1
|
Zhang J, Wu J, Zhu Q, Huang X, Zhang Z, Zhu C, Deng G, Ake A, Ma Y, He C, Guo R, Yue H, Lan L, Zhang B. Protective efficacy of a recombinant adenovirus expressing novel dual F and HN proteins of bovine parainfluenza virus type 3. Vet Res 2024; 55:144. [PMID: 39511676 PMCID: PMC11545272 DOI: 10.1186/s13567-024-01400-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 09/06/2024] [Indexed: 11/15/2024] Open
Abstract
Bovine parainfluenza virus type 3 (BPIV3) is a viral respiratory pathogen that infects cattle and causes significant economic losses. We generated a recombinant adenovirus called rHAd5-F + HN by expressing the fusion (F) and hemagglutinin-neuraminidase (HN) glycoprotein of BPIV3 using the human adenovirus serotype 5 (rHAd5). We evaluated its effects on humoral and cellular immune responses in mice (n = 45) and calves (n = 9). Serum antibody responses were assessed by enzyme-linked immunosorbent assay (ELISA), hemagglutination inhibition (HI), and neutralising antibodies (NAb). After boosting immunity with rHAd5-F + HN, mice produced significantly higher levels of antibodies against the BPIV3 genotype A and genotype C strains. The production of antibodies exceeded those produced by adenoviruses rHAd5-F and rHAd5-HN, which express the F and HN glycoprotein, respectively. The percentages of splenic CD3+/CD8+T lymphocytes and IL-4+ cytokines in rHAd5-F + HN mice were considerably higher than those in the control group. Mice immunised with rHAd5-F + HN exhibited much lower viral loads in the lungs and tracheas compared to the control group. Additionally, the lungs of mice vaccinated with rHAd5-F + HN showed no notable histopathological changes. On the other hand, rHAd5-F + HN produced a humoral immune response in calves. Following the booster intramuscular injection with the rHAd5-F + HN, the serum antibody levels against BPIV3 genotype C strain were 1:20 452, 1:1024, and 1:426 in calves, as detected by ELISA, HI, and NAb, respectively. The HI and NAb levels against the BPIV3 genotype A strain were 1:213 and 1:85 in calves, respectively. These results indicate that rHAd5-F + HN effectively induced immunity against BPIV3 infection.
Collapse
Affiliation(s)
- Jiaqi Zhang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Jinbo Wu
- Animal Husbandry Science Institute of ABa Autonomous Prefecture, Hongyuan, 624400, China
| | - Qing Zhu
- Center for Animal Disease Control and Prevention, Ganzi Tibetan Autonomous Prefectue, Kangding, 626000, China
| | - Xiangyue Huang
- Animal Husbandry Science Institute of ABa Autonomous Prefecture, Hongyuan, 624400, China
| | - Zhaohui Zhang
- Center for Animal Disease Control and Prevention, Ganzi Tibetan Autonomous Prefectue, Kangding, 626000, China
| | - Chenxi Zhu
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Gunan Deng
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Ajia Ake
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Yuanzhen Ma
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Chunsai He
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Rui Guo
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Hua Yue
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, 610041, China
| | - Lan Lan
- Animal Husbandry Science Institute of Ganzi Tibetan Autonomous Prefecture, Kangding, 626000, China.
| | - Bin Zhang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China.
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, 610041, China.
