1
|
Soleyman NM, Darnhofer B, Gruenberger RB, Abnous K, Borji H. Proteomic analysis of soluble protein extract of adult Toxocara cati. Comp Immunol Microbiol Infect Dis 2020; 73:101528. [PMID: 32911377 DOI: 10.1016/j.cimid.2020.101528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 10/23/2022]
Abstract
Toxocara cati is a cat roundworm and the causative agent of toxocariasis as a cosmopolitan zoonotic disease. As no information has been reported so far, identification of T. cati proteins can be useful for the development of new diagnostic strategies. This study was conducted to identify the major proteins in the adult T. cati tegument using bi-dimensional electrophoresis (2-DE) and shotgun proteomics. A total proteins were identified, among them the metabolic enzymes were the largest group, including: Enolase, triose phosphate isomerase, fructose-bisphosphate aldolase, aldehyde dehydrogenase. The other important protein groups recognized in T. cati, belong to the HSP-family, the structure and motor proteins, such as actin. The role of these proteins have been implicated in parasite-host interactions and modulating cellular immune response, immune regulation in evasion mechanisms of the host immune response. Characterizing T. cati adult proteins play a key role not only in host-parasite interactions, but also in the discovery of drug targets, subunit vaccines against toxocariasis, immunodiagnostic kits for toxocariasis and the identification of novel immuno-modulators that can form the next generation of therapeutic possibilities for inflammatory diseases.
Collapse
Affiliation(s)
- Nooshin Mehra Soleyman
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Iran
| | | | - Ruth Birner Gruenberger
- Austrian Center of Industrial Biotechnology, Graz, Austria; Diagnostic and Research Institute of Pathology, Medical University of Graz, Austria; Omics Center Graz, BioTechMed-Graz, Graz, Austria; Institute of Chemical Technologies and Analytics, Vienna, Austria
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Hassan Borji
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Iran.
| |
Collapse
|
2
|
Sialic acid and biology of life: An introduction. SIALIC ACIDS AND SIALOGLYCOCONJUGATES IN THE BIOLOGY OF LIFE, HEALTH AND DISEASE 2020. [PMCID: PMC7153325 DOI: 10.1016/b978-0-12-816126-5.00001-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Sialic acids are important molecule with high structural diversity. They are known to occur in higher animals such as Echinoderms, Hemichordata, Cephalochorda, and Vertebrata and also in other animals such as Platyhelminthes, Cephalopoda, and Crustaceae. Plants are known to lack sialic acid. But they are reported to occur in viruses, bacteria, protozoa, and fungi. Deaminated neuraminic acid although occurs in vertebrates and bacteria, is reported to occur in abundance in the lower vertebrates. Sialic acids are mostly located in terminal ends of glycoproteins and glycolipids, capsular and tissue polysialic acids, bacterial lipooligosaccharides/polysaccharides, and in different forms that dictate their role in biology. Sialic acid play important roles in human physiology of cell-cell interaction, communication, cell-cell signaling, carbohydrate-protein interactions, cellular aggregation, development processes, immune reactions, reproduction, and in neurobiology and human diseases in enabling the infection process by bacteria and virus, tumor growth and metastasis, microbiome biology, and pathology. It enables molecular mimicry in pathogens that allows them to escape host immune responses. Recently sialic acid has found role in therapeutics. In this chapter we have highlighted the (i) diversity of sialic acid, (ii) their occurrence in the diverse life forms, (iii) sialylation and disease, and (iv) sialic acid and therapeutics.
Collapse
|
3
|
Rajan P, Mishra PKK, Joshi P. Defining the complement C3 binding site and the antigenic region of Haemonchus contortus GAPDH. Parasite Immunol 2019; 41:e12611. [PMID: 30548600 DOI: 10.1111/pim.12611] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 11/12/2018] [Accepted: 12/04/2018] [Indexed: 11/28/2022]
Abstract
Haemonchus contortus is an economically important parasite that survives the host defense system by modulating the immune response. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is secreted by the parasite and the host responds by producing anti-enzyme antibodies. The enzyme inhibits complement cascade, an arm of the innate immunity, by binding to complement C3. In this study, the C3 binding site and the antigenic region of the enzyme were identified by generating short recombinant fragments and deleting a defined region of the enzyme. Using these proteins in ligand overlay and plate binding assay, the C3 binding region of GAPDH was localized within the 38 residues represented by 77-114 amino acids whereas one of the antigenic regions was identified in between 77 and 171 amino acids. In addition, deletion of amino acids 77 to 171 from GAPDH (fragment AB) also showed weak immunogenicity but lacked C3 binding activity. Fragment D comprising 95 residues (77-171), had both the C3 binding activity as well as immunogenicity like the parent enzyme, also stimulated host peripheral blood mononuclear cells in vitro. This truncated GAPDH moiety was stable at refrigerated temperature for at least 12 weeks and appears as a promising new therapeutic tool considering its longer shelf life as compared to the parent protein.
