1
|
Wei W, Lan Z, Li C, Liu X, Zhang X, Wang J, Bai X, Zhou L, Wang X, Wang C, Gao J. Prevalence and risk factors of Babesia species in domestic herbivores in China: A systematic review and meta-analysis. Acta Trop 2025; 265:107614. [PMID: 40216373 DOI: 10.1016/j.actatropica.2025.107614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/06/2025] [Accepted: 04/07/2025] [Indexed: 04/15/2025]
Abstract
Babesia species are tick-transmitted hemoprotozoa that infect mammals, birds, and humans, posing a significant global threat to veterinary medicine threat. In this study, the authors systematically retrieved articles on the occurrence of Babesia species in domestic herbivores in China, including ovine, bovine, and equine species, through a search in the following six databases from their inception to 4 November 2024: PubMed, Web of Science, ScienceDirect, Chinese National Knowledge Infrastructure, Wanfang Data, and VIP Chinese Journal Database. A total of 94 studies (54 high-quality studies, 40 medium-quality studies) from 28 provinces were included. The pooled prevalence of Babesia infection was 11 % in ovines, 12 % in bovines, and 18 % in equines, with significant differences observed across subgroups, including, region, species, longitude, temperature, and season. Infection prevalence was higher in East and Central China, particularly in Hunan, Fujian, and Ningxia, as well as in regions characterized by lower altitude, higher temperature, and higher humidity. Longitude and season were significantly associated with Babesia infection in equines (p < 0.05), while temperature analysis indicated a significant difference (p < 0.05) in Babesia infection in bovines. In addition, infection rates were higher in female animals than in male animals; rates were also higher in 2013 or before in comparison to later sampling years. Moreover, the infection rates of different Babesia species varied significantly in bovines. These findings highlight key epidemiological patterns and potential risk factors, including regional and environmental influences associated with Babesia infection in domestic herbivores in China; thus, the findings of this study provide a solid foundation for developing targeted prevention and control strategies that can aim to mitigate the impact of babesiosis in domestic herbivores.
Collapse
Affiliation(s)
- Wei Wei
- Key Laboratory of Prevention and Control of Zoonotic Diseases of Daqing, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China; College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhuo Lan
- Key Laboratory of Prevention and Control of Zoonotic Diseases of Daqing, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Cuiyan Li
- Heilongjiang Province Kedong county animal husbandry and veterinary bureau, Qiqihar, China
| | - Xuewei Liu
- Key Laboratory of Prevention and Control of Zoonotic Diseases of Daqing, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xinhui Zhang
- Key Laboratory of Prevention and Control of Zoonotic Diseases of Daqing, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jiawen Wang
- Key Laboratory of Prevention and Control of Zoonotic Diseases of Daqing, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xue Bai
- Key Laboratory of Prevention and Control of Zoonotic Diseases of Daqing, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Lu Zhou
- Key Laboratory of Prevention and Control of Zoonotic Diseases of Daqing, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xue Wang
- Key Laboratory of Prevention and Control of Zoonotic Diseases of Daqing, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Chunren Wang
- Key Laboratory of Prevention and Control of Zoonotic Diseases of Daqing, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Junfeng Gao
- Key Laboratory of Prevention and Control of Zoonotic Diseases of Daqing, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China.
| |
Collapse
|
2
|
MATSUDA Y, OKAJIMA M, FUJII Y, IZUMI F, TAKAHASHI MR, IWATAKE Y, SAITO K, TERASHI Y, MORIBE J, TAKASHIMA Y, ITO N, MASATANI T. Diversity of piroplasma species in small rodents and ticks captured in suburbs of Gifu City, central Japan. J Vet Med Sci 2025; 87:43-51. [PMID: 39551493 PMCID: PMC11735219 DOI: 10.1292/jvms.24-0398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 11/07/2024] [Indexed: 11/19/2024] Open
Abstract
Piroplasmas (Babesia and Theileria) are protozoa transmitted from ticks to warm-blooded animals. Some species of them, such as Babesia microti, can cause zoonotic infections. Although B. microti infections in wild rodents and ticks in Japan have been frequently reported in Hokkaido, there are only older reports of zoonotic babesiosis in other areas of Japan. In this study, we investigated prevalence of piroplasma species in wild rodents and ticks collected in near Gifu City, a central region in Japan, between 2021 and 2023 using nested-PCR to detect the 18S rRNA gene sequences of various piroplasma species. Among 87 wild rodents, piroplasma gene sequences detected in four large Japanese field mice (Apodemus speciosus) were 100% identical to B. microti Otsu/Hobetsu type. Notably, the gene detected in one pool of nymphal Haemaphysalis ticks was closely related to Babesia motasi-like isolates recently detected in human patients in South Korea. Additionally, the deer Theileria species, which has been widely detected throughout Asia, including Japan, was detected from Haemapyhsalis ticks. Our results indicate that a variety of piroplasmas, including piroplasmas that are potentially pathogenic to humans, such as B. microti Otsu/Hobetsu types and protozoa closely related to B. motasi, are distributed in the Gifu City area.
Collapse
Affiliation(s)
- Yuka MATSUDA
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Misuzu OKAJIMA
- Joint Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido, Japan
| | - Yuji FUJII
- Joint Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Fumiki IZUMI
- Joint Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Maho R TAKAHASHI
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Yuki IWATAKE
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Kyoko SAITO
- Gifu Prefectural Chuo Livestock Hygiene Service Center, Gifu, Japan
| | - Yasuyo TERASHI
- Gifu Prefectural Chuo Livestock Hygiene Service Center, Gifu, Japan
| | - Junji MORIBE
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
- School of Social System Management, Gifu University, Gifu, Japan
| | - Yasuhiro TAKASHIMA
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
- Joint Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Institute for Advanced Study, Gifu University, Gifu, Japan
| | - Naoto ITO
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
- Joint Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Institute for Advanced Study, Gifu University, Gifu, Japan
| | - Tatsunori MASATANI
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
- Joint Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Institute for Advanced Study, Gifu University, Gifu, Japan
| |
Collapse
|
3
|
Ulucesme MC, Ozubek S, Aktas M. Experimental infection of purebred Saanen goats high pathogenicity and virulence of Babesia aktasi. PLoS Negl Trop Dis 2024; 18:e0012705. [PMID: 39621802 PMCID: PMC11637318 DOI: 10.1371/journal.pntd.0012705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 12/12/2024] [Accepted: 11/18/2024] [Indexed: 12/14/2024] Open
Abstract
Small ruminant babesiosis remains a neglected disease despite causing significant economic losses to sheep and goat herds in many regions around the world. The pathogenesis and clinical manifestations of ovine babesiosis are well-known, but there is a lack of information regarding caprine babesiosis. Since the discovery of the first Babesia spp. in 1888, several species/subspecies/genotypes, including Babesia aktasi, have been described. Our recent molecular survey revealed that the parasite is highly prevalent (22.5%) in indigenous goats from Mediterranean region of Türkiye. The aim of this experimental study was to determine the pathogenicity and virulence of B. aktasi in immunosuppressed (n = 5) and immunocompetent (n = 7) purebred Saanen goats. The goats were experimentally infected with fresh B. aktasi infected blood, and examined for clinical, parasitological, hematological, and serum biochemical findings throughout the infection. Following the parasite inoculation, intra-erythrocytic parasites were detected from the 1st day post-infection, followed by an increase in rectal temperature and parasitemia. The parasitemia was detected ranging from 4.3% to 33.5% in the immunosuppressed group, while it was 2.1% to 7.6% in the immunocompetent. Severe clinical symptoms characterized by anemia, jaundice, and hemoglobinuria developed in both groups. A statistically significant inverse correlation was observed between the increase in parasitemia and RBC, WBC, HCT, and Hb values in the goats compared to pre-infection levels. Values of AST, ALT, GGT, Total bilirubin, and Albumin showed a significant increase, with all the immunosuppressed goats dying on the 4th and 7th days post-infection, while four out of seven immunocompetent goats died on between 6-8th days. Severe edema in the lungs, frothy fluid in the trachea, jaundice in the subcutaneous and mesenteric fat, and dark red urine were detected in necropsy. The results obtained in this study demonstrated that B. aktasi was highly pathogenic to purebred Saanen goats. Current work assures valuable insights into the pathogenesis and virulence of B. aktasi and serves as a foundation for future studies to develop effective control strategies against caprine babesiosis.
Collapse
Affiliation(s)
- Mehmet Can Ulucesme
- Department of Parasitology, Faculty of Veterinary Medicine, University of Fırat, Elazig, Turkey
| | - Sezayi Ozubek
- Department of Parasitology, Faculty of Veterinary Medicine, University of Fırat, Elazig, Turkey
| | - Munir Aktas
- Department of Parasitology, Faculty of Veterinary Medicine, University of Fırat, Elazig, Turkey
| |
Collapse
|
4
|
Ulucesme MC, Ozubek S, Aktas M. Development and Evaluation of a Semi-Nested PCR Method Based on the 18S ribosomal RNA Gene for the Detection of Babesia aktasi Infections in Goats. Vet Sci 2024; 11:466. [PMID: 39453058 PMCID: PMC11511400 DOI: 10.3390/vetsci11100466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/11/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
We developed and evaluated a semi-nested PCR assay for the detection of Babesia aktasi infection in goats based on the sequence of the B. aktasi 18S ribosomal RNA gene. Following in silico screening, the specificity of the primers was assessed using reference DNA samples, including B. ovis, B. motasi, B. crassa, B. venatorum, B. divergens, B. capreoli, Theileria ovis, and T. annulata. To determine the sensitivity of the method, blood infected with 2% parasitemia of B. aktasi was diluted to 10-fold serial dilutions. The method specifically amplified a 438 bp fragment of B. aktasi DNA, but did not demonstrate cross-amplification with the other hemoparasites tested. The sensitivity assay indicated that this PCR method was able to detect infection at a dilution of 10-8 of 2% parasitemia (0.074 parasites/200 µL). Ninety-seven blood samples collected from goats were used to analyze for B. aktasi, and the infection was detected in 18.5% of the goats. Additionally, the method was also applied to 44 field DNA samples that were detected to be positive for B. aktasi by reverse line blotting (RLB), and showed 84.1% agreement. The findings revealed that newly developed semi-nested PCR can detect B. aktasi infections in goats with high sensitivity and specificity.
Collapse
Affiliation(s)
| | | | - Munir Aktas
- Department of Parasitology, Faculty of Veterinary Medicine, University of Fırat, Elazığ 23200, Türkiye; (M.C.U.); (S.O.)
| |
Collapse
|
5
|
Li Y, Li J, Xieripu G, Rizk MA, Macalanda AMC, Gan L, Ren J, Mohanta UK, El-Sayed SAES, Chahan B, Xuan X, Guo Q. Molecular Detection of Theileria ovis, Anaplasma ovis, and Rickettsia spp. in Rhipicephalus turanicus and Hyalomma anatolicum Collected from Sheep in Southern Xinjiang, China. Pathogens 2024; 13:680. [PMID: 39204280 PMCID: PMC11356840 DOI: 10.3390/pathogens13080680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 09/03/2024] Open
Abstract
The Xinjiang Uygur Autonomous Region (Xinjiang) borders eight countries and has a complex geographic environment. There are almost 45.696 million herded sheep in Xinjiang, which occupies 13.80% of China's sheep farming industry. However, there is a scarcity of reports investigating the role of sheep or ticks in Xinjiang in transmitting tick-borne diseases (TBDs). A total of 894 ticks (298 tick pools) were collected from sheep in southern Xinjiang. Out of the 298 tick pools investigated in this study, Rhipicephalus turanicus (Rh. turanicus) and Hyalomma anatolicum (H. anatolicum) were identified through morphological and molecular sequencing. In the southern part of Xinjiang, 142 (47.65%), 86 (28.86%), and 60 (20.13%) tick pools were positive for Rickettsia spp., Theileria spp., and Anaplasma spp., respectively. Interestingly, the infection rate of Rickettsia spp. (73%, 35.10%, and 28.56-41.64%) was higher in Rh. turanicus pools than in H. anatolicum pools (4%, 4.44%, and 0.10-8.79%) in this study. Fifty-one tick pools were found to harbor two pathogens, while nineteen tick pools were detected to have the three pathogens. Our findings indicate the presence of Rickettsia spp., Theileria spp., and Anaplasma spp. potentially transmitted by H. anatolicum and Rh. turanicus in sheep in southern Xinjiang, China.
Collapse
Affiliation(s)
- Yongchang Li
- Parasitology Laboratory, Veterinary College, Xinjiang Agricultural University, Urumqi 830011, China; (Y.L.); (J.L.); (G.X.); (L.G.); (J.R.); (B.C.)
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan; (M.A.R.); (A.M.C.M.); (U.K.M.); (S.A.E.-S.E.-S.)
| | - Jianlong Li
- Parasitology Laboratory, Veterinary College, Xinjiang Agricultural University, Urumqi 830011, China; (Y.L.); (J.L.); (G.X.); (L.G.); (J.R.); (B.C.)
| | - Gulaimubaier Xieripu
- Parasitology Laboratory, Veterinary College, Xinjiang Agricultural University, Urumqi 830011, China; (Y.L.); (J.L.); (G.X.); (L.G.); (J.R.); (B.C.)
| | - Mohamed Abdo Rizk
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan; (M.A.R.); (A.M.C.M.); (U.K.M.); (S.A.E.-S.E.-S.)
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Adrian Miki C. Macalanda
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan; (M.A.R.); (A.M.C.M.); (U.K.M.); (S.A.E.-S.E.-S.)
- Department of Immunopathology and Microbiology, College of Veterinary Medicine and Biomedical Sciences, Cavite State University, Indang 4122, Philippines
| | - Lu Gan
- Parasitology Laboratory, Veterinary College, Xinjiang Agricultural University, Urumqi 830011, China; (Y.L.); (J.L.); (G.X.); (L.G.); (J.R.); (B.C.)
| | - Jichao Ren
- Parasitology Laboratory, Veterinary College, Xinjiang Agricultural University, Urumqi 830011, China; (Y.L.); (J.L.); (G.X.); (L.G.); (J.R.); (B.C.)
| | - Uday Kumar Mohanta
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan; (M.A.R.); (A.M.C.M.); (U.K.M.); (S.A.E.-S.E.-S.)