| |
Collapse
|
2
|
Cao S, Ma D, Ji S, Zhou M, Zhu S. Self-Assembled Ferritin Nanoparticles for Delivery of Antigens and Development of Vaccines: From Structure and Property to Applications. Molecules 2024; 29:4221. [PMID: 39275069 PMCID: PMC11397193 DOI: 10.3390/molecules29174221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/31/2024] [Accepted: 09/04/2024] [Indexed: 09/16/2024] Open
Abstract
Ferritin, an iron storage protein, is ubiquitously distributed across diverse life forms, fulfilling crucial roles encompassing iron retention, conversion, orchestration of cellular iron metabolism, and safeguarding cells against oxidative harm. Noteworthy attributes of ferritin include its innate amenability to facile modification, scalable mass production, as well as exceptional stability and safety. In addition, ferritin boasts unique physicochemical properties, including pH responsiveness, resilience to elevated temperatures, and resistance to a myriad of denaturing agents. Therefore, ferritin serves as the substrate for creating nanomaterials typified by uniform particle dimensions and exceptional biocompatibility. Comprising 24 subunits, each ferritin nanocage demonstrates self-assembly capabilities, culminating in the formation of nanostructures akin to intricate cages. Recent years have witnessed the ascendance of ferritin-based self-assembled nanoparticles, owing to their distinctive physicochemical traits, which confer substantial advantages and wide-ranging applications within the biomedical domain. Ferritin is highly appealing as a carrier for delivering drug molecules and antigen proteins due to its distinctive structural and biochemical properties. This review aims to highlight recent advances in the use of self-assembled ferritin as a novel carrier for antigen delivery and vaccine development, discussing the molecular mechanisms underlying its action, and presenting it as a promising and effective strategy for the future of vaccine development.
Collapse
Affiliation(s)
- Shinuo Cao
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225306, China;
| | - Dongxue Ma
- Department of Veterinary Medicine, Agriculture College of Yanbian University, Yanji 133000, China; (D.M.); (S.J.)
| | - Shengwei Ji
- Department of Veterinary Medicine, Agriculture College of Yanbian University, Yanji 133000, China; (D.M.); (S.J.)
| | - Mo Zhou
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225306, China;
| | - Shanyuan Zhu
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225306, China;
| |
Collapse
|
3
|
Chen J, Qiu Y, Xiong P, Wang Z, Li N, Ye C, Peng Y. Isolation and Genomic Characterization of a Chinese Genotype C Bovine Parainfluenza Virus Type 3 from Cattle and Its Pathogenicity in C57BL/6 Mice. Animals (Basel) 2024; 14:463. [PMID: 38338106 PMCID: PMC10854764 DOI: 10.3390/ani14030463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Bovine parainfluenza virus type 3 (BPIV-3), also known as bovine respirovirus 3, is a common respiratory pathogen associated with bovine respiratory disease (BRD). BPIV-3 has currently circulated worldwide; however, data on the prevalence and genetic characteristics of BPIV-3 are still scarce and limited. In this study, the BPIV-3 strain SC was identified and isolated from cattle presenting with clinical signs of BRD in China. Animal experiments indicated that BPIV-3 SC can successfully infect C57BL/6 mice and induce weight loss, lung inflammatory cell infiltration, and inflammatory cytokine expression in mice. In addition, the complete genome of BPIV-3 SC was obtained using next-generation sequencing and was 15,473 bp in length. Phylogenetic analysis indicated that BPIV-3 SC belonged to genotype C, which clustered in the same large clade consisting of a population of Chinese genotype C strains but was found to be different from the other strains upon further differentiation. Compared to other Chinese genotype C strains, the BPIV-3 SC showed 70 unique nucleotide mutations and 13 unique amino acid mutations in the HN, P, and L proteins, suggesting a unique genetic evolution of BPIV-3 SC. In conclusion, we isolated and characterized a differential Chinese genotype C BPIV-3, which contributed to an understanding of the prevalence and evolution of BPIV-3 in China.
