1
|
Abstract
Abstract
Cyclospora cayetanensis is an emerging food- and waterborne pathogen that causes cyclosporiasis, a gastrointestinal disease in humans. The parasite is endemic in tropical and subtropical regions; however, its prevalence is largely dependent on environmental factors, such as climate and rainfall patterns. The objective of this paper was to conduct a systematic review and meta-analysis to determine the prevalence of C. cayetanensis in water and to determine if geography, water source and other variables influence this prevalence. A literature search was performed using search terms relating to water and C. cayetanensis in MEDLINE®, CAB Direct, Food Science and Technology Abstracts, Agricola databases and Environmental Science Index. Observational studies published in English after 1979 were eligible. Screening, data extraction and risk-of-bias assessment were performed independently by two reviewers. A multi-level random-effects meta-analysis was completed to determine the prevalence of C. cayetanensis in water and subgroup meta-analyses were performed to explore between-study heterogeneity. The search identified 828 unique articles, and after the screening, 33 articles were included in the review. The pooled prevalence of C. cayetanensis in water was 6.90% [95% confidence interval (CI) 2.25%–13.05%, I2 = 84.38%]. Subgroup meta-analyses revealed significant differences in the prevalence between continents. Additionally, laboratory methods between studies were highly variable and these findings highlight the need for further environmental research on C. cayetanensis in water using detection methods that include PCR and sequencing to accurately identify the organism. The results of this study can be used to help assess the risk of waterborne cyclosporiasis.
Collapse
|
2
|
Sammarro Silva KJ, Sabogal-Paz LP. Giardia spp. cysts and Cryptosporidium spp. oocysts in drinking water treatment residues: comparison of recovery methods for quantity assessment. ENVIRONMENTAL TECHNOLOGY 2021; 42:3144-3153. [PMID: 31994991 DOI: 10.1080/09593330.2020.1723712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/23/2020] [Indexed: 06/10/2023]
Abstract
Water treatment plant (WTP) residues, e.g. sludge and filter backwash water (FBW), may contain pathogenic microorganisms, as Giardia spp. and Cryptosporidium spp. However, recovering protozoa from such matrices lacks a formal and precise protocol, which is imperative to improve research in their detection, removal and inactivation. The latter includes a deeper challenge as some recovery methods may compromise viability. This study applied different recovery methods for G. muris cysts and C. parvum oocysts spiked into settled sludge and FBW obtained from a bench treatment. Procedures in sludge involved direct centrifugation, alkaline and acid flocculation, including purification by immunomagnetic separation (IMS). FBW samples were tested for membrane filtration (MF) and heated Tween® scrapings followed or not by IMS. Propidium iodide (PI) inclusion was used for oocyst viability evaluation prior and after recovery. Results with purified suspensions lead to higher recovery efficiencies (RE) for C. parvum, which was assumed to relate to poor G. muris fluorescence. Analytical quality assessments were carried out with ColorSeed® for the methods that stood out for each matrix and the results indicated lower RE than when organisms from purified suspensions were recovered. Ferric sulphate flocculation and MF, both followed by IMS reached 32.25% and 11.00% RE for Giardia spp. and 19.61% and 2.00% for Cryptosporidium spp., respectively. All of the tested methods affected oocyst viability. These results encourage further research to overcome the matrices complexity explained in this paper and increase RE, taking effects in protozoa viability into consideration.
Collapse
Affiliation(s)
- Kamila Jessie Sammarro Silva
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, São Paulo, Brazil
| | - Lyda Patricia Sabogal-Paz
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Bartosova B, Koudela B, Slana I. Detection of Cyclospora cayetanensis, Echinococcus multilocularis, Toxocara spp. and microsporidia in fresh produce using molecular methods: - A review. Food Waterborne Parasitol 2021; 23:e00124. [PMID: 34169159 PMCID: PMC8209397 DOI: 10.1016/j.fawpar.2021.e00124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/09/2021] [Accepted: 04/23/2021] [Indexed: 10/27/2022] Open
Abstract
The current trend for a healthy lifestyle corresponds with a healthy diet, which is associated with regular and frequent consumption of raw fruit and vegetables. However, consumption of ready-to-eat (RTE) food without heat treatment or sufficient washing may pose a risk to consumers. Among the well-known protozoan parasites associated with RTE food and water are Cryptosporidium spp., Giardia duodenalis and Toxoplasma gondii. These belong among prioritized parasitic pathogens, as they are associated with numerous disease outbreaks in humans all around the world. Nevertheless, other parasitic agents such as Cyclospora cayetanensis, Toxocara cati, Toxocara canis, Echinococcus multilocularis and zoonotic microsporidia should not be neglected. Although these selected parasites belong to phylogenetically diverse groups, they have common characteristics associated with fresh produce and each of them poses a health risk to humans. Ensuring healthy food is produced requires the standartization of laboratory methods for the detection of parasitic agents. This article reviews the molecular methods currently used in laboratories for detection of Cyclospora cayetanensis, Toxocara cati, Toxocara canis, Echinococcus multilocularis and zoonotic microsporidia in fresh produce.
