1
|
Mbizeni S, Mans BJ, Mukaratirwa S, Peba B, Maboko BB, Pienaar R, Magampa H, Marumo RD, Josemans A, Troskie C, Latif AA. Molecular and serological prevalence of corridor disease (buffalo associated Theileria parva infection) in cattle populations at the livestock/game interface of KwaZulu-Natal province, South Africa. Vet Parasitol Reg Stud Reports 2024; 47:100963. [PMID: 38199701 DOI: 10.1016/j.vprsr.2023.100963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 01/12/2024]
Abstract
Theileria parva are intracellular protozoal parasites responsible for three disease syndromes in cattle, namely East Coast fever (ECF), Corridor disease (CD) and Zimbabwean theileriosis. The increase in reports of CD outbreaks in recent years has raised questions about the probability of adaptation of buffalo-derived T. parva strains in cattle herds adjacent to game reserves. A cross-sectional study was conducted from March 2016 to December 2018 to investigate the extent of occurrence of T. parva infections in cattle in the CD-controlled area of KwaZulu-Natal Province. Blood samples were collected from 1137 cattle from 14 herds and analysed by quantitative real-time PCR (qPCR) and indirect fluorescent antibody test (IFAT) to determine the prevalence of T. parva. A total of 484 samples from 4 of the 14 herds were further tested on qPCR for the presence of T. taurotragi infections. The data were analysed using descriptive statistics and a chi-square test was used to assess association between variables. The overall prevalence of T. parva was 1.3% (95%CI:1-2%) and 19.9% (95%CI:17-22%) on qPCR and IFAT, respectively. The qPCR positive samples were detected in March and May while IFAT positive samples were detected in all seasons sampled, with higher numbers during summer months. The Pearson Chi-squared test showed that T. parva prevalence rates based on both qPCR and IFAT were positively associated with herds with previous history of CD outbreaks (χ2 = 8.594, p = 0.003; χ2 = 69.513, p < 0.001, respectively). The overall prevalence of T. taurotragi was 39.4% (95% CI: 35-44%) with the herd-level prevalence ranging between 35.0% and 43.4%. Possible cross-reaction of T. parva IFAT to T. taurotragi was detected on few samples, however, there was no significant association between T. taurotragi infections and IFAT positivity (χ2 = 0.829, p = 0.363). Results from this study demonstrated the extent of occurrence of subclinical carriers and the level of exposure to T. parva infections in cattle populations at a livestock/game interface area of KwaZulu-Natal Province. The molecular and seroprevalence rates were low when compared with other areas where cattle-adapted T. parva infections are endemic. The adaptation of buffalo-derived T. parva in cattle population resulting in cattle-cattle transmissions seem to be unlikely under the current epidemiological state.
Collapse
Affiliation(s)
- Sikhumbuzo Mbizeni
- Department of Agriculture and Animal Health, University of South Africa, Private Bag X6, Roodepoort, Florida 1710, South Africa; School of Life Sciences, University of KwaZulu-Natal, Private Bag X54001, Westville Campus, Durban 4000, South Africa; Epidemiology, Parasites and Vectors, Agricultural Research Council - Onderstepoort Veterinary Research, Private Bag X05, Onderstepoort, 0110, Pretoria, South Africa.