- Department of Microbiology and Parasitology, Sher–e–Bangla Agricultural University, Sher–e–Bangla Nagar, Dhaka 1207, Bangladesh
| | - Shimaa Abd El-Salam El-Sayed
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan; (M.A.R.); (A.M.C.M.); (U.K.M.); (S.A.E.-S.E.-S.)
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Bayin Chahan
- Parasitology Laboratory, Veterinary College, Xinjiang Agricultural University, Urumqi 830011, China; (Y.L.); (J.L.); (G.X.); (L.G.); (J.R.); (B.C.)
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan; (M.A.R.); (A.M.C.M.); (U.K.M.); (S.A.E.-S.E.-S.)
| | - Qingyong Guo
- Parasitology Laboratory, Veterinary College, Xinjiang Agricultural University, Urumqi 830011, China; (Y.L.); (J.L.); (G.X.); (L.G.); (J.R.); (B.C.)
| |
Collapse
|
6
|
Ulucesme MC, Ozubek S, Aktas M. Sheep Displayed No Clinical and Parasitological Signs upon Experimental Infection with Babesia aktasi. Vet Sci 2024; 11:359. [PMID: 39195813 PMCID: PMC11359241 DOI: 10.3390/vetsci11080359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024] Open
Abstract
Our survey in the Mediterranean region of Türkiye revealed high prevalence of Babesia aktasi in goats, while no molecular evidence of the parasite was found in sheep grazing in the same pasture. We hypothesized that the parasite may not be infectious to sheep. To test this hypothesis, the present study was designed to evaluate the susceptibility of Akkaraman sheep breed to B. aktasi infection. Fifteen mL of fresh blood infected with B. aktasi was injected into immune-suppressed lambs (n = 5). The recipient lambs were monitored daily for clinical signs of babesiosis over 30 days, and blood was collected for microscopic and molecular diagnostic evaluation. The lambs did not display clinical and parasitological signs of babesiosis. Two out of five recipient lambs were nested PCR-negative for B. aktasi over 30 days post infection. Out of the remaining three lambs, two were PCR positive on the first day, and one recipient was positive until the fourth day post infection. DNA sequencing confirmed that the PCR positivity in the recipient lambs originated from the inoculum. These findings revealed that immune-suppressed sheep do not appear to be susceptible to infection with B. aktasi that is lethal to immune-suppressed indigenous goats.
Collapse
Affiliation(s)
| | | | - Munir Aktas
- Department of Parasitology, Faculty of Veterinary Medicine, University of Fırat, Elazığ 23200, Türkiye; (M.C.U.); (S.O.)
| |
Collapse
|
7
|
Ulucesme MC, Ozubek S, Aktas M. Incompetence of Vector Capacity of Rhipicephalus bursa to Transmit Babesia aktasi following Feeding on Clinically Infected Goat with High Level of Parasitemia. Vet Sci 2024; 11:309. [PMID: 39057992 PMCID: PMC11281584 DOI: 10.3390/vetsci11070309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
A recent molecular survey revealed a high prevalence of Babesia aktasi in indigenous goats from the Mediterranean region of Türkiye, coinciding with heavy Rhipicephalus bursa infestations. This geographical overlap has raised the possibility that R. bursa may serve as a vector for the parasite. To evaluate the potential of R. bursa to serve as a vector for the parasite, an experimental study was conducted in indigenous goats. An immune-suppressed donor goat was intravenously injected with 15 mL of the cryopreserved B. aktasi stabilate, resulting in severe clinical babesiosis and parasitemia. Subsequently, R. bursa larvae and adults derived from Babesia-free laboratory colonies were allowed to feed on the infected donor goat. After oviposition, engorged female carcasses, representative engorged nymphs, unfed larvae, and adult pools were used for DNA extraction and PCR analysis. No PCR positivity was detected in any of the DNA samples, except for those with engorged female carcasses and nymphs. Three immune-suppressed recipient goats were infested with the unfed immature and mature ticks consuming the blood of a donor infected with B. aktasi. No clinical or parasitological findings were encountered in the recipient for 40 days post-infestation. These findings indicated that R. bursa was not a competent vector for B. aktasi.
Collapse
Affiliation(s)
- Mehmet Can Ulucesme
- Department of Parasitology, Faculty of Veterinary Medicine, University of Fırat, 23200 Elazığ, Türkiye; (S.O.); (M.A.)
| | | | | |
Collapse
|
8
|
Zhou J, Li Z, Zhou Z, Ma Y, Hu J, Dan X, Zhao H. Epidemiological and Molecular Characteristics of Piroplasmids and Anaplasma spp. in Tan Sheep, Ningxia, Northwest China. Transbound Emerg Dis 2024; 2024:2529855. [PMID: 40303067 PMCID: PMC12020384 DOI: 10.1155/2024/2529855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/14/2024] [Accepted: 04/18/2024] [Indexed: 05/02/2025]
Abstract
Piroplasmosis and anaplasmosis are important zoonotic diseases of animal origin, which can be transmitted by ticks to infect animals. However, there is limited information on the infection of piroplasmosis and anaplasmosis in Tan sheep in Ningxia, China. In order to understand the prevalence of piroplasmosis and anaplasmosis in Tan sheep in Ningxia, 150 blood samples of Tan sheep from farms in five urban areas of Ningxia were detected by PCR, and some positive samples were sequenced to establish a phylogenetic tree. PCR revealed that the prevalence of Anaplasma spp. in Tan sheep in Ningxia was 28.0%. The overall prevalence of Piroplasmids was 33.3%, of which Theileria spp. and Babesia spp. were 20.7% and 12.7%, respectively. Among the samples of different ages, the highest detection rates of Piroplasmids and Anaplasma spp. were found in Tan sheep aged 20-30 months, and the detection rate of Theileria spp., Babesia spp., and Anaplasma spp. were 25.4%, 23.6%, and 36.3%, respectively. In this study, one Theileria species was identified as Theileria uilenbergi, two Babesia species were identified as Babesia molasi and Babesia ovis, and two Anaplasma species were identified as Anaplasma ovis and Anaplasma phagocytophilum, and the dominant species were A. ovis and T. uilenbergi. To the best of our knowledge, this is the first report detailing the infection rate and genotype of Piroplasmids and Anaplasma spp. in Tan sheep in Ningxia, China. The results of this study provide valuable data for understanding the epidemiology of tick-borne disease in Tan sheep in Ningxia, China, and lay a theoretical foundation for the prevention and control of piroplasmosis and anaplasmosis in Tan sheep in Ningxia, northwest China.
Collapse
Affiliation(s)
- Jiali Zhou
- College of Animal Science and TechnologyNingxia UniversityYinchuan750000China
| | - Zhixin Li
- Ningxia Animal Disease Prevention and Control CenterYinchuanNingxia750011China
| | - Zicheng Zhou
- College of Animal Science and TechnologyNingxia UniversityYinchuan750000China
| | - Yue Ma
- College of Animal Science and TechnologyNingxia UniversityYinchuan750000China
| | - Junhao Hu
- College of Animal Science and TechnologyNingxia UniversityYinchuan750000China
| | - Xingang Dan
- College of Animal Science and TechnologyNingxia UniversityYinchuan750000China
| | - Hongxi Zhao
- College of Animal Science and TechnologyNingxia UniversityYinchuan750000China
| |
Collapse
|
9
|
Addo SO, Bentil RE, Baako BOA, Addae CA, Behene E, Asoala V, Mate S, Oduro D, Dunford JC, Larbi JA, Baidoo PK, Wilson MD, Diclaro JW, Dadzie SK. First record of Babesia and Theileria parasites in ticks from Kassena-Nankana, Ghana. MEDICAL AND VETERINARY ENTOMOLOGY 2023; 37:878-882. [PMID: 37589253 DOI: 10.1111/mve.12688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 08/01/2023] [Indexed: 08/18/2023]
Abstract
Ticks are efficient vectors for transmitting pathogens that negatively affect livestock production and pose a risk to public health. In this study, Babesia and Theileria species were identified in ticks collected from cattle, sheep and goats from the Kassena-Nankana Districts of Ghana between February and December 2020. A total of 1550 ticks were collected, morphologically identified, pooled and screened for pathogens using primers that amplify a 560 bp fragment of the ssrRNA gene and Sanger sequencing. Amblyomma variegatum (62.98%) was the predominant tick species. From the 491 tick pools screened, 12/15 (2.44%) positive pools were successfully sequenced. The pathogen DNA identified were Theileria ovis in eight (15.38%) pools of Rhipicephalus evertsi evertsi, Theileria velifera in two (0.78%) pools of A. variegatum and Babesia occultans and Babesia sp. Xinjiang in one (1.72%) pool each of Hyalomma truncatum. It was further observed that T. ovis occurred in ticks collected from only sheep (p < 0.001) which were females (p = 0.023) and < =1 year old (p = 0.040). This study reports the first identification of these pathogens in ticks within Kassena-Nankana. With the constant trade of livestock, there is a need for effective tick control measures to prevent infection spread.
Collapse
Affiliation(s)
- Seth Offei Addo
- Parasitology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
- Department of Theoretical and Applied Biology, College of Science, KNUST, Kumasi, Ghana
| | - Ronald Essah Bentil
- Parasitology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | | | - Charlotte Adwoa Addae
- Parasitology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Eric Behene
- Parasitology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | | | - Suzanne Mate
- U.S. Army Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Daniel Oduro
- Department of Animal Biology and Conservation Science, University of Ghana, Accra, Ghana
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - James C Dunford
- Navy Entomology Center of Excellence, Jacksonville, Florida, USA
- Uniformed Services University of Health Sciences, Bethesda, Maryland, USA
| | - John Asiedu Larbi
- Department of Theoretical and Applied Biology, College of Science, KNUST, Kumasi, Ghana
| | - Philip Kweku Baidoo
- Department of Theoretical and Applied Biology, College of Science, KNUST, Kumasi, Ghana
| | - Michael David Wilson
- Parasitology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Joseph W Diclaro
- Navy Entomology Center of Excellence, Centers for Disease Control and Prevention Detachment, Atlanta, Georgia, USA
| | - Samuel K Dadzie
- Parasitology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
10
|
Ozubek S, Ulucesme MC, Bastos RG, Alzan HF, Laughery JM, Suarez CE, Aktas M. Experimental infection of non-immunosuppressed and immunosuppressed goats reveals differential pathogenesis of Babesia aktasi n. sp. Front Cell Infect Microbiol 2023; 13:1277956. [PMID: 38029260 PMCID: PMC10651745 DOI: 10.3389/fcimb.2023.1277956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Babesiosis is an acute and persistent tick-borne disease caused by protozoan parasites of the genus Babesia. These hemoparasites affect vertebrates globally, resulting in symptoms such as high fever, anemia, jaundice, and even death. Advancements in molecular parasitology revealed new Babesia species/genotypes affecting sheep and goats, including Babesia aktasi n. sp., which is highly prevalent in goats from Turkiye's Mediterranean region. The objective of this study was to investigate the pathogenesis of B. aktasi infection in immunosuppressed (n=7) and non-immunosuppressed (n=6) goats. These animals were experimentally infected with fresh B. aktasi infected blood, and their clinical signs, hematological and serum biochemical parameters were monitored throughout the infection. The presence of parasites in the blood of immunosuppressed goats was detected by microscopic examination between 4 and 6 days after infection, accompanied by fever and increasing parasitemia. Goats that succumbed acute disease exhibited severe clinical signs, such as anemia, hemoglobinuria, and loss of appetite. However, the goats that survived showed milder clinical signs. In the non-immunosuppressed group, piroplasm forms of B. aktasi were observed in the blood within 2-5 days after inoculation, but with low (0.01-0.2%) parasitemia. Although these goats showed loss of appetite, typical signs of babesiosis were absent except for increased body temperature. Hematological analysis revealed significant decreases in the levels of red blood cells, leukocytes and platelet values post-infection in immunosuppressed goats, while no significant hematological changes were observed in non-immunosuppressed goats. In addition, serum biochemical analysis showed elevated transaminase liver enzymes levels, decreased glucose, and lower total protein values in the immunosuppressed group post-infection. Babesia aktasi, caused mild disease with minor clinical symptoms in non-immunosuppressed goats. However, in immunosuppressed goats, it exhibited remarkable pathogenicity, leading to severe clinical infections and death. In conclusion, this study provides valuable insights into the pathogenicity of the parasite and will serve as a foundation for future research aimed at developing effective prevention and control strategies against babesiosis in small ruminants. Further research is required to investigate the pathogenicity of B. aktasi in various goat breeds, other potential hosts, the vector ticks involved, and its presence in natural reservoirs.
Collapse
Affiliation(s)
- Sezayi Ozubek
- Department of Parasitology, Faculty of Veterinary Medicine, University of Firat, Elazig, Türkiye
| | - Mehmet Can Ulucesme
- Department of Parasitology, Faculty of Veterinary Medicine, University of Firat, Elazig, Türkiye
| | - Reginaldo G. Bastos
- Animal Disease Research Unit, United States Department of Agricultural (USDA), Agricultural Research Service, Pullman, WA, United States
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Heba F. Alzan
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
- Parasitology and Animal Diseases Department, National Research Center, Giza, Egypt
| | - Jacob M. Laughery
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Carlos E. Suarez
- Animal Disease Research Unit, United States Department of Agricultural (USDA), Agricultural Research Service, Pullman, WA, United States
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Munir Aktas
- Department of Parasitology, Faculty of Veterinary Medicine, University of Firat, Elazig, Türkiye
| |
Collapse
|
11
|
Ma Z, Ceylan O, Galon EM, Mohanta UK, Ji S, Li H, Do TT, Umemiya-Shirafuji R, El-Sayed SAES, Zafar I, Liu M, Sevinc F, Xuan X. Molecular Identification of Piroplasmids in Ticks from Infested Small Ruminants in Konya Province, Turkey. Pathogens 2023; 12:1123. [PMID: 37764931 PMCID: PMC10537647 DOI: 10.3390/pathogens12091123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Ticks play a pivotal role in propagating a diverse spectrum of infectious agents that detrimentally affect the health of both humans and animals. In the present study, a molecular survey was executed of piroplasmids in ticks collected from small ruminants in four districts within Konya province, Turkey. Microscopic examination identified 1281 adult ticks, which were categorized into 357 pools based on their species, sexes, host animals, and collection site before DNA extraction. The infection rates were calculated by using a maximum likelihood estimate (MLE) with 95% confidence intervals (CI). Hyalomma detritum, H. excavatum, Rhipicephalus bursa, R. sanguineus, and R. turanicus were identified in this study. Among the five tick species identified here, R. turanicus exhibited the highest infestation rate in both goats and sheep. The presence of Babesia ovis and Theileria ovis based on 18S rRNA was confirmed using molecular assay. The overall MLE of infection rates for B. ovis and T. ovis was 2.49% (CI 1.72-3.46) and 1.46% (CI 0.87-2.23), respectively. The MLE of B. ovis and T. ovis infection rates in R. bursa was 10.80% (CI 7.43-14.90) and 0.33% (CI 0.02-1.42), respectively, while that in R. turanicus was 0.12% (CI 0.01-0.51) and 2.08% (CI 1.25-3.22). This study further confirms that R. turanicus and R. sanguineus can act as vectors for B. ovis, thus advancing our comprehension of tick-borne piroplasmids epidemiology and providing valuable insights for the development of effective control strategies for ticks and tick-borne diseases in Turkey.