Collapse
Affiliation(s)
- B. Bartosova
- Veterinary Research Institute, Hudcova 296/70, Brno 621 00, Czech Republic
- Central European Institute of Technology, University of Veterinary and Pharmaceutical Sciences, Palackého 1-3, Brno 612 42, Czech Republic
| | - B. Koudela
- Department of Pathology and Parasitology, University of Veterinary and Pharmaceutical Sciences, Palackého 1-3, Brno 612 42, Czech Republic
| | - I. Slana
- Veterinary Research Institute, Hudcova 296/70, Brno 621 00, Czech Republic
| |
Collapse
|
4
|
Tien N, You BJ, Lin HJ, Chang CY, Chou CY, Lin HS, Chang CT, Wang CCN, Chen HC. Repeated centrifuging and washing concentrates bacterial samples in peritoneal dialysis for optimal culture: an original article. BMC Microbiol 2020; 20:365. [PMID: 33246404 PMCID: PMC7694434 DOI: 10.1186/s12866-020-02044-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/15/2020] [Indexed: 11/10/2022] Open
Abstract
Background Bacterial cultures allow the identification of infectious disease pathogens. However, obtaining the results of conventional culture methods is time-consuming, taking at least two days. A more efficient alternative is the use of concentrated bacterial samples to accelerate culture growth. Our study focuses on the development of a high-yield sample concentrating technique. Results A total of 71 paired samples were obtained from patients on peritoneal dialysis (PD). The peritoneal dialysates were repeat-centrifuged and then washed with saline, namely the centrifuging and washing method (C&W method). The concentrated samples were Gram-stained and inoculated into culture plates. The equivalent unprocessed dialysates were cultured as the reference method. The times until culture results for the two methods were compared. The reference method yielded no positive Gram stain results, but the C&W method immediately gave positive Gram stain results for 28 samples (p < 0.001). The culture-negative rate was lower in the C&W method (5/71) than in the reference method (13/71) (p = 0.044). The average time for bacterial identification achieved with the C&W method (22.0 h) was shorter compared to using the reference method (72.5 h) (p < 0.001). Conclusions The C&W method successfully concentrated bacterial samples and superseded blood culture bottles for developing adequate bacterial cultures. The C&W method may decrease the culture report time, thus improving the treatment of infectious diseases.
Collapse
Affiliation(s)
- Ni Tien
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan.,Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Bang-Jau You
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, Taichung, Taiwan.,China Medical University, Taichung, Taiwan
| | - Hsuan-Jen Lin
- Division of Nephrology, Asia University Hospital, Taichung, Taiwan
| | - Chieh-Ying Chang
- College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Che-Yi Chou
- Division of Nephrology, Asia University Hospital, Taichung, Taiwan
| | - Hsiu-Shen Lin
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan.,Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Chiz-Tzung Chang
- College of Medicine, China Medical University, Taichung, Taiwan. .,Division of Nephrology, China Medical University Hospital, No. 2, Yu-der Road, North District, Taichung, 40447, Taiwan.
| | - Charles C N Wang
- Department of Bioinformatics and Medical Engineering Asia University, Taichung, 41354, Taiwan.,Center for Artificial Intelligence and Precision Medicine Research, Asia University, 500, Lioufeng Rd., Wufeng, Taichung, Taiwan
| | - Hung-Chih Chen
- Department of Bioinformatics and Medical Engineering Asia University, Taichung, 41354, Taiwan. .,Division of Nephrology, Asia University Hospital, No. 222, Fuxin Road, Wufeng District, Taichung, 41354, Taiwan.
| |
Collapse
|
5
|
Lasprilla-Mantilla MI, Wagner V, Pena J, Frechette A, Thivierge K, Dufour S, Fernandez-Prada C. Effects of recycled manure solids bedding on the spread of gastrointestinal parasites in the environment of dairies and milk. J Dairy Sci 2019; 102:11308-11316. [PMID: 31548050 DOI: 10.3168/jds.2019-16866] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/09/2019] [Indexed: 11/19/2022]
Abstract
The primary aim of this work was to isolate common bovine digestive tract parasites in recycled manure bedding (RMS), as well as to determine the ability of current RMS preparation procedures to eliminate these pathogens. Other objectives were to assess whether any of the aforementioned parasites could be retrieved in bulk milk from dairies using RMS and to study whether the prevalence of these parasites differed among manure of cows housed on RMS versus on straw bedding. For the study, 27 RMS farms and 61 control farms were recruited. Samples of manure from the pre-pit and milk from the bulk tank were recovered from straw-bedding farms and RMS-based farms. In addition, samples from the manure solid fraction after liquid extraction, RMS before use, and RMS currently in use were recovered from RMS herds. Parasites were first detected by double centrifugation zinc sulfate flotation to enhance isolation of gastrointestinal protozoa, and by modified Wisconsin sugar flotation for the appraisal of gastrointestinal nematodes. Cryptosporidium parasites were confirmed by nested PCR amplification and sequencing of a portion of the gene encoding the small subunit rRNA. Results revealed a high prevalence of Cryptosporidium spp. (C. parvum, C. andersoni, and C. meleagridis, identified by PCR) and Eimeria spp. (mainly E. bovis and E. zuernii) parasites in both types of farms, with a larger proportion of manure samples from RMS-bedded farms testing positive for Cryptosporidium parasites compared with manure from straw-bedded farms. Both Cryptosporidium spp. and Eimeria spp. oocysts were found at every step of RMS preparation and transformation, showing that current RMS preparation strategies do not guarantee the destruction of protozoan parasites. Cryptosporidium parvum, a potential zoonotic risk for professionals in close contact with livestock, was found to be present in 32 out of 61 straw-bedded and 24 of 27 RMS farms. No protozoan parasites were found in any sample derived from bulk milk, neither by microscopy analysis nor by molecular methods.