| | - Ben J Mans
- School of Life Sciences, University of KwaZulu-Natal, Private Bag X54001, Westville Campus, Durban 4000, South Africa; Department of Life and Consumer Sciences, University of South Africa, Private Bag X6, Roodepoort, Florida 1710, South Africa; Epidemiology, Parasites and Vectors, Agricultural Research Council - Onderstepoort Veterinary Research, Private Bag X05, Onderstepoort, 0110, Pretoria, South Africa
| | - Samson Mukaratirwa
- School of Life Sciences, University of KwaZulu-Natal, Private Bag X54001, Westville Campus, Durban 4000, South Africa; One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| | - Brian Peba
- Epidemiology, Parasites and Vectors, Agricultural Research Council - Onderstepoort Veterinary Research, Private Bag X05, Onderstepoort, 0110, Pretoria, South Africa
| | - Boitumelo B Maboko
- Epidemiology, Parasites and Vectors, Agricultural Research Council - Onderstepoort Veterinary Research, Private Bag X05, Onderstepoort, 0110, Pretoria, South Africa
| | - Ronel Pienaar
- Epidemiology, Parasites and Vectors, Agricultural Research Council - Onderstepoort Veterinary Research, Private Bag X05, Onderstepoort, 0110, Pretoria, South Africa
| | - Hero Magampa
- Epidemiology, Parasites and Vectors, Agricultural Research Council - Onderstepoort Veterinary Research, Private Bag X05, Onderstepoort, 0110, Pretoria, South Africa
| | - Ratselane D Marumo
- Epidemiology, Parasites and Vectors, Agricultural Research Council - Onderstepoort Veterinary Research, Private Bag X05, Onderstepoort, 0110, Pretoria, South Africa
| | - Antoinette Josemans
- Epidemiology, Parasites and Vectors, Agricultural Research Council - Onderstepoort Veterinary Research, Private Bag X05, Onderstepoort, 0110, Pretoria, South Africa
| | - Christo Troskie
- Epidemiology, Parasites and Vectors, Agricultural Research Council - Onderstepoort Veterinary Research, Private Bag X05, Onderstepoort, 0110, Pretoria, South Africa
| | - Abdalla A Latif
- School of Life Sciences, University of KwaZulu-Natal, Private Bag X54001, Westville Campus, Durban 4000, South Africa
| |
Collapse
|
2
|
Atuhaire DK, Muleya W, Mbao V, Bazarusanga T, Gafarasi I, Salt J, Namangala B, Musoke AJ. Sequence diversity of cytotoxic T cell antigens and satellite marker analysis of Theileria parva informs the immunization against East Coast fever in Rwanda. Parasit Vectors 2020; 13:452. [PMID: 32894166 PMCID: PMC7487574 DOI: 10.1186/s13071-020-04322-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 08/30/2020] [Indexed: 11/21/2022] Open
Abstract
Background East Coast fever (ECF) caused by Theileria parva is endemic in Rwanda. In this study, the antigenic and genetic diversity of T. parva coupled with immunization and field challenge were undertaken to provide evidence for the introduction of ECF immunization in Rwanda. Methods Blood collected from cattle in the field was screened for T. parva using ELISA and PCR targeting the p104 gene. Tp1 and Tp2 gene sequences were generated from field samples and from Gikongoro and Nyakizu isolates. Furthermore, multilocus genotype data was generated using 5 satellite markers and an immunization challenge trial under field conditions using Muguga cocktail vaccine undertaken. Results Out of 120 samples, 44 and 20 were positive on ELISA and PCR, respectively. Antigenic diversity of the Tp1 and Tp2 gene sequences revealed an abundance of Muguga, Kiambu and Serengeti epitopes in the samples. A further three clusters were observed on both Tp1 and Tp2 phylogenetic trees; two clusters comprising of field samples and vaccine isolates and the third cluster comprising exclusively of Rwanda samples. Both antigens exhibited purifying selection with no positive selection sites. In addition, satellite marker analysis revealed that field samples possessed both shared alleles with Muguga cocktail on all loci and also a higher proportion of unique alleles. The Muguga cocktail (Muguga, Kiambu and Serengeti) genotype compared to other vaccine isolates, was the most represented in the field samples. Further low genetic sub-structuring (FST = 0.037) coupled with linkage disequilibrium between Muguga cocktail and the field samples was observed. Using the above data to guide a field immunization challenge trial comprising 41 immunized and 40 control animals resulted in 85% seroconversion in the immunized animals and an efficacy of vaccination of 81.7%, implying high protection against ECF. Conclusions Antigenic and genetic diversity analysis of T. parva facilitated the use of Muguga cocktail vaccine in field conditions. A protection level of 81.7% was achieved, demonstrating the importance of combining molecular tools with field trials to establish the suitability of implementation of immunization campaigns. Based on the information in this study, Muguga cocktail immunization in Rwanda has a potential to produce desirable results.![]()
Collapse
Affiliation(s)
| | - Walter Muleya
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Zambia, P.O. Box 32379, Lusaka, 10101, Zambia.