Collapse
Affiliation(s)
- Zhuowei Ma
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan; (Z.M.); (U.K.M.); (S.J.); (H.L.); (T.T.D.); (R.U.-S.); (S.A.E.-S.E.-S.); (I.Z.); (X.X.)
| | - Onur Ceylan
- Department of Parasitology, Faculty of Veterinary Medicine, Selcuk University, 42250 Konya, Turkey;
| | - Eloiza May Galon
- College of Veterinary Medicine and Biomedical Sciences, Cavite State University, Indang 4122, Philippines;
| | - Uday Kumar Mohanta
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan; (Z.M.); (U.K.M.); (S.J.); (H.L.); (T.T.D.); (R.U.-S.); (S.A.E.-S.E.-S.); (I.Z.); (X.X.)
- Department of Microbiology and Parasitology, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh
| | - Shengwei Ji
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan; (Z.M.); (U.K.M.); (S.J.); (H.L.); (T.T.D.); (R.U.-S.); (S.A.E.-S.E.-S.); (I.Z.); (X.X.)
| | - Hang Li
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan; (Z.M.); (U.K.M.); (S.J.); (H.L.); (T.T.D.); (R.U.-S.); (S.A.E.-S.E.-S.); (I.Z.); (X.X.)
| | - Thanh Thom Do
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan; (Z.M.); (U.K.M.); (S.J.); (H.L.); (T.T.D.); (R.U.-S.); (S.A.E.-S.E.-S.); (I.Z.); (X.X.)
| | - Rika Umemiya-Shirafuji
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan; (Z.M.); (U.K.M.); (S.J.); (H.L.); (T.T.D.); (R.U.-S.); (S.A.E.-S.E.-S.); (I.Z.); (X.X.)
| | - Shimaa Abd El-Salam El-Sayed
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan; (Z.M.); (U.K.M.); (S.J.); (H.L.); (T.T.D.); (R.U.-S.); (S.A.E.-S.E.-S.); (I.Z.); (X.X.)
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Iqra Zafar
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan; (Z.M.); (U.K.M.); (S.J.); (H.L.); (T.T.D.); (R.U.-S.); (S.A.E.-S.E.-S.); (I.Z.); (X.X.)
| | - Mingming Liu
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang 441053, China
| | - Ferda Sevinc
- Department of Parasitology, Faculty of Veterinary Medicine, Selcuk University, 42250 Konya, Turkey;
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan; (Z.M.); (U.K.M.); (S.J.); (H.L.); (T.T.D.); (R.U.-S.); (S.A.E.-S.E.-S.); (I.Z.); (X.X.)
| |
Collapse
|
12
|
Kirman R, Guven E. Molecular detection of Babesia and Theileria species/genotypes in sheep and ixodid ticks in Erzurum, Northeastern Turkey: First report of Babesia canis in sheep. Res Vet Sci 2023; 157:40-49. [PMID: 36868100 DOI: 10.1016/j.rvsc.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/17/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023]
Abstract
Piroplasmosis is a tick-borne protozoan disease caused by Babesia and Theileria species in ruminants. This study sought to determine the presence and prevalence of the agents causing piroplasmosis among sheep in Erzurum province, Turkey. It also sought to identify the tick species infesting the sheep and investigate the possible role of the ticks in the transmission of piroplasmosis. A total of 1621 blood samples and 1696 ixodid ticks from infested sheep were collected. Each blood sample and 115 tick pools were subjected to PCR assay. A total of 307 blood samples were found to be positive for Babesia spp. and Theileria spp. according to molecular analysis. The sequence analysis was revealed the presence of B. ovis (0.4%), B. crassa (0.4%), B. canis (0.4%), T. ovis (69.3%), Theileria sp. (26.6%), and Theileria sp. OT3 (2.9%) in 244 samples. The collected ticks were identified as D. marginatus (62.5%), Hae. parva (36.2%), Hae. punctata (1.1%), Rh. turanicus (0.1%), and H. marginatum (0.1%). The molecular analysis of the adult tick samples revealed T. ovis and T. annulata positivity in the D. marginatus pools, B. crassa and T. ovis positivity in the Hae. parva pools, and T. ovis positivity in the Hae. punctata pools. These results provide up-to-date data concerning tick-borne protozoan diseases of sheep and tick species infesting sheep in the region. The sheep breeding industry is an important livelihood for the region so it is essential to perform repeated studies on these pathogens in order to prevent disruptions to animal husbandry.
Collapse
Affiliation(s)
- Ridvan Kirman
- Ataturk University, Faculty of Veterinary Medicine, Department of Parasitology, Erzurum, Turkey..
| | - Esin Guven
- Ataturk University, Faculty of Veterinary Medicine, Department of Parasitology, Erzurum, Turkey
| |
Collapse
|
13
|
Ulucesme MC, Ozubek S, Karoglu A, Turk ZI, Olmus I, Irehan B, Aktas M. Small Ruminant Piroplasmosis: High Prevalence of Babesia aktasi n. sp. in Goats in Türkiye. Pathogens 2023; 12:pathogens12040514. [PMID: 37111400 PMCID: PMC10142182 DOI: 10.3390/pathogens12040514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Small ruminant piroplasmosis is the hemoparasitic infection of sheep and goats caused by Babesia and Theileria species responsible for clinical infections with high mortality outcomes. The disease is transmitted by ixodid ticks and prevalent in the tropical and subtropical regions of the world, including Türkiye. A prevalence survey, using molecular methods, is conducted in this study to determine the frequency of newly defined Babesia aktasi n. sp. and other tick-borne piroplasm species in small ruminants in Turkiye. A total of 640 blood samples from sheep (n = 137) and goats (n = 503) were analyzed by nested PCR-based reverse line blot (RLB) hybridization. The results show that 32.3% (207/640) of apparently healthy, small ruminants are infected with three Theileria and two Babesia species. Babesia aktasi n. sp. was the most prevalent species in goats, with 22.5% of samples being positive, followed by B. ovis (4%), T. ovis (2.8%), T. annulata (2.6%), and Theileria sp. (0.6%). None of the sheep samples were positive for Babesia aktasi n. sp.; however, 51.8% were infected with T. ovis. In conclusion, the findings reveal that B. aktasi n. sp. is highly prevalent in goats, but absent in sheep. In future studies, experimental infections will determine whether B. aktasi n. sp. is infectious to sheep, as well as its pathogenicity in small ruminants.
Collapse
|
14
|
Wang J, Chen K, Ren Q, Zhang S, Yang J, Wang Y, Nian Y, Li X, Liu G, Luo J, Yin H, Guan G. Comparative genomics reveals unique features of two Babesia motasi subspecies: Babesia motasi lintanensis and Babesia motasi hebeiensis. Int J Parasitol 2023; 53:265-283. [PMID: 37004737 DOI: 10.1016/j.ijpara.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 02/05/2023] [Accepted: 02/12/2023] [Indexed: 04/03/2023]
Abstract
Parasites of the Babesia genus are prevalent worldwide and infect a wide diversity of domestic animals and humans. Herein, using Oxford Nanopore Technology and Illumina sequencing technologies, we sequenced two Babesia sub-species, Babesia motasi lintanensis and Babesia motasi hebeiensis. We identified 3,815 one-to-one ortholog genes that are specific to ovine Babesia spp. Phylogenetic analysis reveals that the two B. motasi subspecies form a distinct clade from other Piroplasma spp. Consistent with their phylogenetic position, comparative genomic analysis reveals that these two ovine Babesia spp. share higher colinearity with Babesia bovis than with Babesia microti. Concerning the speciation date, B. m. lintanensis split from B. m. hebeiensis approximately 17 million years ago. Genes correlated to transcription, translation, protein modification and degradation, as well as differential/specialized gene family expansions in these two subspecies may favor adaptation to vertebrate and tick hosts. The close relationship between B. m. lintanensis and B. m. hebeiensis is underlined by a high degree of genomic synteny. Compositions of most invasion, virulence, development, and gene transcript regulation-related multigene families, including spherical body protein, variant erythrocyte surface antigen, glycosylphosphatidylinositol anchored proteins, and transcription factor Apetala 2 genes, is largely conserved, but in contrast to this conserved situation, we observe major differences in species-specific genes that may be involved in multiple functions in parasite biology. For the first time in Babesia spp., we find abundant fragments of long terminal repeat-retrotransposons in these two species. We provide fundamental information to characterize the genomes of B. m. lintanensis and B. m. hebeiensis, providing insights into the evolution of B. motasi group parasites.
Collapse
Affiliation(s)
- Jinming Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, China.
| | - Kai Chen
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Qiaoyun Ren
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, China.
| | - Shangdi Zhang
- Department of Clinical Laboratory, The Second Hospital of Lanzhou University, Lanzhou, China.
| | - Jifei Yang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, China.
| | - Yanbo Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, China; Department of Clinical Laboratory, The Second Hospital of Lanzhou University, Lanzhou, China.
| | - Yueli Nian
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, China; Department of Clinical Laboratory, The Second Hospital of Lanzhou University, Lanzhou, China.
| | - Xiaoyun Li
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, China.
| | - Guangyuan Liu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, China.
| | - Jianxun Luo
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, China.
| | - Hong Yin
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| | - Guiquan Guan
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, China.
| |
Collapse
|
15
|
Addo SO, Bentil RE, Yartey KN, Ansah-Owusu J, Behene E, Opoku-Agyeman P, Bruku S, Asoala V, Mate S, Larbi JA, Baidoo PK, Wilson MD, Diclaro JW, Dadzie SK. First molecular identification of multiple tick-borne pathogens in livestock within Kassena-Nankana, Ghana. ANIMAL DISEASES 2023. [DOI: 10.1186/s44149-022-00064-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
AbstractThe risk of pathogen transmission continues to increase significantly in the presence of tick vectors due to the trade of livestock across countries. In Ghana, there is a lack of data on the incidence of tick-borne pathogens that are of zoonotic and veterinary importance. This study, therefore, aimed to determine the prevalence of such pathogens in livestock using molecular approaches. A total of 276 dry blood spots were collected from cattle (100), sheep (95) and goats (81) in the Kassena-Nankana Districts. The samples were analyzed using Polymerase Chain Reaction (qPCR) and conventional assays and Sanger sequencing that targeted pathogens including Rickettsia, Coxiella, Babesia, Theileria, Ehrlichia and Anaplasma. An overall prevalence of 36.96% was recorded from the livestock DBS, with mixed infections seen in 7.97% samples. Furthermore, the prevalence of infections in livestock was recorded to be 19.21% in sheep, 14.13% in cattle, and 3.62% in goats. The pathogens identified were Rickettsia spp. (3.26%), Babesia sp. Lintan (8.70%), Theileria orientalis (2.17%), Theileria parva (0.36%), Anaplasma capra (18.48%), Anaplasma phagocytophilum (1.81%), Anaplasma marginale (3.26%) and Anaplasma ovis (7.25%). This study reports the first molecular identification of the above-mentioned pathogens in livestock in Ghana and highlights the use of dry blood spots in resource-limited settings. In addition, this research provides an update on tick-borne pathogens in Ghana, suggesting risks to livestock production and human health. Further studies will be essential to establish the distribution and epidemiology of these pathogens in Ghana.
Collapse
|
16
|
Zeng Z, Zhou S, Xu G, Liu W, Han T, Liu J, Wang J, Deng Y, Xiao F. Prevalence and phylogenetic analysis of Babesia parasites in reservoir host species in Fujian province, Southeast China. Zoonoses Public Health 2022; 69:915-924. [PMID: 35819239 DOI: 10.1111/zph.12988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 01/25/2023]
Abstract
Babesiosis is a tick-borne disease that mainly affects small mammals and has been reported in at least five provinces in China. However, the host range and geographical distribution of the parasite in Fujian province are unclear. Therefore, we investigated the prevalence and genetic characteristics of Babesia in Fujian province, Southeast China, between 2015 and 2020. Rodent blood samples were collected from 26 different surveillance sites across Fujian province. Genomic DNA was extracted to screen for Babesia infection using polymerase chain reaction based on 18S rRNA. DNA samples from 316 domestic goats, 85 water buffalo, 56 domestic dogs and 18 domestic pigs were examined. The prevalence of Babesia was statistically analysed using the Chi-square test or Fisher's exact test. Babesia infections were detected in 3.96% (43/1,087; 95%CI: 2.80%, 5.12%) of rodents and 1.26% (6/475; 95%CI: 0.26%, 2.26%) of other mammals. Multivariate logistic regression analysis revealed that irrigated cropland, shrubs and forests were risk factors for Babesia microti infections. The infection rates among domestic pigs, dogs and goats were 5.56%, 1.79% and 1.27%, respectively, with no infection found in water buffalo. The 18S rRNA gene sequencing revealed that rodents were infected with Babesia (sensu lato), whereas other mammals were infected with Babesia (sensu stricto). The geographical distribution and phylogenetic relationship of Babesia was determined in Southeast China. Mammals, particularly wild rodents, maybe the main natural hosts of Babesia in Fujian. Our findings provide a foundation for public health officials to develop prevention and control measures for Babesia.