Collapse
Affiliation(s)
- Marlen I Lasprilla-Mantilla
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec J2S 2M2 Canada; Groupe de recherche sur les maladies infectieuses des animaux de production (GREMIP), Université de Montréal, Saint-Hyacinthe, Québec J2S 2M2 Canada; Regroupement de recherche Op+Lait, Saint-Hyacinthe, Québec J2S 2M2 Canada
| | - Victoria Wagner
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec J2S 2M2 Canada; Groupe de recherche sur les maladies infectieuses des animaux de production (GREMIP), Université de Montréal, Saint-Hyacinthe, Québec J2S 2M2 Canada
| | - Joan Pena
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec J2S 2M2 Canada; Groupe de recherche sur les maladies infectieuses des animaux de production (GREMIP), Université de Montréal, Saint-Hyacinthe, Québec J2S 2M2 Canada
| | - Annie Frechette
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec J2S 2M2 Canada; Regroupement de recherche Op+Lait, Saint-Hyacinthe, Québec J2S 2M2 Canada
| | - Karine Thivierge
- Laboratoire de santé publique du Québec, Institut national de santé publique du Québec, Sainte-Anne-de-Bellevue, Québec H9X 3R5 Canada; Institute of Parasitology, Faculty of Agricultural and Environmental Sciences, McGill University, Macdonald Campus, Sainte-Anne-de-Bellevue, Québec H9X 3V9 Canada
| | - Simon Dufour
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec J2S 2M2 Canada; Regroupement de recherche Op+Lait, Saint-Hyacinthe, Québec J2S 2M2 Canada
| | - Christopher Fernandez-Prada
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec J2S 2M2 Canada; Groupe de recherche sur les maladies infectieuses des animaux de production (GREMIP), Université de Montréal, Saint-Hyacinthe, Québec J2S 2M2 Canada; Regroupement de recherche Op+Lait, Saint-Hyacinthe, Québec J2S 2M2 Canada.
| |
Collapse
|
6
|
Alasil SM, Abdullah KA. An Epidemiological Review on Emerging and Re-Emerging Parasitic Infectious Diseases in Malaysia. Open Microbiol J 2019. [DOI: 10.2174/1874285801913010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Emerging infectious diseases are infections that have recently appeared in a population over a defined period of time whereas, re-emerging infectious diseases are those that were once a health problem in a particular region or a country and are now emerging again. Parasitic infectious diseases represent a serious health problem in many developing countries and recently have started spreading to developed nations via international traveling or immigration. Malaysia is facing many challenges caused by various parasitic pathogens. The lack of awareness among disadvantaged populations such as the Orang Asli community and the dependency on foreign workers has led to an influx of immigrants to Malaysia from countries endemic to various parasitic diseases. Understanding the social and economic dynamics of such diseases can help anticipate and subsequently control their emergence. Raising public awareness, developing robust public health infrastructure and implementing point-of-care diagnostics will help curb the spread of such diseases. This review provides epidemiological insights into the reported emerging and re-emerging parasitic infectious diseases in Malaysia over the past two decades.
Collapse
|
7
|
Gallas-Lindemann C, Sotiriadou I, Plutzer J, Noack MJ, Mahmoudi MR, Karanis P. Giardia and Cryptosporidium spp. dissemination during wastewater treatment and comparative detection via immunofluorescence assay (IFA), nested polymerase chain reaction (nested PCR) and loop mediated isothermal amplification (LAMP). Acta Trop 2016; 158:43-51. [PMID: 26880717 DOI: 10.1016/j.actatropica.2016.02.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 02/02/2016] [Accepted: 02/06/2016] [Indexed: 11/20/2022]
Abstract
Environmental water samples from the Lower Rhine area in Germany were investigated via immunofluorescence assays (IFAs), nested polymerase chain reaction (nested PCR) and loop-mediated isothermal amplification (LAMP) to detect the presence of Giardia spp. (n=185) and Cryptosporidium spp. (n=227). The samples were concentrated through filtration or flocculation, and oocysts were purified via centrifugation through a sucrose density gradient. For all samples, IFA was performed first, followed by DNA extraction for the nested PCR and LAMP assays. Giardia cysts were detected in 105 samples (56.8%) by IFA, 62 samples (33.5%) by nested PCR and 79 samples (42.7%) by LAMP. Cryptosporidium spp. were detected in 69 samples (30.4%) by IFA, 95 samples (41.9%) by nested PCR and 99 samples (43.6%) by LAMP. According to these results, the three detection methods are complementary for monitoring Giardia and Cryptosporidium in environmental waters.
