1
|
Sebatjane PN, Njuho PM, Tsotetsi-Khambule AM. Statistical models for helminth faecal egg counts in sheep and goats. Small Rumin Res 2019. [DOI: 10.1016/j.smallrumres.2018.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
2
|
Charvet CL, Guégnard F, Courtot E, Cortet J, Neveu C. Nicotine-sensitive acetylcholine receptors are relevant pharmacological targets for the control of multidrug resistant parasitic nematodes. Int J Parasitol Drugs Drug Resist 2018; 8:540-549. [PMID: 30502120 PMCID: PMC6287576 DOI: 10.1016/j.ijpddr.2018.11.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/14/2018] [Accepted: 11/14/2018] [Indexed: 12/19/2022]
Abstract
The control of parasitic nematodes impacting animal health relies on the use of broad spectrum anthelmintics. However, intensive use of these drugs has led to the selection of resistant parasites in livestock industry. In that respect, there is currently an urgent need for novel compounds able to control resistant parasites. Nicotine has also historically been used as a de-wormer but was removed from the market when modern anthelmintics became available. The pharmacological target of nicotine has been identified in nematodes as acetylcholine-gated ion channels. Nicotinic-sensitive acetylcholine receptors (N-AChRs) therefore represent validated pharmacological targets that remain largely under-exploited. In the present study, using an automated larval migration assay (ALMA), we report that nicotinic derivatives efficiently paralyzed a multiple (benzimidazoles/levamisole/pyrantel/ivermectin) resistant field isolate of H. contortus. Using C. elegans as a model we confirmed that N-AChRs are preferential targets for nornicotine and anabasine. Functional expression of the homomeric N-AChR from C. elegans and the distantly related horse parasite Parascaris equorum in Xenopus oocytes highlighted some striking differences in their respective pharmacological properties towards nicotine derivative sensitivity. This work validates the exploitation of the nicotine receptors of parasitic nematodes as targets for the development of resistance-breaking compounds.
Collapse
Affiliation(s)
| | | | - Elise Courtot
- ISP, INRA, Université Tours, UMR1282, 37380, Nouzilly, France
| | - Jacques Cortet
- ISP, INRA, Université Tours, UMR1282, 37380, Nouzilly, France
| | - Cedric Neveu
- ISP, INRA, Université Tours, UMR1282, 37380, Nouzilly, France.
| |
Collapse
|
3
|
Blanchard A, Guégnard F, Charvet CL, Crisford A, Courtot E, Sauvé C, Harmache A, Duguet T, O’Connor V, Castagnone-Sereno P, Reaves B, Wolstenholme AJ, Beech RN, Holden-Dye L, Neveu C. Deciphering the molecular determinants of cholinergic anthelmintic sensitivity in nematodes: When novel functional validation approaches highlight major differences between the model Caenorhabditis elegans and parasitic species. PLoS Pathog 2018; 14:e1006996. [PMID: 29719008 PMCID: PMC5931475 DOI: 10.1371/journal.ppat.1006996] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 03/28/2018] [Indexed: 01/14/2023] Open
Abstract
Cholinergic agonists such as levamisole and pyrantel are widely used as anthelmintics to treat parasitic nematode infestations. These drugs elicit spastic paralysis by activating acetylcholine receptors (AChRs) expressed in nematode body wall muscles. In the model nematode Caenorhabditis elegans, genetic screens led to the identification of five genes encoding levamisole-sensitive-AChR (L-AChR) subunits: unc-38, unc-63, unc-29, lev-1 and lev-8. These subunits form a functional L-AChR when heterologously expressed in Xenopus laevis oocytes. Here we show that the majority of parasitic species that are sensitive to levamisole lack a gene orthologous to C. elegans lev-8. This raises important questions concerning the properties of the native receptor that constitutes the target for cholinergic anthelmintics. We demonstrate that the closely related ACR-8 subunit from phylogenetically distant animal and plant parasitic nematode species functionally substitutes for LEV-8 in the C. elegans L-AChR when expressed in Xenopus oocytes. The importance of ACR-8 in parasitic nematode sensitivity to cholinergic anthelmintics is reinforced by a ‘model hopping’ approach in which we demonstrate the ability of ACR-8 from the hematophagous parasitic nematode Haemonchus contortus to fully restore levamisole sensitivity, and to confer high sensitivity to pyrantel, when expressed in the body wall muscle of C. elegans lev-8 null mutants. The critical role of acr-8 to in vivo drug sensitivity is substantiated by the successful demonstration of RNAi gene silencing for Hco-acr-8 which reduced the sensitivity of H. contortus larvae to levamisole. Intriguingly, the pyrantel sensitivity remained unchanged thus providing new evidence for distinct modes of action of these important anthelmintics in parasitic species versus C. elegans. More broadly, this highlights the limits of C. elegans as a predictive model to decipher cholinergic agonist targets from parasitic nematode species and provides key molecular insight to inform the discovery of next generation anthelmintic compounds. Parasitic nematodes have global health and economic impacts. They infect animals, including livestock, humans, and plants including all major food crops. Their control in human and veterinary medicine is reliant on anthelmintic drugs but this is now challenged by resistant worms especially in livestock. Importantly, for anthelmintics such as levamisole and other cholinergic agonists, resistance appears to be less frequent stressing the need to investigate their molecular target in parasitic nematodes. The levamisole receptor was first identified in the free-living model nematode C. elegans but it is now becoming apparent that this is not a good predictor for many parasitic species. In particular we have found that the LEV-8 subunit which is involved in levamisole sensitivity in C. elegans, is not present in many levamisole-sensitive parasitic species. Here we used heterologous expression systems and gene silencing to provide the functional in vivo demonstration that the ACR-8 subunit, which is not an essential component of the levamisole receptor in C. elegans, has a critical role in the levamisole sensitivity of parasitic nematodes. This has important significance for understanding the molecular targets of cholinergic anthelmintics and addresses the increasing challenge of drug resistance.