Collapse
Affiliation(s)
| | | | | | | | | | - Chao Ye
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Yuanyi Peng
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| |
Collapse
|
4
|
Zhang J, Zeng J, Yuan Z, Huang X, Wu J, Yu Q, Chen T, Den G, Zhu C, Zhang B. Immunogenicity and protective efficacy of a recombinant adenovirus containing the fusion protein of bovine parainfluenza virus type 3 genotype C in mice. Microb Pathog 2023; 185:106444. [PMID: 37951410 DOI: 10.1016/j.micpath.2023.106444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
Bovine parainfluenza virus type 3 (BPIV3) is a viral respiratory pathogen of cattle that causes substantial economic losses. A replicating-defective recombinant human adenovirus type 5 (HAd5), carrying a fusion protein of BPIV3 genotype C (HAd5-F), was constructed and evaluated for its immunogenicity and protective efficacy in mice. After intramuscular injection with the HAd5-F, the IgG titers against F proteins increased to 1:102,400, and virus-neutralizing titers increased to 1:256, significantly higher than those in the group injected with inactivated BPIV3C in mice (p<0.05). The splenic CD4+/CD8+T lymphocytes and IFN-γ+/IL-4+ cytokine percentages were more significant in the HAd5-F group than those in the control group. A BPIV3C challenge in a mouse model was used to assess protective efficacy of the HAd5-F. The viral loads in the lungs and tracheas of mice immunized with the HAd5-F were significantly lower than those in the control group (p<0.0001). There were no significant histopathological alterations in the lungs of mice vaccinated with the HAd5-F. These findings suggested that the HAd5-F elicited excellent immunity against BPIV3C infection.
Collapse
Affiliation(s)
- Jiaqi Zhang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Jiangyong Zeng
- Tibet Livestock Research Institute, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850009, China
| | - Zhenjie Yuan
- Tibet Livestock Research Institute, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850009, China
| | - Xiangyue Huang
- Animal Husbandry Science Institute of ABa Autonomous Prefecture, Hongyuan, China
| | - Jinbo Wu
- Animal Husbandry Science Institute of ABa Autonomous Prefecture, Hongyuan, China
| | - Qisheng Yu
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Taoyun Chen
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Gunan Den
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Chenxi Zhu
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Bin Zhang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, 610041, China.
| |
Collapse
|
5
|
Qu Z, Wu X, Guo X, Han H, Zhang P, Wang M, Song Y, Jiao F, He S, Lu S, Zhang X. Self-assembled nanoparticle with E protein domain III of DTMUV based on ferritin as carrier can induce a more comprehensive immune response and against DTMUV challenge in duck. Vet Microbiol 2023; 284:109820. [PMID: 37364454 DOI: 10.1016/j.vetmic.2023.109820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023]
Abstract
Duck Tembusu virus (DTMUV) causes severe reduction in egg production and neurological symptoms in ducklings. Vaccination is the primary measure used to prevent DTMUV infections. In this study, self-assembled nanoparticles with the E protein domain III of DTMUV, using ferritin as a carrier (EDⅢ-RFNp), were prepared using a prokaryotic expression system. Ducks were intramuscularly vaccinated with EDⅢ-RFNp, EDⅢ protein, an inactivated vaccine HB strain (InV-HB), and PBS. At 0, 4, and 6 weeks post-primary vaccination, the EDIII protein-specific antibody titre, IL-4, and IFN-γ concentrations in serum were determined by ELISA, and neutralising antibodies titres in sera were determined by virus neutralising assay. Peripheral blood lymphocytes proliferation was determined by CCK-8 kit. Following challenge with the virulent DTMUV strain, the clinical signals and survival rate of the vaccinated ducks were recorded, and DTMUV RNA levels in the blood and tissues of the surviving ducks were determined by real-time quantitative RT-PCR. The near-spherical EDⅢ-RFNp nanoparticles with 13.29 ± 1.43 nm diameter were observed by transmission electron microscope. At 4 and 6 weeks post-primary vaccination, special and Virus neutralisation (VN) antibodies, lymphocyte proliferation (stimulator index, SI), and concentrations of IL-4 and IFN-γ in the EDⅢ-RFNp group were significantly higher than in the EDⅢ and PBS groups. In the DTMUV virulent strain challenge test, the EDⅢ-RFNp-vaccinated ducks showed milder clinical signs and higher survival rates than EDⅢ- and PBS-vaccinated ducks. The DTMUV RNA levels in the blood and tissues of EDⅢ-RFNp-vaccinated ducks were significantly lower than those in EDⅢ- and PBS-vaccinated ducks. Additionally, the EDⅢ protein-special and VN antibodies, SI value, and concentration of IL-4 and IFN-γ in the InV-HB group was significantly higher than that of the PBS group at 4 and 6 weeks post-primary vaccination. InV-HB provided more efficient protection than PBS based on a higher survival rate, milder signals, and lower levels of the DTMUV virus in the blood and tissues. These results indicated that EDⅢ-RFNp effectively protected ducks against DTMUV challenge and could be a vaccine candidate to prevent DTMUV infection.