Collapse
Affiliation(s)
- Carmen Gallas-Lindemann
- Medical and Molecular Parasitology Laboratory, University of Cologne, Medical School, Center of Anatomy, Institute II, Cologne, Germany; Linksniederrheinische Entwässerungs-Genossenschaft, Friedrich-Heinrich-Allee 64, 47475, Kamp-Lintfort, Germany.
| | - Isaia Sotiriadou
- Medical and Molecular Parasitology Laboratory, University of Cologne, Medical School, Center of Anatomy, Institute II, Cologne, Germany; Centre of Dental Medicine, Policlinic of Operative Dentistry and Periodontology, University of Cologne, Germany
| | - Judit Plutzer
- National Public Health Center, National Directorate of Environmental Health, Environmental Health Testing Laboratory, Budapest, Hungary
| | - Michael J Noack
- Centre of Dental Medicine, Policlinic of Operative Dentistry and Periodontology, University of Cologne, Germany
| | - Mohammad Reza Mahmoudi
- Department of Medical Microbiology, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Panagiotis Karanis
- Medical and Molecular Parasitology Laboratory, University of Cologne, Medical School, Center of Anatomy, Institute II, Cologne, Germany; Center Biomedicine and Infectious Diseases (CBID), One Thousand Talent Program of the Chinese Government, Qinghai Academy for Veterinary Medicine and Animal Sciences, Qinghai University, Xining City, 1# Wei'er Road, Qinghai Biological Scientific Estate Graden, Xining City, Qinghai Province 810016, PR China
| |
Collapse
|
8
|
Gyawali P, Ahmed W, Jagals P, Sidhu J, Toze S. Comparison of concentration methods for rapid detection of hookworm ova in wastewater matrices using quantitative PCR. Exp Parasitol 2015; 159:160-7. [DOI: 10.1016/j.exppara.2015.09.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 07/05/2015] [Accepted: 09/03/2015] [Indexed: 10/23/2022]
|
9
|
Al-Sabi M, Gad J, Riber U, Kurtzhals J, Enemark H. New filtration system for efficient recovery of waterborneCryptosporidiumoocysts andGiardiacysts. J Appl Microbiol 2015; 119:894-903. [DOI: 10.1111/jam.12898] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 04/29/2015] [Accepted: 06/16/2015] [Indexed: 11/28/2022]
Affiliation(s)
- M.N.S. Al-Sabi
- Section for Bacteriology, Pathology and Parasitology; National Veterinary Institute; Technical University of Denmark; Frederiksberg C Denmark
- Centre for Medical Parasitology; Department of International Health, Immunology, and Microbiology; University of Copenhagen; Copenhagen Denmark
- Department of Clinical Microbiology; Copenhagen University Hospital; Copenhagen Denmark
| | - J.A. Gad
- Grundfos Management A/S; Bjerringbro Denmark
| | - U. Riber
- Section for Immunology and Vaccinology; National Veterinary Institute; Technical University of Denmark; Frederiksberg C Denmark
| | - J.A.L. Kurtzhals
- Centre for Medical Parasitology; Department of International Health, Immunology, and Microbiology; University of Copenhagen; Copenhagen Denmark
- Department of Clinical Microbiology; Copenhagen University Hospital; Copenhagen Denmark
| | - H.L. Enemark
- Section for Bacteriology, Pathology and Parasitology; National Veterinary Institute; Technical University of Denmark; Frederiksberg C Denmark
| |
Collapse
|
10
|
Prevalence of protozoa species in drinking and environmental water sources in Sudan. BIOMED RESEARCH INTERNATIONAL 2015; 2015:345619. [PMID: 25789313 PMCID: PMC4348585 DOI: 10.1155/2015/345619] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 01/30/2015] [Accepted: 02/02/2015] [Indexed: 11/23/2022]
Abstract
Protozoa are eukaryotic cells distributed worldwide in nature and are receiving increasing attention as reservoirs and potential vectors for the transmission of pathogenic bacteria. In the environment, on the other hand, many genera of the protozoa are human and animal pathogens. Only limited information is available on these organisms in developing countries and so far no information on their presence is available from Sudan. It is necessary to establish a molecular identification of species of the protozoa from drinking and environmental water. 600 water samples were collected from five states (Gadarif, Khartoum, Kordofan, Juba, and Wad Madani) in Sudan and analysed by polymerase chain reaction (PCR) and sequencing. 57 out of 600 water samples were PCR positive for protozoa. 38 out of the 57 positive samples were identified by sequencing to contain 66 protozoa species including 19 (28.8%) amoebae, 17 (25.7%) Apicomplexa, 25 (37.9%) ciliates, and 5 (7.6%) flagellates. This study utilized molecular methods identified species belonging to all phyla of protozoa and presented a fast and accurate molecular detection and identification of pathogenic as well as free-living protozoa in water uncovering hazards facing public health.