Collapse
Affiliation(s)
- Parvathy Rajan
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Prasanta K K Mishra
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Paritosh Joshi
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| |
Collapse
|
4
|
Oleaga A, Rey O, Polack B, Grech-Angelini S, Quilichini Y, Pérez-Sánchez R, Boireau P, Mulero S, Brunet A, Rognon A, Vallée I, Kincaid-Smith J, Allienne JF, Boissier J. Epidemiological surveillance of schistosomiasis outbreak in Corsica (France): Are animal reservoir hosts implicated in local transmission? PLoS Negl Trop Dis 2019; 13:e0007543. [PMID: 31233502 PMCID: PMC6611637 DOI: 10.1371/journal.pntd.0007543] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 07/05/2019] [Accepted: 06/11/2019] [Indexed: 12/02/2022] Open
Abstract
Environmental and anthropogenic changes are expected to promote emergence and spread of pathogens worldwide. Since 2013, human urogenital schistosomiasis is established in Corsica island (France). Schistosomiasis is a parasitic disease affecting both humans and animals. The parasite involved in the Corsican outbreak is a hybrid form between Schistosoma haematobium, a human parasite, and Schistosoma bovis, a livestock parasite. S. bovis has been detected in Corsican livestock few decades ago raising the questions whether hybridization occurred in Corsica and if animals could behave as a reservoir for the recently established parasite lineage. The latter hypothesis has huge epidemiological outcomes since the emergence of a zoonotic lineage of schistosomes would be considerably harder to control and eradicate the disease locally and definitively needs to be verified. In this study we combined a sero-epidemiological survey on ruminants and a rodent trapping campaign to check whether schistosomes could shift on vertebrate hosts other than humans. A total of 3,519 domesticated animals (1,147 cattle; 671 goats and 1,701 sheep) from 160 farms established in 14 municipalities were sampled. From these 3,519 screened animals, 17 were found to be serologically positive but were ultimately considered as false positive after complementary analyses. Additionally, our 7-day extensive rodent trapping (i.e. 1,949 traps placed) resulted in the capture of a total of 34 rats (Rattus rattus) and 4 mice (Mus musculus). Despite the low number of rodents captured, molecular diagnostic tests showed that two of them have been found to be infected by schistosomes. Given the low abundance of rodents and the low parasitic prevalence and intensity among rodents, it is unlikely that neither rats nor ruminants play a significant role in the maintenance of schistosomiasis outbreak in Corsica. Finally, the most likely hypothesis is that local people initially infected in 2013 re-contaminated the river during subsequent summers, however we cannot definitively rule out the possibility of an animal species acting as reservoir host. There is an increasing interest on the effect of global changes on the transmission of infectious diseases. Both environmental and anthropogenic changes are expected to promote outbreaks and spread of pathogens. In particular, tropical infectious diseases are expected to move towards more temperate latitudes. Until 2013, urogenital schistosomiasis was restricted to tropical and sub-tropical areas. In summer 2013, a schistosomiasis outbreak has emerged in Corsica (France) with more than 100 cases. Corsica is a French Mediterranean island, which is very popular for tourists from throughout Europe due to the natural beauty of the environment. Surprisingly, in summer 2015 and 2016, the contamination has resumed, and schistosomiasis has been classified in the list of French notifiable infectious disease. In this context it has been hypothesised that reservoir vertebrate hosts, either human and/or animal are at the origin of the maintenance of the local transmission. This paper shows that ruminants (cow, sheep and goats) should not play a role of reservoir host but we found that rodents living in the vicinity of the transmission sites have been infected by the parasite. Considering the low abundance of rodents and the low parasitic prevalence/intensity among rodents, it is unlikely that rats play a significant role in the maintenance of schistosomiasis outbreak in Corsica and that other animals or human could maintain the parasite locally.