Collapse
Affiliation(s)
- Zhiwei Zeng
- Fujian Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, China
| | - Shuheng Zhou
- Fujian Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, China
| | - Guoying Xu
- Fujian Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, China
| | - Weijun Liu
- Fujian Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, China
| | - Tengwei Han
- Fujian Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, China
| | - Jing Liu
- Fujian Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, China
| | - Jiaxiong Wang
- Fujian Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, China
| | - Yanqin Deng
- Fujian Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, China
| | - Fangzhen Xiao
- Fujian Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, China
| |
Collapse
|
17
|
Villanueva-Saz S, Borobia M, Fernández A, Jiménez C, Yzuel A, Verde MT, Ramo MÁ, Figueras L, Ruíz H. Anaemia in Sheep Caused by Babesia and Theileria Haemoparasites. Animals (Basel) 2022; 12:ani12233341. [PMID: 36496866 PMCID: PMC9738125 DOI: 10.3390/ani12233341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Piroplasmoses in sheep are caused by vector-borne apicomplexan protozoa, Babesia and Theileria. Different species are responsible for the disease; some species are more pathogenic than others and have a worldwide distribution. In this sense, these causative agents can cause anaemia in flocks. In general, these vector-borne diseases infect small ruminants and cause host-mediated pathology. In the case of Babesia species, a combination of different mechanisms is involved: red blood cell lysis due to intracellular parasite multiplication, activation of biogenic amines and the coagulation system with the possibility of disseminated intravascular coagulation. By contrast, less information is available on the different immunopathogenic mechanisms involved in the development of anaemia in sheep with theileriosis. However, the mechanisms of pathogenic action in theileriosis are similar to those studied in babesiosis. Diagnosis is based on compatible clinical signs, laboratory findings, specific diagnostic tests and the presence of the tick vector. Some of these tests detect the causative agent itself, such as direct identification by light microscopy and molecular analysis. In contrast, other tests detect the sheep's immune response to the organism by serology. Both diseases pose a significant diagnostic challenge for veterinary practitioners around the world. This review presents the most frequent clinical signs, pathogenesis and clinicopathological findings, diagnosis.
Collapse
|
18
|
First Molecular Identification of Babesia, Theileria, and Anaplasma in Goats from the Philippines. Pathogens 2022; 11:pathogens11101109. [PMID: 36297166 PMCID: PMC9612162 DOI: 10.3390/pathogens11101109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/16/2022] [Accepted: 09/24/2022] [Indexed: 12/01/2022] Open
Abstract
Goats are key livestock animals and goat raising is an income-generating venture for smallholder farmers, supporting agricultural development in many parts of the world. However, goat production is often limited by various factors, such as tick-borne diseases. Goat piroplasmosis is a disease caused by apicomplexan parasites Babesia spp. and Theileria spp., while anaplasmosis is caused by bacterial Anaplasma spp. In the Philippines, the presence of Babesia, Theileria, and Anaplasma has not been reported in goats. In this study, DNA obtained from goats were molecularly screened for Babesia/Theileria and Anaplasma. Of 396, 77.02% (305/396) and 38.64% (153/396) were positive for piroplasma and Anaplasma using PCR assays targeting the 18S rRNA and 16S rRNA genes, respectively. Similarly, Babesia ovis was detected in six samples (1.52%). Representative Babesia/Theileria sequences shared 89.97–97.74% identity with each other and were most closely related to T. orientalis, T. annulata, and Theileria spp. Meanwhile, Anaplasma 16SrRNA sequences were related to A. odocoilei, A. platys, and A. phagocytophilum. This is the first molecular identification of B. ovis, Theileria spp., and Anaplasma spp. in goats from the Philippines.
Collapse
|
19
|
The Piroplasmida Babesia, Cytauxzoon, and Theileria in farm and companion animals: species compilation, molecular phylogeny, and evolutionary insights. Parasitol Res 2022; 121:1207-1245. [DOI: 10.1007/s00436-022-07424-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/02/2022] [Indexed: 12/13/2022]
|
20
|
He L, Bastos RG, Sun Y, Hua G, Guan G, Zhao J, Suarez CE. Babesiosis as a potential threat for bovine production in China. Parasit Vectors 2021; 14:460. [PMID: 34493328 PMCID: PMC8425137 DOI: 10.1186/s13071-021-04948-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/11/2021] [Indexed: 11/15/2022] Open
Abstract
Babesiosis is a tick-borne disease with global impact caused by parasites of the phylum Apicomplexa, genus Babesia. Typically, acute bovine babesiosis (BB) is characterized by fever, anemia, hemoglobinuria, and high mortality. Surviving animals remain persistently infected and become reservoirs for parasite transmission. Bovids in China can be infected by one or more Babesia species endemic to the country, including B. bovis, B. bigemina, B. orientalis, B. ovata, B. major, B. motasi, B. U sp. Kashi and B. venatorum. The latter may pose a zoonotic risk. Occurrence of this wide diversity of Babesia species in China may be due to a combination of favorable ecological factors, such as the presence of multiple tick vectors, including Rhipicephalus and Hyalomma, the coexistence of susceptible bovid species, such as domestic cattle, yaks, and water buffalo, and the lack of efficient measures of tick control. BB is currently widespread in several regions of the country and a limiting factor for cattle production. While some areas appear to have enzootic stability, others have considerable cattle mortality. Research is needed to devise solutions to the challenges posed by uncontrolled BB. Critical research gaps include risk assessment for cattle residing in endemic areas, understanding factors involved in endemic stability, evaluation of parasite diversity and pathogenicity of regional Babesia species, and estimation of whether and how BB should be controlled in China. Research should allow the design of comprehensive interventions to improve cattle production, diminish the risk of human infections, and increase the availability of affordable animal protein for human consumption in China and worldwide. In this review, we describe the current state of BB with reference to the diversity of hosts, vectors, and parasite species in China. We also discuss the unique risks and knowledge gaps that should be taken into consideration for future Babesia research and control strategies.
Collapse
Affiliation(s)
- Lan He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 Hubei China
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164 USA
| | - Reginaldo G. Bastos
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164 USA
| | - Yali Sun
- State Key Laboratory of Plateau Ecology and Agriculture, College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016 People’s Republic of China
| | - Guohua Hua
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, International Joint Research Centre for Animal Genetics, Breeding and Reproduction, College of Animal Science & Technology, Huazhong Agriculture University, Wuhan, Hubei China
| | - Guiquan Guan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping, Lanzhou, 730046 China
| | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Carlos E. Suarez
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164 USA
- Animal Disease Research Unit, United States Department of Agricultural - Agricultural Research Service, Pullman, WA 99164 USA
| |
Collapse
|
21
|
Ceylan O, Xuan X, Sevinc F. Primary Tick-Borne Protozoan and Rickettsial Infections of Animals in Turkey. Pathogens 2021; 10:pathogens10020231. [PMID: 33669573 PMCID: PMC7923091 DOI: 10.3390/pathogens10020231] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/30/2021] [Accepted: 02/17/2021] [Indexed: 01/13/2023] Open
Abstract
Parasitic diseases caused by ticks constitute a barrier on global animal production, mainly in tropical and subtropical regions. As a country with a temperate and subtropical climate, Turkey has topography, climate, and pasture resources, and these resources are suitable for animal breeding and parasite–host–vector relationships throughout the country. This geography restricts the regulations on animal movements in the southeastern and eastern Anatolia because of the close contact with the neighboring states. The livestock resources in Turkey are regulated by strong foundations. Almost 30% of the agriculture-based gross domestic product is provided by the livestock industry. Parasitic diseases arising from ticks are endemic in Turkey, and they have a significant impact on the economy and animal health, particularly for ruminants. The main and economically-important tick-borne diseases (TBDs) suffered by animals include theileriosis, babesiosis, hepatozoonosis, and cytauxzoonosis caused by protozoa, and anaplasmosis and ehrlichiosis caused by rickettsiae. The most common hemoprotozoan and rickettsial agents are Anaplasma marginale, Anaplasma ovis, Anaplasma phagocytophilum, Anaplasma platys, Babesia bigemina, Babesia caballi, Babesia ovis, Cytauxzoon felis, Ehrlichia canis, Hepatozoon canis, Theileria annulata and Theileria equi. These diseases are basically controlled through treatment and measures for tick control. Vaccination can be performed for only tropical theileriosis caused in Turkey. We reviewed the studies published in domestic and international journals to gather epidemiological data regarding the major TBDs suffered by animals in Turkey.
Collapse
Affiliation(s)
- Onur Ceylan
- Department of Parasitology, Faculty of Veterinary Medicine, Selcuk University, 42250 Konya, Turkey;
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan;
| | - Ferda Sevinc
- Department of Parasitology, Faculty of Veterinary Medicine, Selcuk University, 42250 Konya, Turkey;
- Correspondence: ; Tel.: +90-332-223-2687
| |
Collapse
|
22
|
Ceylan O, Byamukama B, Ceylan C, Galon EM, Liu M, Masatani T, Xuan X, Sevinc F. Tick-Borne Hemoparasites of Sheep: A Molecular Research in Turkey. Pathogens 2021; 10:pathogens10020162. [PMID: 33546428 PMCID: PMC7913608 DOI: 10.3390/pathogens10020162] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/01/2022] Open
Abstract
Tick-borne diseases (TBDs) indulge in severe economic losses in the livestock industry by adversely affecting the small ruminant breeding in tropical and subtropical zone countries, including Turkey. Turkey encompasses a wide land area representing diverse climatic conditions. The present study explored the presence and distribution of Babesia ovis, Theileria ovis, Theileria lestoquardi, Anaplasma ovis, Anaplasma phagocytophilum and the co-occurrence status of these pathogens. A total of 299 sheep blood samples were collected from fifteen provinces located in six different geographical regions in Turkey. PCR analyses were executed using species-specific primers based on Babesia ovis BoSSU rRNA, Theileria ovis ToSSU rRNA, Theileria lestoquardi 18S rRNA, Anaplasma ovis Major Surface Protein (AoMSP4), and Anaplasma phagocytophilum 16S rRNA genes. Overall, 219 (73.24%) sheep were found to be infected with at least one of the following protozoan and rickettsial pathogens; B. ovis, A. ovis,T. ovis, and A. phagocytophilum. Theileria lestoquardi was not detected in any blood sample. The global prevalence of B. ovis, A. ovis, T. ovis, and A. phagocytophilum was estimated to be 2.68%, 16.05%, 41.47%, and 57.19%, respectively. Besides this, dual (24.41%), triple (9.03%), and quadruple (0.67%) co-infections were detected in the study. Phylogenetic analysis revealed significant nucleotide sequence identities between the sequences obtained in this study and the sequences registered in the GenBank. This study provides relevant data regarding the predominance of ovine tick-borne protozoan and rickettsial agents in Turkey. A high molecular prevalence of tick-borne pathogens (TBPs) was identified in the study. This situation indicates that TBPs should be screened continuously, and necessary control measures should be taken to prevent diseases caused by tick-borne protozoan and rickettsial agents.
Collapse
Affiliation(s)
- Onur Ceylan
- Department of Parasiyology, Faculty of Veterinary Medicine, Selcuk University, 42250 Konya, Turkey; (O.C.); (C.C.)
| | - Benedicto Byamukama
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan; (B.B.); (E.M.G.); (M.L.)
| | - Ceylan Ceylan
- Department of Parasiyology, Faculty of Veterinary Medicine, Selcuk University, 42250 Konya, Turkey; (O.C.); (C.C.)
| | - Eloiza May Galon
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan; (B.B.); (E.M.G.); (M.L.)
| | - Mingming Liu
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan; (B.B.); (E.M.G.); (M.L.)
| | - Tatsunori Masatani
- Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan;
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan; (B.B.); (E.M.G.); (M.L.)
- Correspondence: (X.X.); (F.S.)
| | - Ferda Sevinc
- Department of Parasiyology, Faculty of Veterinary Medicine, Selcuk University, 42250 Konya, Turkey; (O.C.); (C.C.)
- Correspondence: (X.X.); (F.S.)
| |
Collapse
|
23
|
Xue X, Ren S, Yang X, Masoudi A, Hu Y, Wang X, Li H, Zhang X, Wang M, Wang H, Liu J. Protein regulation strategies of the mouse spleen in response to Babesia microti infection. Parasit Vectors 2021; 14:61. [PMID: 33468223 PMCID: PMC7814643 DOI: 10.1186/s13071-020-04574-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/29/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Babesia is a protozoan parasite that infects red blood cells in some vertebrates. Some species of Babesia can induce zoonoses and cause considerable harm. As the largest immune organ in mammals, the spleen plays an important role in defending against Babesia infection. When infected with Babesia, the spleen is seriously injured but still actively initiates immunomodulatory responses. METHODS To explore the molecular mechanisms underlying the immune regulation and self-repair of the spleen in response to infection, this study used data-independent acquisition (DIA) quantitative proteomics to analyse changes in expression levels of global proteins and in phosphorylation modification in spleen tissue after Babesia microti infection in mice. RESULTS After mice were infected with B. microti, their spleens were seriously damaged. Using bioinformatics methods to analyse dynamic changes in a large number of proteins, we found that the spleen still initiated immune responses to combat the infection, with immune-related proteins playing an important role, including cathepsin D (CTSD), interferon-induced protein 44 (IFI44), interleukin-2 enhancer-binding factor 2 (ILF2), interleukin enhancer-binding factor 3 (ILF3) and signal transducer and activator of transcription 5A (STAT5A). In addition, some proteins related to iron metabolism were also involved in the repair of the spleen after B. microti infection, including serotransferrin, lactoferrin, transferrin receptor protein 1 (TfR1) and glutamate-cysteine ligase (GCL). At the same time, the expression and phosphorylation of proteins related to the growth and development of the spleen also changed, including protein kinase C-δ (PKC-δ), mitogen-activated protein kinase (MAPK) 3/1, growth factor receptor-bound protein 2 (Grb2) and P21-activated kinase 2 (PAK2). CONCLUSIONS Immune-related proteins, iron metabolism-related proteins and growth and development-related proteins play an important role in the regulation of spleen injury and maintenance of homeostasis. This study provides an important basis for the diagnosis and treatment of babesiosis.