Collapse
Affiliation(s)
- Zhehui Qu
- College of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, Henan 464000, PR China; Engineering and Technology Research Center for Waterfowl Resources Development and Utilization and Epidemic Disease Prevention and Control of Henan Province, Xinyang, Henan 46400, PR China; Xinyang Key Laboratory of Integrated Technology for Prevention and Control of Major Livestock and Poultry Diseases, Xinyang, Henan 46400, PR China.
| | - Xian Wu
- College of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, Henan 464000, PR China; Engineering and Technology Research Center for Waterfowl Resources Development and Utilization and Epidemic Disease Prevention and Control of Henan Province, Xinyang, Henan 46400, PR China
| | - Xiaoqiu Guo
- College of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, Henan 464000, PR China
| | - Han Han
- College of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, Henan 464000, PR China
| | - Peipei Zhang
- College of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, Henan 464000, PR China
| | - Mengxiao Wang
- College of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, Henan 464000, PR China
| | - Yilin Song
- College of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, Henan 464000, PR China
| | - Fengchao Jiao
- College of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, Henan 464000, PR China; Engineering and Technology Research Center for Waterfowl Resources Development and Utilization and Epidemic Disease Prevention and Control of Henan Province, Xinyang, Henan 46400, PR China
| | - Shuhai He
- College of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, Henan 464000, PR China; Engineering and Technology Research Center for Waterfowl Resources Development and Utilization and Epidemic Disease Prevention and Control of Henan Province, Xinyang, Henan 46400, PR China
| | - Shaofang Lu
- College of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, Henan 464000, PR China; Engineering and Technology Research Center for Waterfowl Resources Development and Utilization and Epidemic Disease Prevention and Control of Henan Province, Xinyang, Henan 46400, PR China
| | - Xiwen Zhang
- College of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, Henan 464000, PR China
| |
Collapse
|
6
|
Zhehui Q, Xiwen Z, Xiaoqiu G, Zhuoyan L, Wenjing Y, Shuoshuo L, Wen Z, Fengchao J, Shuhai H, Shaofang L. Self-Assembled Nanoparticles with E Protein Domains I and II of Duck Tembusu Virus Can Induce a More Comprehensive Immune Response Against the Duck Tembusu Virus Challenge. Avian Dis 2023; 67:49-56. [PMID: 37140111 DOI: 10.1637/aviandiseases-d-22-00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/04/2023] [Indexed: 03/11/2023]
Abstract
Duck Tembusu virus (DTMUV) is a pathogenic flavivirus that causes a substantial drop in egg production and severe neurological disorders in domestic waterfowl. Self-assembled ferritin nanoparticles with E protein domains I and II (EDI-II) of DTMUV (EDI-II-RFNp) were prepared, and its morphology was observed. Two independent experiments were conducted. First, Cherry Valley ducks aged 14 days were vaccinated with EDI-II-RFNp, EDI-II, and phosphate buffered solution (PBS, pH 7.4), and special and virus neutralization (VN) antibodies, interleukin 4 (IL-4) and interferon gamma (IFN-γ) in serum, and lymphocyte proliferation were detected. Second, the vaccinated ducks with EDI-II-RFNp, EDI-II, and PBS were injected with virulent DTMUV, clinical signs at 7 days postinfection (dpi) were observed, and mRNA levels of DTMUV in the lungs, liver, and brain at 7 and 14 dpi were detected. The results showed near-spherical nanoparticles EDI-II-RFNp with a 16.46 ± 4.70 nm diameters. The levels of specific and VN antibodies, IL-4 and IFN-γ, and lymphocyte proliferation in the EDI-II-RFNp group were significantly higher than those in the EDI-II and PBS groups. In the DTMUV challenge test, clinical signs and mRNA levels in tissue were used to evaluate protection of EDI-II-RFNp. EDI-II-RFNp-vaccinated ducks showed milder clinical signs and lower levels of DTMUV RNA in the lungs, liver, and brain. These results indicate that EDI-II-RFNp effectively protects ducks against the DTMUV challenge and could be a vaccine candidate to provide an effective and safe method for preventing and controlling DTMUV infection.