Collapse
Affiliation(s)
- Ana Oleaga
- Parasitology Laboratory, Institute of Natural Resources and Agrobiology (IRNASA, CSIC). Cordel de Merinas, Salamanca, Spain
| | - Olivier Rey
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Perpignan France
| | - Bruno Polack
- UMR BIPAR, Ecole Nationale Vétérinaire d’Alfort, ANSES, INRA, Université Paris-Est, Maisons-Alfort, France
| | | | - Yann Quilichini
- UMR SPE 6134, CNRS-Université de Corse Campus Grimaldi Bât 018, Université de Corse, Corte, France
| | - Ricardo Pérez-Sánchez
- Parasitology Laboratory, Institute of Natural Resources and Agrobiology (IRNASA, CSIC). Cordel de Merinas, Salamanca, Spain
| | - Pascal Boireau
- UMR BIPAR, Anses, Ecole Nationale Vétérinaire d'Alfort, INRA, University Paris-Est, Animal Health Laboratory, Maisons-Alfort, France
| | - Stephen Mulero
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Perpignan France
| | - Aimé Brunet
- UMR SPE 6134, CNRS-Université de Corse Campus Grimaldi Bât 018, Université de Corse, Corte, France
| | - Anne Rognon
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Perpignan France
| | - Isabelle Vallée
- UMR BIPAR, Anses, Ecole Nationale Vétérinaire d'Alfort, INRA, University Paris-Est, Animal Health Laboratory, Maisons-Alfort, France
| | - Julien Kincaid-Smith
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Perpignan France
| | | | - Jérôme Boissier
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Perpignan France
- * E-mail:
| |
Collapse
|
5
|
McVeigh P, Cwiklinski K, Garcia-Campos A, Mulcahy G, O'Neill SM, Maule AG, Dalton JP. In silico analyses of protein glycosylating genes in the helminth Fasciola hepatica (liver fluke) predict protein-linked glycan simplicity and reveal temporally-dynamic expression profiles. Sci Rep 2018; 8:11700. [PMID: 30076319 PMCID: PMC6076252 DOI: 10.1038/s41598-018-29673-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/04/2018] [Indexed: 01/05/2023] Open
Abstract
Glycoproteins secreted by helminth parasites are immunogenic and represent appealing components of vaccine preparations. Our poor knowledge of the pathways that mediate protein glycosylation in parasitic flatworms hinders our understanding of how proteins are synthesised and modified, and our ability to target these pathways for parasite control. Here we provide the first detailed description of genes associated with protein glycosylation in a parasitic flatworm, focusing on the genome of the liver fluke (Fasciola hepatica), which is a globally important trematode parasite of humans and their livestock. Using 190 human sequences as search queries against currently available F. hepatica genomes, we identified 149 orthologues with putative roles in sugar uptake or nucleotide sugar synthesis, and an array of glycosyltransferase and glycosidase activities required for protein N- and O-glycosylation. We found appreciable duplication within these orthologues, describing just 87 non-redundant genes when paralogues were excluded. F. hepatica lacks many of the enzymes required to produce complex N- and O-linked glycans, which explains the genomic basis for the structurally simple glycans described by F. hepatica glycomic datasets, and predicts pervasive structural simplicity in the wider glycome. These data provide a foundation for functional genomic interrogation of these pathways with the view towards novel parasite intervention strategies.
Collapse
Affiliation(s)
- Paul McVeigh
- Parasitology & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK.
| | - Krystyna Cwiklinski
- Parasitology & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | | | - Grace Mulcahy
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Sandra M O'Neill
- Department of Biotechnology, Dublin City University, Dublin, Ireland
| | - Aaron G Maule
- Parasitology & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - John P Dalton
- Parasitology & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| |
Collapse
|
6
|
de la Torre-Escudero E, Pérez-Sánchez R, Manzano-Román R, Oleaga A. Schistosoma bovis-host interplay: Proteomics for knowing and acting. Mol Biochem Parasitol 2016; 215:30-39. [PMID: 27485556 DOI: 10.1016/j.molbiopara.2016.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 07/25/2016] [Accepted: 07/26/2016] [Indexed: 01/25/2023]
Abstract
Schistosoma bovis is a parasite of ruminants that causes significant economic losses to farmers throughout Africa, Southwestern Asia and the Mediterranean. Additionally, recent studies have reported its zoonotic potential through the formation of S. bovis×Schistosoma haematobium hybrids. As observed in the Schistosoma species infecting humans, it is assumed that S. bovis has also evolved host regulatory molecules that ensure its long-term survival in the bloodstream of its host. Since these molecules could be potential targets for the development of new drugs and anti-schistosome vaccines, their identification and functional characterization were undertaken. With this aim in mind, the molecular interface between S. bovis and its vertebrate host was subjected to a series of proteomic studies, which started with the analysis of the proteomes of the S. bovis moieties exposed to the host, namely, the excretory/secretory products and the tegument surface. Thus, a wealth of novel molecular information of S. bovis was obtained, which in turn allowed the identification of several parasite proteins with fibrinolytic and anticoagulant activities that could be used by S. bovis to regulate the host defensive systems. Following on, the host interface was investigated by studying the proteome of the host vascular endothelium surface at two points along the infection: in the lung vessels during the schistosomula migration and in the portal vein after the parasites have reached adulthood and sexual maturity. These studies have provided original data regarding the proteomes of the endothelial cell surface of pulmonary vasculature and portal vein in S. bovis-infected animals, and have shown significant changes in these proteomes associated with infection. This review compiles current information and the analyses of all the proteomic data from S. bovis and the S. bovis-host interface, including the molecular and functional characterization of S. bovis proteins that were found to participate in the regulation of the host coagulation and fibrinolysis systems.