Collapse
Affiliation(s)
- Xiaomin Xue
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, People's Republic of China
| | - Shuguang Ren
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, People's Republic of China
| | - Xiaohong Yang
- Department of Pathogenic Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, 050017, Hebei, People's Republic of China
| | - Abolfazl Masoudi
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, People's Republic of China
| | - Yuhong Hu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, People's Republic of China.,Instrumental Analysis Center, Hebei Normal University, Shijiazhuang, 050024, Hebei, People's Republic of China
| | - Xiaoshuang Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, People's Republic of China
| | - Hongxia Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, People's Republic of China
| | - Xiaojing Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, People's Republic of China
| | - Minjing Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, People's Republic of China
| | - Hui Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, People's Republic of China.
| | - Jingze Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, People's Republic of China.
| |
Collapse
|
24
|
Chatanga E, Kainga H, Maganga E, Hayashida K, Katakura K, Sugimoto C, Nonaka N, Nakao R. Molecular identification and genetic characterization of tick-borne pathogens in sheep and goats at two farms in the central and southern regions of Malawi. Ticks Tick Borne Dis 2020; 12:101629. [PMID: 33373891 DOI: 10.1016/j.ttbdis.2020.101629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/30/2020] [Accepted: 12/03/2020] [Indexed: 11/16/2022]
Abstract
Tick-borne diseases (TBDs) caused by pathogens belonging to the genera Anaplasma, Ehrlichia, Babesia and Theileria in small ruminants are widespread in the tropical and sub-tropical countries. The epidemiology of tick-borne pathogens (TBPs) in small ruminants is less understood compared to those infecting cattle in general. This study was carried out to investigate and characterize TBPs in sheep and goats using molecular tools. A total of 107 blood samples from sheep (n = 8) and goats (n = 99) were collected from animals that were apparently healthy from two farms in the central and the southern regions of Malawi. The V4 hypervariable region of the 18S ribosomal RNA gene (rDNA) and the V1 hypervariable region of the 16S rDNA polymerase chain reaction (PCR) assays were used for detection of tick-borne piroplasms and Anaplasmataceae, respectively. Almost the full-length 18S rDNA and the heat shock protein (groEL) gene sequences were used for genetic characterization of the piroplasms and Anaplasmataceae, respectively. The results showed that 76.6 % of the examined animals (n = 107) were positive for at least one TBP. The overall co-infection with at least two TBPs was observed in forty-eight animals (45 %). The detected TBPs were Anaplasma ovis (65 %), Ehrlichia ruminantium (4%), Ehrlichia canis (2%), Babesia strain closely related to Babesia gibsoni (1%), Theileria ovis (52 %), Theileria mutans (3%), Theileria separata (2%), Anaplasma sp. (1%) and Theileria sp. strain MSD-like (17 %). To the authors knowledge this is the first molecular study of TBPs in sheep and goats in Malawi. These results have therefore provided a significant milestone in the knowledge of occurrence of TBPs in sheep and goats in Malawi, which is prerequisite to proper diagnosis and control.
Collapse
Affiliation(s)
- Elisha Chatanga
- Laboratory of Parasitology, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Sapporo, Hokkaido, 060-0818, Japan; Department of Veterinary Medicine, Lilongwe University of Agriculture and Natural Resources, P.O. Box 219, Lilongwe, Malawi
| | - Henson Kainga
- Department of Veterinary Medicine, Lilongwe University of Agriculture and Natural Resources, P.O. Box 219, Lilongwe, Malawi
| | - Emmanuel Maganga
- Mikolongwe College of Veterinary Science, P.O. Box 5193, Limbe, Malawi
| | - Kyoko Hayashida
- Division of Collaboration and Education, Research Centre for Zoonosis Control, Hokkaido University, Kita-20, Nishi-10, Sapporo, Hokkaido, 001-0020, Japan
| | - Ken Katakura
- Laboratory of Parasitology, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Sapporo, Hokkaido, 060-0818, Japan
| | - Chihiro Sugimoto
- Division of Collaboration and Education, Research Centre for Zoonosis Control, Hokkaido University, Kita-20, Nishi-10, Sapporo, Hokkaido, 001-0020, Japan
| | - Nariaki Nonaka
- Laboratory of Parasitology, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Sapporo, Hokkaido, 060-0818, Japan
| | - Ryo Nakao
- Laboratory of Parasitology, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Sapporo, Hokkaido, 060-0818, Japan.
| |
Collapse
|
25
|
Quantitative proteomics and phosphoproteomic analyses of mouse livers after tick-borne Babesia microti infection. Int J Parasitol 2020; 51:167-182. [PMID: 33242464 DOI: 10.1016/j.ijpara.2020.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/15/2022]
Abstract
Babesia microti is a tick-borne protozoan parasite that infects the red blood cells of mice, humans, and other mammals. The liver tissues of BALB/c mice infected with B. microti exhibit severe injury. To further investigate the molecular mechanisms underlying liver injury and liver self-repair after B. microti infection, data-independent acquisition (DIA) quantitative proteomics was used to analyse changes in the expression and phosphorylation of proteins in liver tissues of BALB/c mice during a B. microti infection period and a recovery period. The expression of FABP1 and ACBP, which are related to fatty acid transport in the liver, was downregulated after infection with B. microti, as was the expression of Acox1, Ehhadh and Acaa1a, which are crucial rate-limiting enzymes in the process of fatty acid β oxidation. The phosphorylation levels of AMP-activated protein kinase (AMPK) and Hormone-sensitive lipase (HSL) were also downregulated. In addition, the expression of PSMB9, CTSC, and other immune-related proteins was increased, reflecting an active immune regulation mechanism in the mice. The weights of mice infected with B. microti were significantly reduced, and the phosphorylation levels of IRS-1, c-Raf, mTOR, and other proteins related to growth and development were downregulated.
Collapse
|
26
|
Xia LY, Jiang BG, Yuan TT, von Fricken M, Jia N, Jiang RR, Zhang Y, Li XL, Sun Y, Ruan XD, Cao WC, Jiang JF. Genetic Diversity and Coexistence of Babesia in Ticks (Acari: Ixodidae) from Northeastern China. Vector Borne Zoonotic Dis 2020; 20:817-824. [PMID: 32749919 DOI: 10.1089/vbz.2020.2635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Human babesiosis is an emerging zoonotic disease transmitted by ticks in China. A few systematic reports on Babesia spp. was involved with ticks, especially in the human babesiosis endemic areas in Northeastern China. Materials and Methods: Ticks were collected from 30 individual waypoints along 2.0 km transects in two recreational forests. Babesia spp. infection in ticks was screened by amplifying the partial 18s rRNA gene with subsequent sequencing. Multivariate logistic regression analysis was used to determine the association between tick infection and related environmental risk factors. Cluster analyses were performed using SaTScan v6.0 software to identify any geographical cluster of infected ticks. Results: A total of 2380 Ixodes persulcatus and 461 Haemaphysalis concinna ticks were collected. Of the 0.97% of I. persulcatus ticks that tested positive, five Babesia species were identified, including B. bigemina (n = 6), B. divergens (n = 2), B. microti (n = 3), B. venatorum (n = 11), and one novel strain HLJ-8. Thirteen (2.92%) H. concinna ticks tested positive for B. bigemina (n = 1), B. divergens (n = 1), three genetic variants of Babesia represented by HLJ-874, which was closely related to Babesia sp.MA#361-1, and eight other Babesia variants represented by HLJ242, which were similar to B. crassa. Each study site had 5-6 different Babesia spp. One waypoint was more likely to yield B. venatorum (relative risk = 15.36, p = 0.045) than all other waypoints. Conclusions: There exists a high genetic diversity of Babesia spp. across a relatively small sampled region. Further study is needed to understand the risks these variants pose to human health.
Collapse
Affiliation(s)
- Luo-Yuan Xia
- Graduate School of Anhui Medical University, Hefei, China
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Bao-Gui Jiang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ting-Ting Yuan
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Michael von Fricken
- Department of Global and Community Health, George Mason University, Fairfax, Virginia, USA
| | - Na Jia
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Rui-Ruo Jiang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yuan Zhang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xin-Lou Li
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yi Sun
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiang-Dong Ruan
- Academy of Forest Inventory and Planning, National Forestry and Grassland Administration, Beijing, China
| | - Wu-Chun Cao
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jia-Fu Jiang
- Graduate School of Anhui Medical University, Hefei, China
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
27
|
Wang J, Gao S, Zhang S, He X, Liu J, Liu A, Li Y, Liu G, Luo J, Guan G, Yin H. Rapid detection of Babesia motasi responsible for human babesiosis by cross-priming amplification combined with a vertical flow. Parasit Vectors 2020; 13:377. [PMID: 32727550 PMCID: PMC7391542 DOI: 10.1186/s13071-020-04246-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/20/2020] [Indexed: 11/10/2022] Open
Abstract
Background Babesia motasi is known as an etiological agent of human and ovine babesiosis. Diagnosis of babesiosis is traditionally performed by microscopy, examining Giemsa-stained thin peripheral blood smears. Rapid detection and accurate identification of species are desirable for clinical care and epidemiological studies. Methods An easy to operate molecular method, which requires less capital equipment and incorporates cross-priming amplification combined with a vertical flow (CPA-VF) visualization strip for rapid detection and identification of B. motasi. Results The CPA-VF targets the 18S rRNA gene and has a detection limit of 50 fg per reaction; no cross reaction was observed with other piroplasms infective to sheep or Babesia infective to humans. CPA-VF and real-time (RT)-PCR had sensitivities of 95.2% (95% confidence interval, CI 78.1–99.4%) and 90.5% (95% CI 72–97.6%) and specificities of 95.8 (95% CI 80.5–99.5%) and 97.9 (95% CI 83.5–99.9%), respectively, versus microscopy and nested (n) PCR combined with gene sequencing. The clinical performance of the CPA-VF assay was evaluated with field blood samples from sheep (n = 340) in Jintai county, Gansu Province, and clinical specimens (n = 492) obtained from patients bitten by ticks. Conclusions Our results indicate that the CPA-VF is a rapid, accurate, nearly instrument-free molecular diagnostic approach for identification of B. motasi. Therefore, it could be an alternative technique for epidemiological investigations and diagnoses of ovine and/or human babesiosis caused by B. motasi, especially in resource-limited regions. ![]()
Collapse
Affiliation(s)
- Jinming Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China
| | - Shandian Gao
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China
| | - Shangdi Zhang
- Department of Clinical Laboratory, The Second Hospital of Lanzhou University, Lanzhou, Gansu, 730000, People's Republic of China
| | - Xin He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China
| | - Junlong Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China
| | - Aihong Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China
| | - Youquan Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China
| | - Guangyuan Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China
| | - Jianxun Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China
| | - Guiquan Guan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China.
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China. .,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|
28
|
Wang X, Wang J, Liu J, Liu A, He X, Xiang Q, Li Y, Yin H, Luo J, Guan G. Insights into the phylogenetic relationships and drug targets of Babesia isolates infective to small ruminants from the mitochondrial genomes. Parasit Vectors 2020; 13:378. [PMID: 32727571 PMCID: PMC7391622 DOI: 10.1186/s13071-020-04250-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/20/2020] [Indexed: 01/22/2023] Open
Abstract
Background Babesiosis, a tick-borne disease caused by protozoans of the genus Babesia, is widespread in subtropical and tropical countries. Mitochondria are essential organelles that are responsible for energy transduction and metabolism, calcium homeostasis and cell signaling. Mitochondrial genomes could provide new insights to help elucidate and investigate the biological features, genetic evolution and classification of the protozoans. Nevertheless, there are limited data on the mitochondrial genomes of ovine Babesia spp. in China. Methods Herein, we sequenced, assembled and annotated the mitochondrial genomes of six ovine Babesia isolates; analyzed the genome size, gene content, genome structure and cytochrome b (cytb) amino acid sequences and performed comparative mitochondrial genomics and phylogenomic analyses among apicomplexan parasites. Results The mitochondrial genomes range from 5767 to 5946 bp in length with a linear form and contain three protein-encoding genes, cytochrome c oxidase subunit 1 (cox1), cytochrome c oxidase subunit 3 (cox3) and cytb, six large subunit rRNA genes (LSU) and two terminal inverted repeats (TIR) on both ends. The cytb gene sequence analysis indicated the binding site of anti-Babesia drugs that targeted the cytochrome bc1 complex. Babesia microti and Babesia rodhaini have a dual flip-flop inversion of 184–1082 bp, whereas other Babesia spp. and Theileria spp. have one pair of TIRs, 25–1563 bp. Phylogenetic analysis indicated that the six ovine Babesia isolates were divided into two clades, Babesia sp. and Babesia motasi. Babesia motasi isolates were further separated into two small clades (B. motasi Hebei/Ningxian and B. motasi Tianzhu/Lintan). Conclusions The data provided new insights into the taxonomic relationships and drug targets of apicomplexan parasites. ![]()
Collapse
Affiliation(s)
- Xiaoxing Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Jinming Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Junlong Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Aihong Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Xin He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Quanjia Xiang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Youquan Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Jianxun Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Guiquan Guan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China.
| |
Collapse
|
29
|
Hong SH, Kim SY, Song BG, Rho JR, Cho CR, Kim CN, Um TH, Kwak YG, Cho SH, Lee SE. Detection and characterization of an emerging type of Babesia sp. similar to Babesia motasi for the first case of human babesiosis and ticks in Korea. Emerg Microbes Infect 2019; 8:869-878. [PMID: 31179860 PMCID: PMC6566668 DOI: 10.1080/22221751.2019.1622997] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Babesiosis is a tick-transmitted intraerythrocytic zoonosis. In Korea, the first mortalities were reported in 2005 due to Babesia sp. detection in sheep; herein we report epidemiological and genetic characteristics of a second case of babesiosis. Microscopic analysis of patient blood revealed polymorphic merozoites. To detect Babesia spp., PCR was performed using Babesia specific primers for β-tubulin, 18S rDNA, COB, and COX3 gene fragments. 18S rDNA analysis for Babesia sp., showed 98% homology with ovine Babesia sp. and with Babesia infections in Korea in 2005. Moreover, phylogenetic analysis of 18S rDNA, COB, and COX3 revealed close associations with B. motasi. For identifying the infectious agent, Haemaphysalis longicornis (296) and Haemaphysalis flava (301) were collected around the previous residence of the babesiosis patient. Babesia genes were identified in three H. longicornis: one sample was identified as B. microti and two samples were 98% homologous to B. motasi. Our study is the first direct confirmation of the infectious agent for human babesiosis. This case most likely resulted from tick bites from ticks near the patient house of the babesiosis patient. H. longicornis has been implicated as a vector of B. microti and other Babesia sp. infections.