Collapse
|
11
|
Isolation and Identification of Parasitic Protozoa in Sampled Water From the Southwest of Iran. ACTA ACUST UNITED AC 2014. [DOI: 10.5812/jjhs.23462] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Koloren Z. Sensitive and Cost-Effective Detection ofToxoplasma Gondiiin Water Supplies of the Black Sea in Turkey by Loop-Mediated Isothermal Amplification (LAMP). BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.5504/bbeq.2012.0119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
13
|
Koehler AV, Jex AR, Haydon SR, Stevens MA, Gasser RB. Giardia/giardiasis — A perspective on diagnostic and analytical tools. Biotechnol Adv 2014; 32:280-9. [DOI: 10.1016/j.biotechadv.2013.10.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 10/08/2013] [Accepted: 10/27/2013] [Indexed: 12/28/2022]
|
14
|
Cañon-Franco WA, Henao-Agudelo RA, Pérez-Bedoya JL. Recovery of gastrointestinal swine parasites in anaerobic biodigester systems. ACTA ACUST UNITED AC 2013; 21:249-53. [PMID: 23070435 DOI: 10.1590/s1984-29612012000300013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 05/23/2012] [Indexed: 11/22/2022]
Abstract
Solid and liquid wastes from livestock operations represent important challenges for animal production regarding their impact in the environment and public health. Parasitological tests performed on 80 samples of affluent and effluent waters from three anaerobic biodigestors with flexible structure from swine farms of Caldas - Colombia, showed the presence of Isospora suis (45%), Eimeria suis (42.5%), E. espinosa (35%), Strongyloides ransomi (28.8%), E. perminuta (12.5%), E. cerdonis (3.8%), and E. porci (2.5%). The additional finding of eggs of Taenia spp. in 10% of the samples was probably caused by a connection between the human sewage system and the biodigester. Although we observed a mean decrease of 65.6% of parasites, these levels were insufficient to meet the minimum requirement set by Engelberg's guidelines regarding water quality. This study demonstrates the serious environmental impact that an inadequately treated animal wastewater represents, and has important implications for water resources and human health.
Collapse
Affiliation(s)
- William Alberto Cañon-Franco
- Departamento de Salud Animal, Facultad de Ciencias Agropecuarias, Universidad de Caldas, Manizales, Caldas, Colombia.
| | | | | |
Collapse
|
15
|
Pires NMM. Recovery of Cryptosporidium and Giardia organisms from surface water by counter-flow refining microfiltration. ENVIRONMENTAL TECHNOLOGY 2013; 34:2541-2551. [PMID: 24527615 DOI: 10.1080/09593330.2013.777126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
As waterborne parasitic cryptosporidiosis and giardiasis outbreaks continue globally, monitoring of Cryptosporidium parvum and Giardia lamblia in surface water continues to be challenging. Lack of non-clogging and high-efficiency methods for recovery of C. parvum oocysts and G. lamblia cysts in environmental water strongly limits the sensitivity of detection methods for these protozoan organisms. In this work, the Counter-Flow Micro-Refinery (CFMR) system was developed by employing the novel counter-flow microfiltration principle to enrich (oo)cysts for subsequent analytical purposes. The CFMR system was constructed with multiple counter-flow concentration units that were arranged into two refining levels. By use of different numbers of units, the CFMR offered an adjustable concentration ratio allowing the concentration of 10 L and 100 L to hundreds of mL with no recirculation processing. With spiked samples, recovery of 81.3% oocysts and 86.2% cysts at a variance of < 7% was achieved for concentrations as low as 0.5-100 organisms L(-1). The recovery efficiency showed consistent for a wide range of water turbidities as well as different sample volumes. No significant clogging has been observed in the experiments. Moreover, the refining filter was able to enrich and separate oocysts and cysts in water, simultaneously. This work verifies a feasible solution for recovering C. parvum oocysts and G. lamblia cysts in large-volume surface waters. The refining system has potential to be a high-efficiency monitoring tool when combined with proper analytical detection methods.
Collapse
Affiliation(s)
- Nuno Miguel Matos Pires
- Department of Micro and Nano Systems Technology, Faculty of Technology and Maritime Sciences, Vestfold University College, Tønsberg, Norway
| |
Collapse
|
16
|
Karanis P, Aldeyarbi HM, Mirhashemi ME, Khalil KM. The impact of the waterborne transmission of Toxoplasma gondii and analysis efforts for water detection: an overview and update. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:86-99. [PMID: 22990578 DOI: 10.1007/s11356-012-1177-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 08/30/2012] [Indexed: 06/01/2023]
Abstract
The ubiquitous protozoa Toxoplasma gondii is now the subject of renewed interest, due to the spread of oocysts via water causing waterborne outbreaks of toxoplasmosis in different parts of the world. This overview discusses the different methods for detection of Toxoplasma in drinking and environmental water. It includes a combination of conventional and molecular tools for effective oocyst recovery and detection in water sources as well as factors hindering the detection of this parasite and shedding light on a promising new molecular assay for the diagnosis of Toxoplasma in environmental samples. Hopefully, this attempt will facilitate future approaches for better recovery, concentration, and detection of Toxoplasma oocysts in environmental waters.
Collapse
Affiliation(s)
- Panagiotis Karanis
- Medical and Molecular Parasitology, University Clinics of Cologne, Center of Anatomy, Institute II, Joseph-Stelzmann-Str 9, 50937 Cologne, Germany.