| | - Victor Mbao
- International Development Research Centre, Eastern and Southern Africa Regional Office, Nairobi, Kenya
| | | | | | - Jeremy Salt
- Global Alliance for Livestock Veterinary Medicines, Doherty Building, Pentlands Science Park, Bush Loan, Penicuik, Edinburgh, EH26 0PZ, Scotland, UK
| | - Boniface Namangala
- Department of Paraclinical Studies, School of Veterinary Medicine, University of Zambia, P.O. Box 32379, Lusaka, 10101, Zambia
| | - Antony Jim Musoke
- LMK Medical laboratories and consultancies, P.O. Box 33686, Kampala, Uganda
| |
Collapse
|
3
|
Mans BJ, Pienaar R, Latif AA. A review of Theileria diagnostics and epidemiology. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2015; 4:104-18. [PMID: 25830110 PMCID: PMC4356873 DOI: 10.1016/j.ijppaw.2014.12.006] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 12/18/2014] [Accepted: 12/19/2014] [Indexed: 11/28/2022]
Abstract
Serological and molecular assays exist for most economic important Theileria species. Molecular assays are constantly being improved with regard to sensitivity and specificity. The concept of what constitute a Theileria species impacts on accurate diagnostics. Analytical specificity of molecular assays are >800 000 parasites/L blood. Parasitemia ranges may determine practical limits of detection.
An extensive range of serological and molecular diagnostic assays exist for most of the economically important Theileira species such as T. annulata, T. equi, T. lestoquardi, T. parva, T. uilenbergi and other more benign species. Diagnostics of Theileria is considered with regard to sensitivity and specificity of current molecular and serological assays and their use in epidemiology. In the case of serological assays, cross-reactivity of genetically closely related species reduces the use of the gold standard indirect fluorescent antibody test (IFAT). Development of antigen-specific assays does not necessarily address this problem, since closely related species will potentially have similar antigens. Even so, serological assays remain an important line of enquiry in epidemiological surveys. Molecular based assays have exploded in the last decade with significant improvements in sensitivity and specificity. In this review, the current interpretation of what constitute a species in Theileria and its impact on accurate molecular diagnostics is considered. Most molecular assays based on conventional or real-time PCR technology have proven to be on standard with regard to analytical sensitivity. However, consideration of the limits of detection in regard to total blood volume of an animal indicates that most assays may only detect >400,000 parasites/L blood. Even so, natural parasitaemia distribution in carrier-state animals seems to be above this limit of detection, suggesting that most molecular assays should be able to detect the majority of infected individuals under endemic conditions. The potential for false-negative results can, however, only be assessed within the biological context of the parasite within its vertebrate host, i.e. parasitaemia range in the carrier-state that will support infection of the vector and subsequent transmission.
Collapse
Affiliation(s)
- Ben J Mans
- Parasites, Vectors and Vector-Borne Diseases, Agricultural Research Council-Onderstepoort Veterinary Institute, Onderstepoort 0110, South Africa ; The Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa ; Department of Life and Consumer Sciences, University of South Africa, South Africa
| | - Ronel Pienaar
- Parasites, Vectors and Vector-Borne Diseases, Agricultural Research Council-Onderstepoort Veterinary Institute, Onderstepoort 0110, South Africa
| | - Abdalla A Latif
- Parasites, Vectors and Vector-Borne Diseases, Agricultural Research Council-Onderstepoort Veterinary Institute, Onderstepoort 0110, South Africa ; The Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
4
|
Collins J, Huynh M. Estimation of diagnostic test accuracy without full verification: a review of latent class methods. Stat Med 2014; 33:4141-69. [PMID: 24910172 DOI: 10.1002/sim.6218] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 05/02/2014] [Accepted: 05/05/2014] [Indexed: 11/09/2022]
Abstract
The performance of a diagnostic test is best evaluated against a reference test that is without error. For many diseases, this is not possible, and an imperfect reference test must be used. However, diagnostic accuracy estimates may be biased if inaccurately verified status is used as the truth. Statistical models have been developed to handle this situation by treating disease as a latent variable. In this paper, we conduct a systematized review of statistical methods using latent class models for estimating test accuracy and disease prevalence in the absence of complete verification.
Collapse
Affiliation(s)
- John Collins
- Rehabilitation Medicine Department, National Institutes of Health, Bethesda MD 20892, U.S.A
| | | |
Collapse
|