Collapse
Affiliation(s)
- Eduardo de la Torre-Escudero
- Parasitology Laboratory, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008 Salamanca, Spain
| | - Ricardo Pérez-Sánchez
- Parasitology Laboratory, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008 Salamanca, Spain
| | - Raúl Manzano-Román
- Parasitology Laboratory, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008 Salamanca, Spain
| | - Ana Oleaga
- Parasitology Laboratory, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008 Salamanca, Spain.
| |
Collapse
|
7
|
The omic approach to parasitic trematode research—a review of techniques and developments within the past 5 years. Parasitol Res 2016; 115:2523-43. [DOI: 10.1007/s00436-016-5079-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 04/19/2016] [Indexed: 12/26/2022]
|
8
|
Identification of Antigenic Glycans from Schistosoma mansoni by Using a Shotgun Egg Glycan Microarray. Infect Immun 2016; 84:1371-1386. [PMID: 26883596 DOI: 10.1128/iai.01349-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/12/2016] [Indexed: 01/01/2023] Open
Abstract
Infection of mammals by the parasitic helminth Schistosoma mansoni induces antibodies to glycan antigens in worms and eggs, but the differential nature of the immune response among infected mammals is poorly understood. To better define these responses, we used a shotgun glycomics approach in which N-glycans from schistosome egg glycoproteins were prepared, derivatized, separated, and used to generate an egg shotgun glycan microarray. This array was interrogated with sera from infected mice, rhesus monkeys, and humans and with glycan-binding proteins and antibodies to gather information about the structures of antigenic glycans, which also were analyzed by mass spectrometry. A major glycan antigen targeted by IgG from different infected species is the FLDNF epitope [Fucα3GalNAcβ4(Fucα3)GlcNAc-R], which is also recognized by the IgG monoclonal antibody F2D2. The FLDNF antigen is expressed by all life stages of the parasite in mammalian hosts, and F2D2 can kill schistosomula in vitro in a complement-dependent manner. Different antisera also recognized other glycan determinants, including core β-xylose and highly fucosylated glycans. Thus, the natural shotgun glycan microarray of schistosome eggs is useful in identifying antigenic glycans and in developing new anti-glycan reagents that may have diagnostic applications and contribute to developing new vaccines against schistosomiasis.
Collapse
|
9
|
Bernal D, Trelis M, Montaner S, Cantalapiedra F, Galiano A, Hackenberg M, Marcilla A. Surface analysis of Dicrocoelium dendriticum. The molecular characterization of exosomes reveals the presence of miRNAs. J Proteomics 2014; 105:232-41. [PMID: 24561797 DOI: 10.1016/j.jprot.2014.02.012] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/08/2014] [Accepted: 02/12/2014] [Indexed: 12/31/2022]
Abstract
UNLABELLED With the aim of characterizing the molecules involved in the interaction of Dicrocoelium dendriticum adults and the host, we have performed proteomic analyses of the external surface of the parasite using the currently available datasets including the transcriptome of the related species Echinostoma caproni. We have identified 182 parasite proteins on the outermost surface of D. dendriticum. The presence of exosome-like vesicles in the ESP of D. dendriticum and their components has also been characterized. Using proteomic approaches, we have characterized 84 proteins in these vesicles. Interestingly, we have detected miRNA in D. dendriticum exosomes, thus representing the first report of miRNA in helminth exosomes. BIOLOGICAL SIGNIFICANCE In order to identify potential targets for intervention against parasitic helminths, we have analyzed the surface of the parasitic helminth Dicrocoelium dendriticum. Along with the proteomic analyses of the outermost layer of the parasite, our work describes the molecular characterization of the exosomes of D. dendriticum. Our proteomic data confirm the improvement of protein identification from "non-model organisms" like helminths, when using different search engines against a combination of available databases. In addition, this work represents the first report of miRNAs in parasitic helminth exosomes. These vesicles can pack specific proteins and RNAs providing stability and resistance to RNAse digestion in body fluids, and provide a way to regulate host-parasite interplay. The present data should provide a solid foundation for the development of novel methods to control this non-model organism and related parasites. This article is part of a Special Issue entitled: Proteomics of non-model organisms.