Collapse
Affiliation(s)
- Sung-Hee Hong
- a Division of Vectors and Parasitic Diseases , Korea Center for Disease Control and Prevention , Cheongju , Korea
| | - Seong-Yoon Kim
- a Division of Vectors and Parasitic Diseases , Korea Center for Disease Control and Prevention , Cheongju , Korea
| | - Bong Goo Song
- a Division of Vectors and Parasitic Diseases , Korea Center for Disease Control and Prevention , Cheongju , Korea
| | - Jong-Rul Rho
- a Division of Vectors and Parasitic Diseases , Korea Center for Disease Control and Prevention , Cheongju , Korea
| | - Chong Rae Cho
- b Department of Laboratory Medicine , Inje University Ilsan Paik Hospital , Goyang , Korea
| | - Chul-Nam Kim
- c Department of Surgery , Inje University Ilsan Paik Hospital , Goyang , Korea
| | - Tae-Hyun Um
- b Department of Laboratory Medicine , Inje University Ilsan Paik Hospital , Goyang , Korea
| | - Yee Gyung Kwak
- d Department of Internal Medicine , Inje University Ilsan Paik Hospital , Goyang , Korea
| | - Shin-Hyeong Cho
- a Division of Vectors and Parasitic Diseases , Korea Center for Disease Control and Prevention , Cheongju , Korea
| | - Sang-Eun Lee
- a Division of Vectors and Parasitic Diseases , Korea Center for Disease Control and Prevention , Cheongju , Korea
| |
Collapse
|
30
|
Hou J, Ling F, Liu Y, Zhang R, Song X, Huang R, Wu Y, Wang J, Sun J, Gong Z. A molecular survey of Anaplasma, Ehrlichia, Bartonella and Theileria in ticks collected from southeastern China. EXPERIMENTAL & APPLIED ACAROLOGY 2019; 79:125-135. [PMID: 31396760 DOI: 10.1007/s10493-019-00411-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 08/02/2019] [Indexed: 06/10/2023]
Abstract
To investigate the prevalence of Anaplasma, Ehrlichia, Bartonella and Theileria, we collected ticks from small mammals in six counties of Zhejiang Province in southeastern China. Polymerase chain reaction (PCR) amplification was performed to test Anaplasma, Ehrlichia, Bartonella and Theileria in tick samples. Positive PCR products were sequenced and then compared with previously published sequences deposited in GenBank using BLAST. About 292 adult ticks were captured and the dominant tick species were Ixodes sinensis and Haemaphysalis longicornis. Overall, 34 ticks (11.6%) were tested positive for at least one pathogen of Anaplasma, Ehrlichia, Bartonella and Theileria. Rates of PCR-positivity to Anaplasma, Ehrlichia, Bartonella and Theileria were 5.5, 1.7, 2.4 and 2.4%, respectively. Positive rates of Anaplasma, Bartonella and Theileria were significantly different among ticks of different species. Prevalence of Anaplasma and Theileria varied significantly among ticks of different counties. Anaplasma, Ehrlichia, Bartonella and Theileria were widely prevalent in ticks in Zhejiang Province suggesting other tick-borne pathogens should also be suspected if patients had history of tick bites.
Collapse
Affiliation(s)
- Juan Hou
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Feng Ling
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Ying Liu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Rong Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Xiuping Song
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ruting Huang
- Fengtai Center for Disease Control and Prevention, Beijing, China
| | - Yuyan Wu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Jinna Wang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Jimin Sun
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China.
| | - Zhenyu Gong
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China.
| |
Collapse
|
31
|
Wang X, Wang J, Liu J, Liu A, He X, Xu J, Li Z, Zhao S, Li Y, Yin H, Luo J, Guan G. Comparative analysis of apicoplast genomes of Babesia infective to small ruminants in China. Parasit Vectors 2019; 12:312. [PMID: 31234937 PMCID: PMC6591869 DOI: 10.1186/s13071-019-3581-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 06/19/2019] [Indexed: 02/08/2023] Open
Abstract
Background Babesiosis is an economically important disease caused by tick-borne apicomplexan protists of the genus Babesia. Most apicomplexan parasites, including Babesia, have a plastid-derived organelle termed an apicoplast, which is involved in critical metabolic pathways such as fatty acid, iron-sulphur, haem and isoprenoid biosynthesis. Apicoplast genomic data can provide significant information for understanding and exploring the biological features, taxonomic and evolutionary relationships of apicomplexan parasites, and identify targets for anti-parasitic drugs. However, there are limited data on the apicoplast genomes of Babesia species infective to small ruminants. Methods PCR primers were designed based on the previously reported apicoplast genome sequences of Babesia motasi Lintan and Babesia sp. Xinjiang using Illumina technology. The overlapped apicoplast genomic fragments of six ovine Babesia isolates were amplified and sequenced using the Sanger dideoxy chain-termination method. The full-length sequences of the apicoplast genomes were assembled and annotated using bioinformatics software. The gene contents and order of apicoplast genomes obtained in this study were defined and compared with those of other apicomplexan parasites. Phylogenetic trees were constructed on the concatenated amino acid sequences of 13 gene products using MEGA v.6.06. Results The results showed that the six ovine Babesia apicoplast genomes consisted of circular DNA. The genome sizes were 29,916–30,846 bp with 78.7–81.0% A + T content, 29–31 open reading frames (ORF) and 23–24 transport RNAs. The ORFs encoded four DNA-directed RNA polymerase subunits (rpoB, rpoCl, rpoC2a and rpoC2b), 13 ribosomal proteins, one elongation factor TU (tufA), two ATP-dependent Clp proteases (ClpC) and 7–11 hypothetical proteins. Babesia sp. has three more genes than Babesia motasi (rpl5, rps8 and rpoB). Phylogenetic analysis showed that Babesia sp. is located in a separate clade. Babesia motasi Lintan/Tianzhu and B. motasi Ningxian/Hebei were divided into two subclades. Conclusions To our knowledge, this study is the first to elucidate the whole apicoplast genomic structural features of six Babesia isolates infective to small ruminants in China using Sanger sequencing. The data provide useful information confirming the taxonomic relationships of these parasites and identifying targets for anti-apicomplexan parasite drugs. Electronic supplementary material The online version of this article (10.1186/s13071-019-3581-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaoxing Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Jinming Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Junlong Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Aihong Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Xin He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Jianlin Xu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Zhi Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Shuaiyang Zhao
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Youquan Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Jianxun Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Guiquan Guan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China.
| |
Collapse
|
32
|
Sun M, Wang J, Liu Z, Guan G, Li Y, Liu J, Xu J, Yin H, Luo J. First molecular evidence of Babesia occultans and Theileria separata infection in ticks and sheep in China. EXPERIMENTAL & APPLIED ACAROLOGY 2019; 78:223-229. [PMID: 31172458 DOI: 10.1007/s10493-019-00369-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 05/07/2019] [Indexed: 06/09/2023]
Abstract
Protozoan parasites of the genus Babesia and Theileria are significant tick-borne pathogens of domestic animals and cause economic losses to the livestock industry in tropical and subtropical regions worldwide. In this study, 274 blood samples and 32 tick samples were collected from four counties of Wuwei City in northwestern China in June and July in 2018. The DNA from the field samples was analyzed for Babesia or Theileria infection using specific PCR and sequencing based on 18S rRNA gene fragments. The total infection rates were 0.4% for B. motasi and T. separata (both 1/274) in sheep, 3.1% for T. annulata (1/32), 6.2% for B. occultans (2/32) and 9.4% for B. bigemina (3/32) in ticks, respectively. In particular, T. separata has been for the first time detected in sheep in China and B. occultans in Hyalomma asiaticum from Gansu Province of China.
Collapse
Affiliation(s)
- Ming Sun
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, 730046, Gansu, China
- Center for Animal Disease Control of Minqin County, Wuwei, 733000, Gansu, China
| | - Jinming Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, 730046, Gansu, China
| | - Zhijie Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, 730046, Gansu, China
| | - Guanquan Guan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, 730046, Gansu, China
| | - Youquan Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, 730046, Gansu, China
| | - Junlong Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, 730046, Gansu, China
| | - Jianlin Xu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, 730046, Gansu, China
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, 730046, Gansu, China.
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, 225009, China.
| | - Jianxun Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, 730046, Gansu, China.
| |
Collapse
|
33
|
Song R, Wang Q, Guo F, Liu X, Song S, Chen C, Tu C, Wureli H, Wang Y. Detection of Babesia spp., Theileria spp. and Anaplasma ovis in Border Regions, northwestern China. Transbound Emerg Dis 2018; 65:1537-1544. [PMID: 29932497 DOI: 10.1111/tbed.12894] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Indexed: 12/23/2022]
Abstract
Babesia spp., Theileria spp. and Anaplasma ovis are important intracellular agents that are transmitted by tick bites. However, Babesia spp., Theileria spp. and A. ovis in ticks have not been systematically reported along the border of northwestern China. In this study, a total of 1,084 adult ticks, including 134 Haemaphysalis punctata, 337 Hyalomma asiaticum, 233 Dermacentor nuttalli, 69 Rhipicephalus turanicus and 265 Dermacentor marginatus were collected from 11 counties or cities of Xinjiang Uygur Autonomous Region. The ticks were identified from morphological and molecular characteristics. Two fragments of 18S rRNA gene were used to determine the species level of Babesia and Theileria. Msp4 gene encoding major surface protein 4 was used to determine A. ovis. Of the 1,084 samples, five species of Babesia (B. occultans, B. caballi, B. motasi, B. major and Babesia sp. detected in this study), two kinds of Theileria (Theileria ovis and Theileria sp. detected in this study) and A. ovis with six phylogenic branches were detected in the border of northwestern China. Babesia occultans, first found in China, was first molecularly detected in D. nuttalli. Babesia caballi and Babesia sp. detected in this study were first molecularly detected in Hy. asiaticum. Genotype III of A. ovis was predominant in the border regions of northwestern China.
Collapse
Affiliation(s)
- R Song
- School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Q Wang
- School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - F Guo
- School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - X Liu
- School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - S Song
- School of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - C Chen
- School of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - C Tu
- Institue of Veterinary Sciences, Academy of Military Medical Sciences, Jilin, Changchun, China
| | - H Wureli
- School of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Y Wang
- School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
34
|
Abdallah MO, Niu Q, Yang J, Hassan MA, Yu P, Guan G, Chen Z, Liu G, Luo J, Yin H. Identification of 12 Piroplasms Infecting Ten Tick Species in China Using Reverse Line Blot Hybridization. J Parasitol 2017; 103:221-227. [DOI: 10.1645/16-161] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Mirza Omar Abdallah
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, P. R. China. Correspondence should be sent to Hong Yin at:
| | - Qingli Niu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, P. R. China. Correspondence should be sent to Hong Yin at:
| | - Jifei Yang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, P. R. China. Correspondence should be sent to Hong Yin at:
| | - Muhammad Adeel Hassan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, P. R. China. Correspondence should be sent to Hong Yin at:
| | - Peifa Yu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, P. R. China. Correspondence should be sent to Hong Yin at:
| | - Guiquan Guan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, P. R. China. Correspondence should be sent to Hong Yin at:
| | - Ze Chen
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, P. R. China. Correspondence should be sent to Hong Yin at:
| | - Guangyuan Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, P. R. China. Correspondence should be sent to Hong Yin at:
| | - Jianxun Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, P. R. China. Correspondence should be sent to Hong Yin at:
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, P. R. China. Correspondence should be sent to Hong Yin at:
| |
Collapse
|
35
|
Genetic characterization and molecular survey of Babesia sp. Xinjiang infection in small ruminants and ixodid ticks in China. INFECTION GENETICS AND EVOLUTION 2017; 49:330-335. [PMID: 28131866 DOI: 10.1016/j.meegid.2017.01.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/22/2017] [Accepted: 01/24/2017] [Indexed: 11/24/2022]
Abstract
Babesia sp. Xinjiang is a large ovine Babesia species that was recently isolated in China. Compared with other ovine Babesia species, it has different morphological features, pathogenicity and vector tick species. The known transmitting vector is Hyalomma anatolicum. In this study, the distribution and the presence of Babesia sp. Xinjiang in small ruminants and ixodid ticks in China were assessed by specific nested-PCR assay based on the rap-1a gene. A total of 978 blood samples from sheep or goats from 15 provinces and 797 tick specimens from vegetation from 10 provinces were collected and analysed for the presence of the Babesia sp. Xinjiang. Full-length and partial rap-1a of Babesia sp. Xinjiang were amplified from field samples. The PCR results were further confirmed by DNA sequencing. Overall, 38 (3.89%) blood samples and 51 (6.4%) tick samples were positive for Babesia sp. Xinjiang infection. The highest presence (26.92%) was found in blood samples from Yunnan province, while H. qinghaiensis ticks with the highest presence of infection (21.3%) were from Gansu province. This study identified for the first time Babesia sp. Xinjiang infection in H. longicornis tick species. The rap-1a sequences of Babesia sp. Xinjiang from field blood and tick samples indicated 100% identity. The presence of Babesia sp. Xinjiang infection may increase in China. Novel potential transmitting vectors might be more extensive than previously thought.