Collapse
Affiliation(s)
- Qu Zhehui
- College of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, Henan 464000, PR China
| | - Zhang Xiwen
- College of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, Henan 464000, PR China
| | - Guo Xiaoqiu
- College of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, Henan 464000, PR China
| | - Li Zhuoyan
- College of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, Henan 464000, PR China
| | - Yu Wenjing
- College of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, Henan 464000, PR China
| | - Lv Shuoshuo
- College of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, Henan 464000, PR China
| | - Zhang Wen
- College of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, Henan 464000, PR China
| | - Jiao Fengchao
- College of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, Henan 464000, PR China
| | - He Shuhai
- College of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, Henan 464000, PR China
| | - Lu Shaofang
- College of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, Henan 464000, PR China
| |
Collapse
|
7
|
Moreno-Mendieta S, Guillén D, Vasquez-Martínez N, Hernández-Pando R, Sánchez S, Rodríguez-Sanoja R. Understanding the Phagocytosis of Particles: the Key for Rational Design of Vaccines and Therapeutics. Pharm Res 2022; 39:1823-1849. [PMID: 35739369 DOI: 10.1007/s11095-022-03301-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/23/2022] [Indexed: 12/17/2022]
Abstract
A robust comprehension of phagocytosis is crucial for understanding its importance in innate immunity. A detailed description of the molecular mechanisms that lead to the uptake and clearance of endogenous and exogenous particles has helped elucidate the role of phagocytosis in health and infectious or autoimmune diseases. Furthermore, knowledge about this cellular process is important for the rational design and development of particulate systems for the administration of vaccines or therapeutics. Depending on these specific applications and the required biological responses, particles must be designed to encourage or avoid their phagocytosis and prolong their circulation time. Functionalization with specific polymers or ligands and changes in the size, shape, or surface of particles have important effects on their recognition and internalization by professional and nonprofessional phagocytes and have a major influence on their fate and safety. Here, we review the phagocytosis of particles intended to be used as carrier or delivery systems for vaccines or therapeutics, the cells involved in this process depending on the route of administration, and the strategies employed to obtain the most desirable particles for each application through the manipulation of their physicochemical characteristics. We also offer a view of the challenges and potential opportunities in the field and give some recommendations that we expect will enable the development of improved approaches for the rational design of these systems.
Collapse
Affiliation(s)
- Silvia Moreno-Mendieta
- Consejo Nacional de Ciencia y Tecnología (CONACyT), Ciudad de México, Mexico. .,Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), A.P. 70228, Ciudad Universitaria, 04510, Ciudad de México, Mexico.
| | - Daniel Guillén
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), A.P. 70228, Ciudad Universitaria, 04510, Ciudad de México, Mexico
| | - Nathaly Vasquez-Martínez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), A.P. 70228, Ciudad Universitaria, 04510, Ciudad de México, Mexico.,Doctorado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México (UNAM), A.P. 70228, Ciudad Universitaria, 04510, Ciudad de México, Mexico
| | - Rogelio Hernández-Pando
- Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Delegación Tlalpan, Ciudad de México, Mexico
| | - Sergio Sánchez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), A.P. 70228, Ciudad Universitaria, 04510, Ciudad de México, Mexico
| | - Romina Rodríguez-Sanoja
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), A.P. 70228, Ciudad Universitaria, 04510, Ciudad de México, Mexico.
| |
Collapse
|