Collapse
Affiliation(s)
- Dolores Bernal
- Departament de Bioquímica i Biologia Molecular, Universitat de València, C/Dr. Moliner, 50, 46100 Burjassot, Valencia, Spain
| | - Maria Trelis
- Àrea de Parasitologia, Departament de Biologia Cel.lular i Parasitologia, Universitat de València, Av. V.A. Estellès, s/n, 46100 Burjassot, Valencia, Spain
| | - Sergio Montaner
- Àrea de Parasitologia, Departament de Biologia Cel.lular i Parasitologia, Universitat de València, Av. V.A. Estellès, s/n, 46100 Burjassot, Valencia, Spain
| | - Fernando Cantalapiedra
- Àrea de Parasitologia, Departament de Biologia Cel.lular i Parasitologia, Universitat de València, Av. V.A. Estellès, s/n, 46100 Burjassot, Valencia, Spain
| | - Alicia Galiano
- Àrea de Parasitologia, Departament de Biologia Cel.lular i Parasitologia, Universitat de València, Av. V.A. Estellès, s/n, 46100 Burjassot, Valencia, Spain
| | - Michael Hackenberg
- Facultad de Ciencias, Departamento de Genética, Universidad de Granada, 18071 Granada, Spain; Laboratorio de Bioinformática, Instituto de Biotecnología, Centro de Investigación Biomédica, 18100 Granada, Spain
| | - Antonio Marcilla
- Àrea de Parasitologia, Departament de Biologia Cel.lular i Parasitologia, Universitat de València, Av. V.A. Estellès, s/n, 46100 Burjassot, Valencia, Spain.
| |
Collapse
|
10
|
de la Torre-Escudero E, Pérez-Sánchez R, Manzano-Román R, Oleaga A. In vivo intravascular biotinylation of Schistosoma bovis adult worms and proteomic analysis of tegumental surface proteins. J Proteomics 2013; 94:513-26. [PMID: 24161454 DOI: 10.1016/j.jprot.2013.09.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/06/2013] [Accepted: 09/17/2013] [Indexed: 10/26/2022]
Abstract
UNLABELLED Schistosoma bovis is a blood-dwelling fluke of ruminants that lives for years inside the vasculature of their hosts. The parasite tegument covers the surface of the worms and plays a key role in the host-parasite relationship. The parasite molecules expressed at the tegument surface are potential targets for immune or drug intervention. The purpose of this work was the identification of the proteins expressed in vivo on the surface of the tegument of S. bovis adult worms. To accomplish this we used a method based on in vivo vascular perfusion of mice infected with S. bovis which allowed the labelling of the surface of the worms inside the blood vasculature. The biotinylation of parasite inside blood vessels prevents the handling of worms in vitro and hence possible damage to the tegument that could produce results that would be difficult to interpret. Trypsin digestion of biotinylated proteins and subsequent liquid chromatography and tandem mass spectrometry analysis (LC-MS/MS) resulted in the identification on the S. bovis tegument of 80 parasite proteins and 28 host proteins. The proteins identified were compared with the findings from other proteomic studies of the schistosome surface. The experimental approach used in this work is a reliable method for selective investigation of the surface of the worms and provides valuable information about the exposed protein repertoire of the tegument of S. bovis in the environmental conditions that the parasite faces inside the blood vessels. BIOLOGICAL SIGNIFICANCE To identify the proteins expressed on the surface of the tegument of S. bovis adult worms we used a method based on in vivo vascular perfusion, with biotin, of mice infected with S. bovis which allowed the labelling of the surface of the worms inside the blood vasculature. This methodology prevents the handling of worms in vitro and hence possible damage to the tegument that could produce results that would be difficult to interpret. This work is the first in which vascular perfusion has been used to investigate, in vivo, the protein exposed by an intravascular pathogen on its surface to the host, and provides valuable information about the exposed protein repertoire of the tegument of S. bovis in the environmental conditions that the parasite faces inside the blood vessels.