| | | | | | | |
Collapse
|
17
|
Jang HB, Kim YK, del Castillo CS, Nho SW, Cha IS, Park SB, Ha MA, Hikima JI, Hong SJ, Aoki T, Jung TS. RNA-seq-based metatranscriptomic and microscopic investigation reveals novel metalloproteases of Neobodo sp. as potential virulence factors for soft tunic syndrome in Halocynthia roretzi. PLoS One 2012; 7:e52379. [PMID: 23300657 PMCID: PMC3531462 DOI: 10.1371/journal.pone.0052379] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 11/12/2012] [Indexed: 12/14/2022] Open
Abstract
Bodonids and trypanosomatids are derived from a common ancestor with the bodonids being a more primitive lineage. The Neobodonida, one of the three clades of bodonids, can be free-living, commensal or parasitic. Despite the ecological and evolutionary significance of these organisms, however, many of their biological and pathological features are currently unknown. Here, we employed metatranscriptomics using RNA-seq technology combined with field-emission microscopy to reveal the virulence factors of a recently described genus of Neobodonida that is considered to be responsible for ascidian soft tunic syndrome (AsSTS), but whose pathogenesis is unclear. Our microscopic observation of infected tunic tissues suggested putative virulence factors, enabling us to extract novel candidate transcripts; these included cysteine proteases of the families C1 and C2, serine proteases of S51 and S9 families, and metalloproteases grouped into families M1, M3, M8, M14, M16, M17, M24, M41, and M49. Protease activity/inhibition assays and the estimation of expression levels within gene clusters allowed us to identify metalloprotease-like enzymes as potential virulence attributes for AsSTS. Furthermore, a multimarker-based phylogenetic analysis using 1,184 concatenated amino acid sequences clarified the order Neobodo sp. In sum, we herein used metatranscriptomics to elucidate the in situ expression profiles of uncharacterized putative transcripts of Neobodo sp., combined these results with microscopic observation to select candidate genes relevant to pathogenesis, and used empirical screening to define important virulence factors.
Collapse
Affiliation(s)
- Ho Bin Jang
- Aquatic Biotechnology Center of WCU Project, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - Young Kyu Kim
- Aquatic Biotechnology Center of WCU Project, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - Carmelo S. del Castillo
- Aquatic Biotechnology Center of WCU Project, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - Seong Won Nho
- Aquatic Biotechnology Center of WCU Project, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - In Seok Cha
- Aquatic Biotechnology Center of WCU Project, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - Seong Bin Park
- Aquatic Biotechnology Center of WCU Project, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - Mi Ae Ha
- Aquatic Biotechnology Center of WCU Project, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - Jun-ichi Hikima
- Aquatic Biotechnology Center of WCU Project, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - Sung Jong Hong
- Department of Medical Environmental Biology, College of Medicine, Chung-Ang University, DongJak-Gu, Seoul, South Korea
| | - Takashi Aoki
- Aquatic Biotechnology Center of WCU Project, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
- Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Tae Sung Jung
- Aquatic Biotechnology Center of WCU Project, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
- * E-mail:
| |
Collapse
|
18
|
PEBSWORTH PAULAA, ARCHER COLLEENE, APPLETON CHRISC, HUFFMAN MICHAELA. Parasite Transmission Risk From Geophagic and Foraging Behavior in Chacma Baboons. Am J Primatol 2012; 74:940-7. [DOI: 10.1002/ajp.22046] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Revised: 04/17/2012] [Accepted: 05/15/2012] [Indexed: 11/08/2022]
Affiliation(s)
- PAULA A. PEBSWORTH
- Section of Social Systems Evolution; Primate Research Institute; Kyoto University; Inuyama; Japan
| | - COLLEEN E. ARCHER
- School of Life Sciences; University of KwaZulu-Natal; Westville Campus; Durban; South Africa
| | - CHRIS C. APPLETON
- School of Life Sciences; University of KwaZulu-Natal; Westville Campus; Durban; South Africa
| | - MICHAEL A. HUFFMAN
- Section of Social Systems Evolution; Primate Research Institute; Kyoto University; Inuyama; Japan
| |
Collapse
|
19
|
A high-flux isopore micro-fabricated membrane for effective concentration and recovering of waterborne pathogens. Biomed Microdevices 2012; 14:669-77. [DOI: 10.1007/s10544-012-9647-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
The challenge of effective surveillance in moving from low transmission to elimination of schistosomiasis in China. Int J Parasitol 2011; 41:1243-7. [PMID: 21920366 DOI: 10.1016/j.ijpara.2011.08.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 08/18/2011] [Accepted: 08/19/2011] [Indexed: 01/08/2023]
Abstract
Until recently, intensified efforts in China to suppress the transmission of Schistosoma japonicum relied principally on routine praziquantel treatment, extensive use of molluscicides and health education programs. These efforts, now supplemented by a broader range of control measures, have been quite successful in reducing the prevalence and intensity of human infection to very low levels. However, re-emergent transmission has occurred in formerly endemic areas of several provinces, signalling the need for more locally effective, integrated control strategies. We argue that these low but persistent levels of transmission also require important changes in both the tactics and strategy of disease surveillance to move forward towards elimination. Here we present recent data exemplifying the low transmission environment which suggests that we are reaching limits of detection of current diagnostic techniques used for human infection surveillance in these communities. However, both epidemiological data and theoretical results indicate that (i) transmission in the human population can persist at very low infection intensities even in the presence of routine control activities; (ii) the parasite can be reintroduced into parasite-free environments by very modest external inputs; and (iii) transmission at these low infection intensities exhibits very slow inter-year dynamics. These observations motivate the need for new, sensitive tools to identify low-level infections in mammalian or snail hosts, or the presence of S. japonicum in environmental media. Environmental monitoring offers an alternative, and perhaps more efficient, approach to large-scale surveillance of human infections in low transmission regions.
