λ1), interferon-stimulated gene (ISG15), interleukin 6 (IL6), and interleukin 1β (IL1β). Meanwhile, PCV2 and PRV also inhibit the expression and signal transduction of IFN-β, tumor necrosis factor α (TNFα), and the Janus kinase-signal transducer and activator of transcription (JAK/STAT) pathway. In addition, PCV2 and PRV infection can also weaken extracellular-signal-regulated kinase (ERK) activity. These results indicate that the regulations of cellular antiviral immune responses and inflammatory responses mediated by NF-κB, JAK/STAT, mitogen-activated protein kinase (MAPK), and NLRP3 pathways, contribute to immune escape of PCV2 and PRV and host antiviral responses.
Collapse
|