Collapse
Affiliation(s)
- Eduardo de la Torre-Escudero
- Parasitology Laboratory, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008 Salamanca, Spain
| | | | | | | |
Collapse
|
11
|
Figuera L, Gómez-Arreaza A, Avilán L. Parasitism in optima forma: exploiting the host fibrinolytic system for invasion. Acta Trop 2013; 128:116-23. [PMID: 23850506 DOI: 10.1016/j.actatropica.2013.06.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 06/20/2013] [Accepted: 06/30/2013] [Indexed: 02/08/2023]
Abstract
The interaction of pathogenic bacteria with the host fibrinolytic system through the plasminogen molecule has been well documented. It has been shown, using animal models, to be important in invasion into the host and establishment of the infection. From a number of recent observations with parasitic protists and helminths, emerges evidence that also in these organisms the interaction with plasminogen may be important for infection and virulence. A group of molecules that act as plasminogen receptors have been identified in parasites. This group comprises the glycolytic enzymes enolase, glyceraldehyde-3-phosphate dehydrogenase and fructose-1,6-biphosphate aldolase, in common with the plasminogen receptors known in prokaryotic pathogens. The interaction with the fibrinolytic system may arm the parasites with the host protease plasmin, thus helping them to migrate and cross barriers, infect cells and avoid clot formation. In this context, plasminogen receptors on the parasite surface or as secreted molecules, may be considered virulence factors. A possible evolutionary scenario for the recruitment of glycolytic enzymes as plasminogen receptors by widely different pathogens is discussed.
Collapse
|
12
|
Martínez-Ibeas A, González-Lanza C, Manga-González M. Proteomic analysis of the tegument and excretory–secretory products of Dicrocoelium dendriticum (Digenea) adult worms. Exp Parasitol 2013; 133:411-20. [DOI: 10.1016/j.exppara.2013.01.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 12/20/2012] [Accepted: 01/10/2013] [Indexed: 11/29/2022]
|
13
|
de la Torre-Escudero E, Manzano-Román R, Pérez-Sánchez R, Barrera I, Siles-Lucas M, Oleaga A. Molecular cloning, characterization and diagnostic performance of the Schistosoma bovis 22.6 antigen. Vet Parasitol 2012; 190:530-40. [DOI: 10.1016/j.vetpar.2012.06.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 06/14/2012] [Accepted: 06/19/2012] [Indexed: 11/30/2022]
|
14
|
Demeler J, Schein E, von Samson-Himmelstjerna G. Advances in laboratory diagnosis of parasitic infections of sheep. Vet Parasitol 2012; 189:52-64. [DOI: 10.1016/j.vetpar.2012.03.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
15
|
Screening trematodes for novel intervention targets: a proteomic and immunological comparison of Schistosoma haematobium, Schistosoma bovis and Echinostoma caproni. Parasitology 2011; 138:1607-19. [PMID: 21729355 PMCID: PMC3179331 DOI: 10.1017/s0031182011000412] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
With the current paucity of vaccine targets for parasitic diseases, particularly those in
childhood, the aim of this study was to compare protein expression and immune
cross-reactivity between the trematodes Schistosoma haematobium, S. bovis
and Echinostoma caproni in the hope of identifying novel intervention
targets. Native adult parasite proteins were separated by 2-dimensional gel
electrophoresis and identified through electrospray ionisation tandem mass spectrometry to
produce a reference gel. Proteins from differential gel electrophoresis analyses of the
three parasite proteomes were compared and screened against sera from hamsters infected
with S. haematobium and E. caproni following
2-dimensional Western blotting. Differential protein expression between the three species
was observed with circa 5% of proteins from S.
haematobium showing expression up-regulation compared to the other two species.
There was 91% similarity between the proteomes of the two Schistosoma
species and 81% and 78·6% similarity between S. haematobium and
S. bovis versus E. caproni, respectively. Although
there were some common cross-species antigens, species-species targets were revealed
which, despite evolutionary homology, could be due to phenotypic plasticity arising from
different host-parasite relationships. Nevertheless, this approach helps to identify novel
intervention targets which could be used as broad-spectrum candidates for future use in
human and veterinary vaccines.