Collapse
|
21
|
Occurrence, source, and human infection potential of cryptosporidium and Giardia spp. in source and tap water in shanghai, china. Appl Environ Microbiol 2011; 77:3609-16. [PMID: 21498768 DOI: 10.1128/aem.00146-11] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genotyping studies on the source and human infection potential of Cryptosporidium oocysts in water have been almost exclusively conducted in industrialized nations. In this study, 50 source water samples and 30 tap water samples were collected in Shanghai, China, and analyzed by the U.S. Environmental Protection Agency (EPA) Method 1623. To find a cost-effective method to replace the filtration procedure, the water samples were also concentrated by calcium carbonate flocculation (CCF). Of the 50 source water samples, 32% were positive for Cryptosporidium and 18% for Giardia by Method 1623, whereas 22% were positive for Cryptosporidium and 10% for Giardia by microscopy of CCF concentrates. When CCF was combined with PCR for detection, the occurrence of Cryptosporidium (28%) was similar to that obtained by Method 1623. Genotyping of Cryptosporidium in 17 water samples identified the presence of C. andersoni in 14 water samples, C. suis in 7 water samples, C. baileyi in 2 water samples, C. meleagridis in 1 water sample, and C. hominis in 1 water sample. Therefore, farm animals, especially cattle and pigs, were the major sources of water contamination in Shanghai source water, and most oocysts found in source water in the area were not infectious to humans. Cryptosporidium oocysts were found in 2 of 30 tap water samples. The combined use of CCF for concentration and PCR for detection and genotyping provides a less expensive alternative to filtration and fluorescence microscopy for accurate assessment of Cryptosporidium contamination in water, although the results from this method are semiquantitative.
Collapse
|
22
|
Molecular diagnostic tests for microsporidia. Interdiscip Perspect Infect Dis 2009; 2009:926521. [PMID: 19657457 PMCID: PMC2719812 DOI: 10.1155/2009/926521] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 05/12/2009] [Indexed: 11/29/2022] Open
Abstract
The Microsporidia are a ubiquitous group of eukaryotic obligate intracellular parasites which were recognized over 100 years ago with the description of Nosema bombycis, a parasite of silkworms. It is now appreciated that these organisms are related to the Fungi. Microsporidia infect all major animal groups most often as gastrointestinal pathogens; however they have been reported from every tissue and organ, and their spores are common in environmental sources such as ditch water. Several different genera of these organisms infect humans, but the majority of infections are due to either
Enterocytozoon bieneusi or Encephalitozoon species. These pathogens can be difficult to diagnose, but significant progress has been made in the last decade in the development of molecular diagnostic reagents for these organisms. This report reviews the molecular diagnostic tests that have been described for the identification of the microsporidia that infect humans.
Collapse
|
23
|
Detection of Toxoplasma gondii oocysts in water sample concentrates by real-time PCR. Appl Environ Microbiol 2009; 75:3477-83. [PMID: 19363083 DOI: 10.1128/aem.00285-09] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PCR techniques in combination with conventional parasite concentration procedures have potential for the sensitive and specific detection of Toxoplasma gondii oocysts in water. Three real-time PCR assays based on the B1 gene and a 529-bp repetitive element were analyzed for the detection of T. gondii tachyzoites and oocysts. Lower sensitivity and specificity were obtained with the B1 gene-based PCR than with the 529-bp repeat-based PCR. New procedures for the real-time PCR detection of T. gondii oocysts in concentrates of surface water were developed and tested in conjunction with a method for the direct extraction of inhibitor-free DNA from water. This technique detected as few as one oocyst seeded to 0.5 ml of packed pellets from water samples concentrated by Envirocheck filters. Thus, this real-time PCR may provide a detection method alternative to the traditional mouse assay and microscopy.
Collapse
|
24
|
Waterborne toxoplasmosis--recent developments. Exp Parasitol 2009; 124:10-25. [PMID: 19324041 DOI: 10.1016/j.exppara.2009.03.013] [Citation(s) in RCA: 228] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 03/10/2009] [Accepted: 03/17/2009] [Indexed: 11/23/2022]
Abstract
Humans become infected with Toxoplasma gondii mainly by ingesting uncooked meat containing viable tissue cysts or by ingesting food or water contaminated with oocysts from the feces of infected cats. Circumstantial evidence suggests that oocyst-induced infections in humans are clinically more severe than tissue cyst-acquired infections. Until recently, waterborne transmission of T. gondii was considered uncommon, but a large human outbreak linked to contamination of a municipal water reservoir in Canada by wild felids and the widespread infection of marine mammals in the USA provided reasons to question this view. The present paper examines the possible importance of T. gondii transmission by water.
Collapse
|
25
|
Cross-flow microfiltration system for rapid enrichment of bacteria in water. Anal Bioanal Chem 2008; 393:399-404. [PMID: 18802690 DOI: 10.1007/s00216-008-2381-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Revised: 08/08/2008] [Accepted: 09/01/2008] [Indexed: 10/21/2022]
Abstract
Permanent monitoring of waterborne pathogens is important for securing the hygiene of water. Enumerating bacteria in water at low concentrations and minute quantities demands rapid and efficient enrichment methods in order to improve the signal-to-noise ratio of subsequent determination methods. In this work an automated cross-flow microfiltration (CFM) system is presented which is usable in the field to concentrate large volumes of environmental water for analytical purposes. It was designed as a rapid enrichment apparatus achieving high recovery and high concentration factors. The efficiency of the CFM system was studied for E. coli spiked in a 10-L tap water sample. By this technique, a 10-L water sample was concentrated by a factor of 200 in 15 min. The high and consistent recovery of 91.3 +/- 5.4% living cells in the concentration range 0.01 and 100 cfu mL(-1) is suitable for rapid enumeration of bacteria in water.