Collapse
|
36
|
Niu Q, Bonsergent C, Rogniaux H, Guan G, Malandrin L, Moreau E. RAP-1a is the main rhoptry-associated-protein-1 (RAP-1) recognized during infection with Babesia sp. BQ1 (Lintan) (B. motasi-like phylogenetic group), a pathogen of sheep in China. Vet Parasitol 2016; 232:48-57. [DOI: 10.1016/j.vetpar.2016.11.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/24/2016] [Accepted: 11/11/2016] [Indexed: 12/14/2022]
|
37
|
Ozubek S, Aktas M. Molecular evidence of a new Babesia sp. in goats. Vet Parasitol 2016; 233:1-8. [PMID: 28043378 DOI: 10.1016/j.vetpar.2016.11.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 11/08/2016] [Accepted: 11/18/2016] [Indexed: 11/27/2022]
Abstract
In this study, a novel Babesia sp. infecting goats was detected and its phylogenetic relationship to related species was determined. A total of 200 blood samples collected from sheep (n=78) and goats (n=122) were examined in the study. The V4 hypervariable region of the 18S rRNA gene of the novel Babesia sp. was amplified by PCR and analysed using a reverse line blot hybridization assay adapted for small ruminants. Samples from seven goats hybridized to Theileria/Babesia catch-all and Babesia catch-all probes and did not hybridize to any species-specific probe tested, suggesting the presence of an unrecognized Babesia species or genotype. Sequencing results showed the isolate to clearly differ from ovine Babesia species and genotypes currently available in the GenBank database. The isolate showed 90.9%, 93.5%, and 93.4% identity to B. ovis, B. motasi, and B. crassa, respectively and 91-93% similarity to Babesia genotypes recently described in small ruminants. The highest homology (∼96-97%) observed was with Babesia odocoilei, Babesia sp. EU1, and Babesia divergens. The new isolate was provisionally designated Babesia sp. The study contributes to better insight into the distribution and phylogenetic diversity of piroplasms in small ruminants. The survey indicated a high prevalence of piroplasms in small ruminants (21.5%). Of those detected, T. ovis was the most prevalent (17%), followed by Babesia sp. (3.5%), and B. ovis (2%).
Collapse
Affiliation(s)
- Sezayi Ozubek
- Department of Parasitology, Faculty of Veterinary Medicine, University of Firat, 23119, Elazig, Turkey
| | - Munir Aktas
- Department of Parasitology, Faculty of Veterinary Medicine, University of Firat, 23119, Elazig, Turkey.
| |
Collapse
|
38
|
Wang T, Guan G, Korhonen PK, Koehler AV, Young ND, Hall RS, Yin H, Gasser RB. Mitochondrial genomes of two Babesia taxa from sheep in China as a foundation for population genetic and epidemiological investigations. INFECTION GENETICS AND EVOLUTION 2016; 47:51-55. [PMID: 27845269 DOI: 10.1016/j.meegid.2016.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 11/03/2016] [Indexed: 11/19/2022]
Abstract
Here, we sequenced, assembled and annotated the mitochondrial (mt) genomes of two operational taxonomic units of Babesia from sheep from China using a deep sequencing-coupled approach. Then, we defined and compared the gene order of these mt genomes (~5.8 to 6.2kb in size), assessed sequence differences in mt genes among Babesia taxa and evaluated genetic relationships among these taxa and related apicomplexans (Theileria) for which mt genomic data sets were available. We also identified mt genetic regions that might be useful as markers for future population genetic and molecular epidemiological studies of Babesia from small ruminants. We propose that the sequencing-bioinformatic approach used here should be applicable to a wide range of protists of veterinary importance.
Collapse
Affiliation(s)
- Tao Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Gansu, PR China; Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Guiquan Guan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Gansu, PR China
| | - Pasi K Korhonen
- Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Anson V Koehler
- Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Neil D Young
- Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Ross S Hall
- Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Gansu, PR China.
| | - Robin B Gasser
- Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria, Australia; State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| |
Collapse
|
39
|
Wang T, Guan G, Korhonen PK, Koehler AV, Hall RS, Young ND, Yin H, Gasser RB. The apicoplast genomes of two taxonomic units of Babesia from sheep. Vet Parasitol 2016; 233:123-128. [PMID: 27916258 DOI: 10.1016/j.vetpar.2016.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/31/2016] [Accepted: 11/05/2016] [Indexed: 02/07/2023]
Abstract
The apicoplast (ap) is a unique, non-photosynthetic organelle found in most apicomplexan parasites. Due to the essential roles that this organelle has, it has been widely considered as target for drugs against diseases caused by apicomplexans. Exploring the ap genomes of such parasites would provide a better understanding of their systematics and their basic molecular biology for therapeutics. However, there is limited information available on the ap genomes of apicomplexan parasites. In the present study, the ap genomes of two operational taxonomic units of Babesia (known as Babesia sp. Lintan [Bl] and Babesia sp. Xinjiang [Bx]) from sheep were sequenced, assembled and annotated using a massive parallel sequencing-based approach. Then, the gene content and gene order in these ap genomes (∼30.7kb in size) were defined and compared, and the genetic differences were assessed. In addition, a phylogenetic analysis of ap genomic data sets was carried out to assess the relationships of these taxonomic units with other apicomplexan parasites for which complete ap genomic data sets were publicly available. The results showed that the ap genomes of Bl and Bx encode 59 and 57 genes, respectively, including 2 ribosomal RNA genes, 25 transfer RNA genes and 30-32 protein-encoding genes, being similar in content to those of Babesia bovis and B. orientalis. Ap gene regions that might serve as markers for future epidemiological and population genetic studies of Babesia species were identified. Using sequence data for a subset of six protein-encoding genes, a close relationship of Bl and Bx with Babesia bovis from cattle and B. orientalis from water buffalo was inferred. Although the focus of the present study was on Babesia, we propose that the present sequencing-bioinformatic approach should be applicable to organellar genomes of a wide range of apicomplexans of veterinary importance.
Collapse
Affiliation(s)
- Tao Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Gansu, PR China; Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Guiquan Guan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Gansu, PR China
| | - Pasi K Korhonen
- Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Anson V Koehler
- Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Ross S Hall
- Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Neil D Young
- Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Gansu, PR China.
| | - Robin B Gasser
- Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
40
|
Expression of sheep pathogen Babesia sp. Xinjiang rhoptry-associated protein 1 and evaluation of its diagnostic potential by enzyme-linked immunosorbent assay. Parasitology 2016; 143:1990-1999. [PMID: 27748232 DOI: 10.1017/s0031182016001293] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ovine babesiosis is one of the most important tick-borne haemoparasitic diseases of small ruminants. The ovine parasite Babesia sp. Xinjiang is widespread in China. In this study, recombinant full-length XJrRAP-1aα2 (rhoptry-associated protein 1aα2) and C-terminal XJrRAP-1aα2 CT of Babesia sp. Xinjiang were expressed and used to evaluate their diagnostic potential for Babesia sp. Xinjiang infections by indirect enzyme-linked immunosorbent assay (ELISA). Purified XJrRAP-1aα2 was tested for reactivity with sera from animals experimentally infected with Babesia sp. Xinjiang and other haemoparasites using Western blotting and ELISA. The results showed no cross-reactivities between XJrRAP-1aα2 CT and sera from animals infected by other pathogens. High level of antibodies against RAP-1a usually lasted 10 weeks post-infection (wpi). A total of 3690 serum samples from small ruminants in 23 provinces located in 59 different regions of China were tested by ELISA. The results indicated that the average positive rate was 30·43%, and the infections were found in all of the investigated provinces. This is the first report on the expression and potential use of a recombinant XJrRAP-1aα2 CT antigen for the development of serological assays for the diagnosis of ovine babesiosis, caused by Babesia sp. Xinjiang.
Collapse
|
41
|
Expression analysis and biological characterization of Babesia sp. BQ1 (Lintan) (Babesia motasi-like) rhoptry-associated protein 1 and its potential use in serodiagnosis via ELISA. Parasit Vectors 2016; 9:313. [PMID: 27245213 PMCID: PMC4888343 DOI: 10.1186/s13071-016-1573-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/05/2016] [Indexed: 01/25/2023] Open
Abstract
Background In China, ovine babesiosis is one of the most important tick-borne haemoparasitic diseases of small ruminants. It has a significant economic impact, and several Babesia motasi-like isolates have been recently shown to be responsible for ovine babesiosis in this country. Methods Full-length and C-terminal-truncated forms of the rap-1a61-1 gene of Babesia sp. BQ1 (Lintan) were cloned into the pET-30a plasmid and subsequently expressed as His-fusion proteins. The resulting recombinant RAP-1a proteins (rRAP-1a61-1 and rRAP-1a61-1/CT) were purified and evaluated as diagnostic antigens using Western blot analysis and ELISA. The native Babesia sp. BQ1 (Lintan) RAP-1 protein was recognized using Western blots and IFAT by antibodies that were raised in rabbits against rRAP-1a61-1/CT. The specificity, sensitivity and positive threshold values for rRAP-1a61-1/CT in ELISA were evaluated. Results Cross-reactivity was observed between rRAP-1a61-1/CT and positive sera for Babesia sp. BQ1 (Lintan), Babesia sp. BQ1 (Ningxian) and Babesia sp. Tianzhu isolates obtained from infected sheep. At one week post-inoculation, a significant increase was observed in the amount of antibodies produced against RAP-1a, and high levels of antibodies against RAP-1a were observed for 3 months (at 84 days p.i.). A total of 3198 serum samples were collected from small ruminants in 54 different regions in 23 provinces of China. These samples were tested using ELISA based on the rRAP-1a61-1/CT protein. The results indicated that the average positive rate was 36.02 %. Conclusions The present study suggests that rRAP-1a61-1/CT might be a potential diagnostic antigen for detecting several isolates of B. motasi-like parasites infection.
Collapse
|
42
|
Rjeibi MR, Darghouth MA, Gharbi M. Prevalence of Theileria and Babesia species in Tunisian sheep. ACTA ACUST UNITED AC 2016; 83:a1040. [PMID: 27247070 PMCID: PMC6238706 DOI: 10.4102/ojvr.v83i1.1040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 11/04/2015] [Accepted: 12/08/2015] [Indexed: 11/15/2022]
Abstract
In this study, the prevalence of Theileria and Babesia species in sheep was assessed with Giemsa-stained blood smear examination and polymerase chain reaction to identify the different piroplasms in 270 sheep from three Tunisian bioclimatic zones (north, centre, and south). The overall infection prevalence by Babesia spp. and Theileria spp. in Giemsa-stained blood smears was 2.9% (8/270) and 4.8% (13/270) respectively. The molecular results showed that sheep were more often infected by Theileria ovis than Babesia ovis with an overall prevalence of 16.3% (44/270) and 7.8% (21/270) respectively (p = 0.01). The molecular prevalence by Babesia ovis was significantly higher in females than in males (p < 0.05). According to localities B. ovis was found exclusively in sheep from the centre of Tunisia (Kairouan) whereas Theileria ovis was found in all regions. Infections with T. ovis and B. ovis were confirmed by sequencing. The sequence of T. ovis in this study (accession numbers KM924442) falls into the same clade as T. ovis deposited in GenBank. The T. ovis amplicons (KM924442) showed 99%–100% identities with GenBank sequences. Moreover, comparison of the partial sequences of 18S rRNA gene of B. ovis described in this study (KP670199) revealed 99.4% similarity with B. ovis recently reported in northern Tunisia from sheep and goats. Three nucleotides were different at positions 73 (A/T), 417 (A/T), and 420 (G/T). It also had 99% identity with B. ovis from Spain, Turkey and Iraq. The results suggest a high T. ovis prevalence in Tunisia with a decreasing north-south gradient. This could be correlated to the vector tick distribution.
Collapse
Affiliation(s)
- Mohamed R Rjeibi
- Institution of Agricultural Research and Higher Education, Laboratory of Parasitology, National School of Veterinary Medicine, Manouba University, Tunisia; Department of Biology, Carthage University, Tunisia.
| | | | | |
Collapse
|
43
|
Erster O, Roth A, Wollkomirsky R, Leibovich B, Savitzky I, Zamir S, Molad T, Shkap V. Quantitative analysis of Babesia ovis infection in sheep and ticks. Vet Parasitol 2016; 221:39-45. [DOI: 10.1016/j.vetpar.2016.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 01/31/2016] [Accepted: 03/07/2016] [Indexed: 10/22/2022]
|
44
|
Niu Q, Liu Z, Yang J, Yu P, Pan Y, Zhai B, Luo J, Yin H. Genetic diversity and molecular characterization of Babesia motasi-like in small ruminants and ixodid ticks from China. INFECTION GENETICS AND EVOLUTION 2016; 41:8-15. [PMID: 26976477 DOI: 10.1016/j.meegid.2016.03.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/04/2016] [Accepted: 03/06/2016] [Indexed: 11/25/2022]
Abstract
Ovine babesioses, an important tick-borne disease of sheep and goats in China, is caused by the reproduction of intraerythrocytic protozoa of the Babesia genus. Babesia motasi-like is a Babesia parasite that infects small ruminant in China, and two sub-groups of B. motasi-like can be subdivided based on differences in the rhoptry-associated-protein-1 gene. This study aimed to characterize the distribution, epidemiology and genetics of B. motasi-like in animals and ticks. A molecular investigation was carried out from 2009 to 2015 in 16 provinces in China. In total, 1081 blood samples were collected from sheep and goats originating from 27 different regions, and 778 ixodid tick samples were collected from 8 regions; the samples were tested for the presence of B. motasi-like using a specific nested PCR assay based on the rap-1b gene. The results indicated that 139 (12.9%), 91 (8.4%), 48 (4.4%) and 6 (0.7%) of the blood samples were positive for general B. motasi-like, Babesia sp. BQ1 (Lintan and Ningxian), Babesia sp. Tianzhu and Babesia sp. Hebei sub-groups, mixed infections, respectively. Among the collected 778 ixodid ticks (including Haemaphysalis longicornis, Haemaphysalis qinghaiensis, Dermacentor silvarum, Ixodes persulcatus, Rhipicephalus sanguineus and Rhipicephalus (Boophilus) microplus), the most frequently infected with Babesia were D. silvarum and I. persulcatus (35.7%), followed by H. longicornis (26.8%), H. qinghaiensis (24.8%) and R. sanguineus (9.3%). The PCR results were confirmed by DNA sequencing. The positive rates of B. motasi-like infection in ticks were found to be higher in China, compared with previous studies in other countries. B. motasi-like infections have not previously been reported in D. silvarum, I. persulcatus or R. sanguineus. The findings obtained in this study could be used for planning effective control strategies against babesiosis in China.