Collapse
|
16
|
Zygocotyle lunata: proteomic analysis of the adult stage. Exp Parasitol 2011; 128:133-7. [PMID: 21334327 DOI: 10.1016/j.exppara.2011.02.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 02/10/2011] [Accepted: 02/14/2011] [Indexed: 11/22/2022]
Abstract
The somatic extract of Zygocotyle lunata (Trematoda: Paramphistomidae) adults collected from experimentally infected mice was investigated using a proteomic approach to separate and identify tryptic peptides from the somatic extract of Z. lunata adult worms. A shot-gun liquid chromatography/tandem mass spectrometry procedure was used. We used the MASCOT search engine (Matrix-Science) and ProteinPilot software v2.0 (Applied Biosystems) for the database search. A total of 36 proteins were accurately identified from the worms. The largest protein family consisted of metabolic enzymes. Structural, motor and receptor binding proteins and proteins related to oxygen transport were identified in the somatic extract of Z. lunata. This is the first study that attempts to identify the proteome of Z. lunata. However, more work is needed to improve our knowledge of trematodiasis in general and more specifically to have a better understanding about host-parasite relationships in infections with paramphistomes.
Collapse
|
17
|
Sotillo J, Valero ML, Sánchez Del Pino MM, Fried B, Esteban JG, Marcilla A, Toledo R. Excretory/secretory proteome of the adult stage of Echinostoma caproni. Parasitol Res 2010; 107:691-7. [PMID: 20512505 DOI: 10.1007/s00436-010-1923-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 05/11/2010] [Indexed: 11/25/2022]
Abstract
The excretory/secretory proteome of Echinostoma caproni (Trematoda: Echinostomatidae) adults collected from experimentally infected mice was investigated using a proteomic approach. We performed a shot-gun liquid chromatography/tandem mass spectrometry for the separation and identification of tryptic peptides from the excretory/secretory products of E. caproni adult worms. Database search was performed using MASCOT search engine (Matrix-Science) and ProteinPilot software v2.0 (Applied Biosystems). A total of 39 parasite proteins were accurately identified. Strikingly, metabolic enzymes, and particularly glycolytic enzymes, constituted the largest protein family in the excretory/secretory proteome of E. caproni adult worms. Moreover, representative proteins involved in parasite structure, response against stress, chaperones, calcium-binding, and signal transduction were also identified. This work extends our knowledge of host-parasite relationships in the E. caproni-rodent model that is extensively used to analyze the factors determining the intestinal helminth rejection. Consequently, information on many proteins may be useful to better understand the molecular basis that determines the survival of this parasite in the definitive host.
Collapse
Affiliation(s)
- Javier Sotillo
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicente Andrés Estellés s/n, Burjassot, Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
18
|
García-Varas S, Manzano-Román R, Fernández-Soto P, Encinas-Grandes A, Oleaga A, Pérez-Sánchez R. Purification and characterisation of a P-selectin-binding molecule from the salivary glands of Ornithodoros moubata that induces protective anti-tick immune responses in pigs. Int J Parasitol 2009; 40:313-26. [PMID: 19735664 DOI: 10.1016/j.ijpara.2009.08.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 07/28/2009] [Accepted: 08/17/2009] [Indexed: 12/30/2022]
Abstract
Ornithodoros moubata is an argasid tick that lives in Africa in wild and synanthropic habitats. It feeds on warthogs, domestic swine and humans, and is able to transmit severe diseases such as human relapsing fever and African swine fever. The elimination of O. moubata from the synanthropic surroundings should improve control of the diseases it transmits. Previous attempts to develop a vaccine against O. moubata showed that a salivary gland extract (SGE) induced a protective response that inhibited the feeding of the ticks by up to 60%. Our aim in the present work was to isolate and characterise the salivary antigens responsible for the protective immune response induced with the SGE. The work reported here describes the finding and partial characterisation of a tick salivary glycoprotein of 44 kDa (Om44) that binds host P-selectin, presumably preventing the adhesion of leucocytes and platelets to vessel walls, thus allowing the ticks to complete their feeding. Preliminary analysis indicated that Om44 is not a homologue of the mammalian PSGL-1s and lacks sialyl-Lewis(X), Lewis(X) and Lewis(Y) determinants but carries heparin, which is the P-selectin-binding motif. Om44 is not recognised by the pig immune system after natural contact with O. moubata, but it can be neutralised by specific vaccine-induced antibodies, resulting in feeding inhibitions of around 50% in adults and nymphs-4, 25% in nymphs-3, 5% in nymphs-2 and 0% in nymphs-1 when they are fed on Om44-vaccinated pigs. In addition, the fecundity of females was inhibited by up to 43.8%. Om44 provides new prospects for the development of new anti-tick vaccines.