Collapse
|
26
|
Sotiriadou I, Karanis P. Evaluation of loop-mediated isothermal amplification for detection of Toxoplasma gondii in water samples and comparative findings by polymerase chain reaction and immunofluorescence test (IFT). Diagn Microbiol Infect Dis 2008; 62:357-65. [PMID: 18715739 DOI: 10.1016/j.diagmicrobio.2008.07.009] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 07/04/2008] [Accepted: 07/09/2008] [Indexed: 10/21/2022]
Abstract
The development and evaluation of a 1-step single-tube accelerated loop-mediated isothermal amplification (LAMP) assay for the rapid detection of Toxoplasma in water samples is described. The method has been evaluated based on the amplification of B1 and TgOWP Toxoplasma genes, and it demonstrated a sensitivity detection limit of 0.1 tachyzoites' DNA for both genes. LAMP detection was evaluated and compared with nested polymerase chain reaction (PCR) in 26 water sample pellets spiked with known numbers of Toxoplasma oocysts. After DNA extraction, the detection sensitivity in spiked pellets was 100% by LAMP and 53.8% by PCR. Subsequently, 52 natural water samples of different origin were directly investigated by 3 assays: LAMP, PCR, and immunofluorescence test (IFT). Twenty-five (48%) of 52 have been found positive for Toxoplasma DNA by LAMP, whereas nested PCR products were generated in 7 of 52 (13.5%) water samples. All 52 water samples were negative for Toxoplasma by IFT. These data clearly indicate LAMP as a rapid, specific, and sensitive tool for the detection of Toxoplasma contamination in water samples.
Collapse
Affiliation(s)
- Isaia Sotiriadou
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | | |
Collapse
|
27
|
Budowle B, Schutzer SE, Burans JP, Beecher DJ, Cebula TA, Chakraborty R, Cobb WT, Fletcher J, Hale ML, Harris RB, Heitkamp MA, Keller FP, Kuske C, Leclerc JE, Marrone BL, McKenna TS, Morse SA, Rodriguez LL, Valentine NB, Yadev J. Quality sample collection, handling, and preservation for an effective microbial forensics program. Appl Environ Microbiol 2006; 72:6431-8. [PMID: 17021190 PMCID: PMC1610269 DOI: 10.1128/aem.01165-06] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Bruce Budowle
- Laboratory Division, Federal Bureau of Investigation, Quantico, Virginia 22135, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Erickson MC, Ortega YR. Inactivation of protozoan parasites in food, water, and environmental systems. J Food Prot 2006; 69:2786-808. [PMID: 17133829 DOI: 10.4315/0362-028x-69.11.2786] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Protozoan parasites can survive under ambient and refrigerated storage conditions when associated with a range of substrates. Consequently, various treatments have been used to inactivate protozoan parasites (Giardia, Cryptosporidium, and Cyclospora) in food, water, and environmental systems. Physical treatments that affect survival or removal of protozoan parasites include freezing, heating, filtration, sedimentation, UV light, irradiation, high pressure, and ultrasound. Ozone is a more effective chemical disinfectant than chlorine or chlorine dioxide for inactivation of protozoan parasites in water systems. However, sequential inactivation treatments can optimize existing treatments through synergistic effects. Careful selection of methods to evaluate inactivation treatments is needed because many studies that have employed vital dye stains and in vitro excystation have produced underestimations of the effectiveness of these treatments.
Collapse
Affiliation(s)
- Marilyn C Erickson
- Center for Food Safety, Department of Food Science and Technology, University of Georgia, 1109 Experiment Street, Griffin, Georgia 30223-1797, USA.
| | | |
Collapse
|
29
|
Gajadhar AA, Allen JR. Factors contributing to the public health and economic importance of waterborne zoonotic parasites. Vet Parasitol 2005; 126:3-14. [PMID: 15567576 DOI: 10.1016/j.vetpar.2004.09.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
This is the first of a series of review articles in a Special Issue publication on waterborne zoonotic parasites. A brief historical overview of the occurrence and importance of waterborne parasites, dating from early civilization is presented. The article considers the diversity of parasites including protozoa, nematodes, cestodes and trematodes and the related zoonotic organism microsporidia. Many of the life cycle stages and their characteristics, which make parasites environmentally resistant and suitable for waterborne transmission are discussed. Surfaces of transmission stages consist of multiple layers of proteins, lipids, chitin or other substances capable of withstanding a variety of physical and chemical treatments. Delivery of waterborne parasites is facilitated by various mass distribution systems to consumers, and by transport and intermediate hosts such as fish and filter-feeding invertebrates which are consumed by humans. The article discusses the trends in global warming and climate change and potential for concurrent rise in waterborne disease outbreaks due to parasites. Impacts of technological modernization and globalization on the transmission of zoonotic waterborne zoonotic parasites are considered, including the effects of large-scale agricultural practices, rapid transportation of goods, and widespread movement of individuals and animals. Finally, transmission features and parasite attributes which contribute to concerns about accidental or orchestrated waterborne disease outbreaks are discussed.
Collapse
Affiliation(s)
- Alvin A Gajadhar
- Centre for Animal Parasitology, Saskatoon Laboratory, Canadian Food Inspection Agency, 116 Veterinary Road, Saskatoon, Sask., Canada S7N 2R3.
| | | |
Collapse
|