Collapse
Affiliation(s)
- Qingli Niu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu 730046, PR China.
| | - Zhijie Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu 730046, PR China.
| | - Jifei Yang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu 730046, PR China.
| | - Peifa Yu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu 730046, PR China.
| | - Yuping Pan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu 730046, PR China.
| | - Bintao Zhai
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu 730046, PR China.
| | - Jianxun Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu 730046, PR China.
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu 730046, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China.
| |
Collapse
|
45
|
Identification of piroplasm infection in questing ticks by RLB: a broad range extension of tick-borne piroplasm in China? Parasitol Res 2016; 115:2035-44. [PMID: 26896077 DOI: 10.1007/s00436-016-4947-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 01/29/2016] [Indexed: 10/22/2022]
Abstract
Sensitive and specific diagnostic method for rapid and simultaneous detection and discrimination of the different species is needed for an effective control of piroplasmosis. Here, a reverse line blot (RLB) assay was developed for piroplasm detection. A general pair of primer based on 18S ribosomal RNA (rRNA) gene was used to amplify V4 region of 18S rRNA gene. General and specific probes for 13 piroplasm species were cited from previous publications or designed according to the alignment of 18S rRNA gene sequences. For sensitivity test of RLB assay, serially diluted plasmids of the different species were used to access the sensitivity of the RLB. Four hundred and fifty tick samples collected from grass from different provinces of China were then detected. The result indicated that the RLB assay is highly specific and sensitive, detecting up to 10(2) copies/μl of recombinant plasmid DNA. Multiple piroplasms were detected as single or mixed infection from tick species. Eight piroplasm species, most of which were Theileria annulata (33/450, 7.3 %) or Babesia sp. Xinjiang (30/450, 6.7 %), were found to infect with 89 tick samples in four tick species; no infections with Babesia major, Babesia ovata, Babesia bigemina, Theileria sergenti, or Theileria equi were detected. The piroplasms species-specific RLB assay may have potential clinical application in the simultaneous detection and differentiation of Babesia and Theileria species.
Collapse
|
46
|
Fang LQ, Liu K, Li XL, Liang S, Yang Y, Yao HW, Sun RX, Sun Y, Chen WJ, Zuo SQ, Ma MJ, Li H, Jiang JF, Liu W, Yang XF, Gray GC, Krause PJ, Cao WC. Emerging tick-borne infections in mainland China: an increasing public health threat. THE LANCET. INFECTIOUS DISEASES 2015; 15:1467-1479. [PMID: 26453241 PMCID: PMC4870934 DOI: 10.1016/s1473-3099(15)00177-2] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 06/18/2015] [Accepted: 07/07/2015] [Indexed: 12/30/2022]
Abstract
Since the beginning of the 1980s, 33 emerging tick-borne agents have been identified in mainland China, including eight species of spotted fever group rickettsiae, seven species in the family Anaplasmataceae, six genospecies in the complex Borrelia burgdorferi sensu lato, 11 species of Babesia, and the virus causing severe fever with thrombocytopenia syndrome. In this Review we have mapped the geographical distributions of human cases of infection. 15 of the 33 emerging tick-borne agents have been reported to cause human disease, and their clinical characteristics have been described. The non-specific clinical manifestations caused by tick-borne pathogens present a major diagnostic challenge and most physicians are unfamiliar with the many tick-borne diseases that present with non-specific symptoms in the early stages of the illness. Advances in and application of modern molecular techniques should help with identification of emerging tick-borne pathogens and improve laboratory diagnosis of human infections. We expect that more novel tick-borne infections in ticks and animals will be identified and additional emerging tick-borne diseases in human beings will be discovered.
Collapse
Affiliation(s)
- Li-Qun Fang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Kun Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xin-Lou Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Song Liang
- College of Public Health and Health Professions, and Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Yang Yang
- College of Public Health and Health Professions, and Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Hong-Wu Yao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ruo-Xi Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ye Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Wan-Jun Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Shu-Qing Zuo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Mai-Juan Ma
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Hao Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jia-Fu Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - X Frank Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Barnhill, IN, USA
| | | | - Peter J Krause
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale School of Medicine, New Haven, CT, USA
- Department of Medicine and Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Wu-Chun Cao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- Correspondence to: Prof Wu-Chun Cao, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Fengtai District, Beijing 100071, China
| |
Collapse
|
47
|
Erster O, Roth A, Wolkomirsky R, Leibovich B, Savitzky I, Shkap V. Transmission of Babesia ovis by different Rhipicephalus bursa developmental stages and infected blood injection. Ticks Tick Borne Dis 2015; 7:13-19. [PMID: 26253782 DOI: 10.1016/j.ttbdis.2015.07.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/27/2015] [Accepted: 07/27/2015] [Indexed: 11/26/2022]
Abstract
In this report, the transmission efficacy of Babesia ovis, the principal causative agent of ovine babesiosis, was studied by infestation of lambs with different Rhipicephalus bursa stages or by injection of infected blood. Infected blood injection induced acute babesiosis in splenectomized lambs, while only mild clinical signs were observed in intact animals. Both splenectomized and intact lambs developed high antibody titer, detectable for at least 180 days post infection. Infestation of splenectomized and intact lambs with infected tick larvae did not induce clinical babesiosis or specific serum response in any of the examined animals. Similarly, infestation of one splenectomized lamb with partially-fed infected R. bursa males did not induce any clinical response or seroconversion. Nymph infestation caused a mild clinical response followed by specific seroconversion, in one out of five lambs. All animals infested with infected unfed adults (males and females) showed mild-to-severe clinical signs 8 to 12 days post infestation. The acute phase was followed by a marked seroconversion. Our results indicate that the principal transmission of B. ovis is performed by adult R. bursa ticks, and that the host reaction can last as long as 6 months following the acute infection.
Collapse
Affiliation(s)
- Oran Erster
- Division of Parasitology, Kimron Veterinary Institute, PO Box 12, Bet Dagan 50250, Israel.
| | - Asael Roth
- Division of Parasitology, Kimron Veterinary Institute, PO Box 12, Bet Dagan 50250, Israel
| | - Ricardo Wolkomirsky
- Division of Parasitology, Kimron Veterinary Institute, PO Box 12, Bet Dagan 50250, Israel
| | - Benjamin Leibovich
- Division of Parasitology, Kimron Veterinary Institute, PO Box 12, Bet Dagan 50250, Israel
| | - Igor Savitzky
- Division of Parasitology, Kimron Veterinary Institute, PO Box 12, Bet Dagan 50250, Israel
| | - Varda Shkap
- Division of Parasitology, Kimron Veterinary Institute, PO Box 12, Bet Dagan 50250, Israel
| |
Collapse
|
48
|
A member of the HSP90 family from ovine Babesia in China: molecular characterization, phylogenetic analysis and antigenicity. Parasitology 2015; 142:1387-97. [PMID: 26156495 DOI: 10.1017/s0031182015000797] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Heat shock protein 90 (HSP90) is a key component of the molecular chaperone complex essential for activating many signalling proteins involved in the development and progression of pathogenic cellular transformation. A Hsp90 gene (BQHsp90) was cloned and characterized from Babesia sp. BQ1 (Lintan), an ovine Babesia isolate belonging to Babesia motasi-like group, by screening a cDNA expression library and performing rapid amplification of cDNA ends. The full-length cDNA of BQHsp90 is 2399 bp with an open reading frame of 2154 bp encoding a predicted 83 kDa polypeptide with 717 amino acid residues. It shows significant homology and similar structural characteristics to Hsp90 of other apicomplex organisms. Phylogenetic analysis, based on the HSP90 amino acid sequences, showed that the Babesia genus is clearly separated from other apicomplexa genera. Five Chinese ovine Babesia isolates were divided into 2 phylogenetic clusters, namely Babesia sp. Xinjiang (previously designated a new species) cluster and B. motasi-like cluster which could be further divided into 2 subclusters (Babesia sp. BQ1 (Lintan)/Babesia sp. Tianzhu and Babesia sp. BQ1 (Ningxian)/Babesia sp. Hebei). Finally, the antigenicity of rBQHSP90 protein from prokaryotic expression was also evaluated using western blot and enzyme-linked immunosorbent assay (ELISA).
Collapse
|
49
|
Niu Q, Marchand J, Yang C, Bonsergent C, Guan G, Yin H, Malandrin L. Rhoptry-associated protein (rap-1) genes in the sheep pathogen Babesia sp. Xinjiang: Multiple transcribed copies differing by 3' end repeated sequences. Vet Parasitol 2015; 211:158-69. [PMID: 26026806 DOI: 10.1016/j.vetpar.2015.04.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 04/24/2015] [Accepted: 04/25/2015] [Indexed: 12/11/2022]
Abstract
Sheep babesiosis occurs mainly in tropical and subtropical areas. The sheep parasite Babesia sp. Xinjiang is widespread in China, and our goal is to characterize rap-1 (rhoptry-associated protein 1) gene diversity and expression as a first step of a long term goal aiming at developing a recombinant subunit vaccine. Seven different rap-1a genes were amplified in Babesia sp. Xinjiang, using degenerate primers designed from conserved motifs. Rap-1b and rap-1c gene types could not be identified. In all seven rap-1a genes, the 5' regions exhibited identical sequences over 936 nt, and the 3' regions differed at 28 positions over 147 nt, defining two types of genes designated α and β. The remaining 3' part varied from 72 to 360 nt in length, depending on the gene. This region consists of a succession of two to ten 36 nt repeats, which explains the size differences. Even if the nucleotide sequences varied, 6 repeats encoded the same stretch of amino acids. Transcription of at least four α and two β genes was demonstrated by standard RT-PCR.
Collapse
Affiliation(s)
- Qingli Niu
- INRA, UMR1300 Biology, Epidemiology and Risk Analysis in Animal Health, CS 40706, F-44307 Nantes, France; LUNAM Université, Oniris, UMR1300 BioEpAR, F-44307 Nantes, France; State Key Laboratory of Veterinary Etiological Biology, LVRI, Lanzhou, China.
| | - Jordan Marchand
- INRA, UMR1300 Biology, Epidemiology and Risk Analysis in Animal Health, CS 40706, F-44307 Nantes, France; LUNAM Université, Oniris, UMR1300 BioEpAR, F-44307 Nantes, France
| | - Congshan Yang
- State Key Laboratory of Veterinary Etiological Biology, LVRI, Lanzhou, China
| | - Claire Bonsergent
- INRA, UMR1300 Biology, Epidemiology and Risk Analysis in Animal Health, CS 40706, F-44307 Nantes, France; LUNAM Université, Oniris, UMR1300 BioEpAR, F-44307 Nantes, France
| | - Guiquan Guan
- State Key Laboratory of Veterinary Etiological Biology, LVRI, Lanzhou, China
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, LVRI, Lanzhou, China
| | - Laurence Malandrin
- INRA, UMR1300 Biology, Epidemiology and Risk Analysis in Animal Health, CS 40706, F-44307 Nantes, France; LUNAM Université, Oniris, UMR1300 BioEpAR, F-44307 Nantes, France
| |
Collapse
|
50
|
Rar VA, Epikhina TI, Suntsova OV, Kozlova IV, Lisak OV, Pukhovskaya NM, Vysochina NP, Ivanov LI, Tikunova NV. Genetic variability of Babesia parasites in Haemaphysalis spp. and Ixodes persulcatus ticks in the Baikal region and Far East of Russia. INFECTION GENETICS AND EVOLUTION 2014; 28:270-5. [PMID: 25460820 DOI: 10.1016/j.meegid.2014.10.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 08/22/2014] [Accepted: 10/12/2014] [Indexed: 10/24/2022]
Abstract
To study Babesia diversity in Ixodid ticks in Russia, Ixodes persulcatus, Haemaphysalis japonica, Haemaphysalisconcinna, Dermacentor silvarum, and Dermacentor nuttalli ticks collected in the Far East and Baikal region were assayed for the presence of Babesia spp. using nested PCR. In total, Babesia DNA was detected in 30 of the 1125 (2.7%) I. persulcatus, 17 of the 573 (3.0%) H. concinna, and 12 of the 543 (2.2%) H. japonica but was undetectable in any of the 294 analyzed Dermacentor spp. Partial 18S rRNA gene sequences were determined for all of the positive samples. Among the positive ticks, nine I. persulcatus were infected by Babesia microti 'US'-type, five I. persulcatus were infected by Babesia divergens-like parasites, and 11 I. persulcatus were infected by Babesia venatorum. For all three of these species, the determined 18S rRNA gene sequences were identical to those of the Babesia genetic variants found previously in I. persulcatus in Russia. In addition, five I. persulcatus from the Baikal region and all of the positive Haemaphysalis spp. ticks carried 13 different sequence variants of Babesia sensu stricto belonging to distinct phylogenetic clusters. Babesia spp. from 29 ticks of different species collected in distinct locations belonged to the cluster of cattle and ovine parasites (Babesia crassa, Babesiamajor, Babesiamotasi, Babesiabigemina, etc.). Babesia spp. from four H. japonica ticks in the Far East belonged to the cluster formed by parasites of carnivores. One more Babesia sequence variant detected in an I. persulcatus tick from the Baikal region belonged to the cluster formed by parasites of cattle and wild cervids (B. divergens, Babesiacapreoli, B. venatorum, Babesiaodocoilei, etc.).
Collapse
Affiliation(s)
- V A Rar
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russian Federation.
| | - T I Epikhina
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russian Federation
| | - O V Suntsova
- Scientific Center of Family Health and Human Reproduction Problems, SB RAMS, Irkutsk, Russian Federation
| | - I V Kozlova
- Scientific Center of Family Health and Human Reproduction Problems, SB RAMS, Irkutsk, Russian Federation
| | - O V Lisak
- Scientific Center of Family Health and Human Reproduction Problems, SB RAMS, Irkutsk, Russian Federation
| | - N M Pukhovskaya
- Khabarovsk Antiplague Station, Khabarovsk, Russian Federation
| | - N P Vysochina
- Khabarovsk Antiplague Station, Khabarovsk, Russian Federation
| | - L I Ivanov
- Khabarovsk Antiplague Station, Khabarovsk, Russian Federation
| | - N V Tikunova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russian Federation
| |
Collapse
|