Collapse
Affiliation(s)
- Susana García-Varas
- Laboratorio de Parasitología, Facultad de Farmacia, Universidad de Salamanca, 37007 Salamanca, Spain
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
SUMMARYInfection with parasitic helminths takes a heavy toll on the health and well-being of humans and their domestic livestock, concomitantly resulting in major economic losses. Analyses have consistently revealed bioactive molecules in extracts of helminths or in their excretory/secretory products that modulate the immune response of the host. It is our view that parasitic helminths are an untapped source of immunomodulatory substances that, in pure form, could become new drugs (or models for drug design) to treat disease. Here, we illustrate the range of immunomodulatory molecules in selected parasitic trematodes, cestodes and nematodes, their impact on the immune cells in the host and how the host may recognize these molecules. There are many examples of the partial characterization of helminth-derived immunomodulatory molecules, but these have not yet translated into new drugs, reflecting the difficulty of isolating and fully characterizing proteins, glycoproteins and lipid-based molecules from small amounts of parasite material. However, this should not deter the investigator, since analytical techniques are now being used to accrue considerable structural information on parasite-derived molecules, even when only minute quantities of tissue are available. With the introduction of methodologies to purify and structurally-characterize molecules from small amounts of tissue and the application of high throughput immunological assays, one would predict that an assessment of parasitic helminths will yield a variety of novel drug candidates in the coming years.
Collapse
|
20
|
Sotillo J, Valero L, Sánchez Del Pino MM, Fried B, Esteban JG, Marcilla A, Toledo R. Identification of antigenic proteins from Echinostoma caproni (Trematoda) recognized by mouse immunoglobulins M, A and G using an immunoproteomic approach. Parasite Immunol 2008; 30:271-9. [PMID: 18221450 DOI: 10.1111/j.1365-3024.2007.01019.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Antigenic proteins of Echinostoma caproni (Trematoda) against mouse IgM, IgA, IgG, IgG1 and IgG2a were investigated by immunoproteomics. Excretory/secretory products (ESP) of E. caproni separated by two-dimensional (2D) gel electrophoresis were transferred to nitrocellulose membranes and probed with the different mouse immunoglobulin classes. A total of four proteins (enolase, 70 kDa heat-shock protein (HSP-70), actin and aldolase) were accurately identified. Enolase was recognized in eight different spots of which seven of them were detected in the expected molecular weight and were recognized by IgA, IgG or IgG and IgG1. Another spot identified as enolase at 72 kDa was only recognized by IgM. Digestion with N-glycosidase F of the 72 kDa band rendered a polypeptide with an apparent molecular weight similar to that expected for enolase recognized by Western immunoblotting using anti-enolase antibodies. This suggests that glycosylated forms of enolase may be involved in the early thymus-independent responses against E. caproni. Early IgM responses were also generated by actin and the HSP-70 which suggests that these proteins are exposed early to the host and may be of importance in the parasite establishment. The IgA responses also appear to be mediated by the HSP-70 and aldolase which could be related with the close contact of these proteins with the host mucosal surface after secretion.
Collapse
Affiliation(s)
- J Sotillo
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
21
|
Hokke CH, Fitzpatrick JM, Hoffmann KF. Integrating transcriptome, proteome and glycome analyses of Schistosoma biology. Trends Parasitol 2007; 23:165-74. [PMID: 17336161 DOI: 10.1016/j.pt.2007.02.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Revised: 01/10/2007] [Accepted: 02/14/2007] [Indexed: 01/11/2023]
Abstract
Publication of the transcriptomes of Schistosoma mansoni and Schistosoma japonicum, in conjunction with the sequencing and assembly of their genomes, has generated a comprehensive picture of Schistosoma transcriptional and genomic diversity. Subsequently, researchers who study conjugal and developmental biology, tegumental composition and larval or egg, secretory and excretory products have used these data, in combination with the latest '-omics' technologies, to extend large-scale screens of the schistosome transcriptome, proteome and glycome. In this article, we review these postgenomic investigations and contend that the generated datasets provide a plethora of novel drug, vaccine and immunomodulatory targets that might be useful for developing new antischistosome agents.
Collapse
Affiliation(s)
- Cornelis H Hokke
- Department of Parasitology, Center of Infectious Diseases, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | | | | |
Collapse
|