Collapse
Affiliation(s)
| | | | | | - Anna Crisford
- Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Elise Courtot
- ISP, INRA, Université Tours, UMR1282, Nouzilly, France
| | | | | | - Thomas Duguet
- Institute of Parasitology, McGill University, Macdonald Campus, Ste. Anne de Bellevue, Québec, Canada
| | - Vincent O’Connor
- Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | | | - Barbara Reaves
- Department of Infectious Disease & Center for Tropical and Emerging Global Disease, University of Georgia, Athens, GA, United States of America
| | - Adrian J. Wolstenholme
- Department of Infectious Disease & Center for Tropical and Emerging Global Disease, University of Georgia, Athens, GA, United States of America
| | - Robin N. Beech
- Institute of Parasitology, McGill University, Macdonald Campus, Ste. Anne de Bellevue, Québec, Canada
| | - Lindy Holden-Dye
- Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Cedric Neveu
- ISP, INRA, Université Tours, UMR1282, Nouzilly, France
- * E-mail:
| |
Collapse
|
4
|
Rougon-Cardoso A, Flores-Ponce M, Ramos-Aboites HE, Martínez-Guerrero CE, Hao YJ, Cunha L, Rodríguez-Martínez JA, Ovando-Vázquez C, Bermúdez-Barrientos JR, Abreu-Goodger C, Chavarría-Hernández N, Simões N, Montiel R. The genome, transcriptome, and proteome of the nematode Steinernema carpocapsae: evolutionary signatures of a pathogenic lifestyle. Sci Rep 2016; 6:37536. [PMID: 27876851 PMCID: PMC5120318 DOI: 10.1038/srep37536] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 10/31/2016] [Indexed: 11/13/2022] Open
Abstract
The entomopathogenic nematode Steinernema carpocapsae has been widely used for the biological control of insect pests. It shares a symbiotic relationship with the bacterium Xenorhabdus nematophila, and is emerging as a genetic model to study symbiosis and pathogenesis. We obtained a high-quality draft of the nematode’s genome comprising 84,613,633 bp in 347 scaffolds, with an N50 of 1.24 Mb. To improve annotation, we sequenced both short and long RNA and conducted shotgun proteomic analyses. S. carpocapsae shares orthologous genes with other parasitic nematodes that are absent in the free-living nematode C. elegans, it has ncRNA families that are enriched in parasites, and expresses proteins putatively associated with parasitism and pathogenesis, suggesting an active role for the nematode during the pathogenic process. Host and parasites might engage in a co-evolutionary arms-race dynamic with genes participating in their interaction showing signatures of positive selection. Our analyses indicate that the consequence of this arms race is better characterized by positive selection altering specific functions instead of just increasing the number of positively selected genes, adding a new perspective to these co-evolutionary theories. We identified a protein, ATAD-3, that suggests a relevant role for mitochondrial function in the evolution and mechanisms of nematode parasitism.
Collapse
Affiliation(s)
- Alejandra Rougon-Cardoso
- Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Km 9.6 Libramiento Norte Carretera Irapuato-León, C.P. 36821 Irapuato, Guanajuato, Mexico.,Laboratory of Agrogenomic Sciences, Universidad Nacional Autónoma de México (UNAM), ENES-León, 37684, León, Guanajuato, Mexico
| | - Mitzi Flores-Ponce
- Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Km 9.6 Libramiento Norte Carretera Irapuato-León, C.P. 36821 Irapuato, Guanajuato, Mexico
| | - Hilda Eréndira Ramos-Aboites
- Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Km 9.6 Libramiento Norte Carretera Irapuato-León, C.P. 36821 Irapuato, Guanajuato, Mexico
| | - Christian Eduardo Martínez-Guerrero
- Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Km 9.6 Libramiento Norte Carretera Irapuato-León, C.P. 36821 Irapuato, Guanajuato, Mexico
| | - You-Jin Hao
- College of Life Science, ChongQing Normal University, ChongQing 401331, China
| | - Luis Cunha
- Cardiff School of Biosciences, Cardiff University, Park Place, Sir Martin Evans Building, Museum Avenue, Cardiff, Wales CF10 3US, UK
| | | | - Cesaré Ovando-Vázquez
- Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Km 9.6 Libramiento Norte Carretera Irapuato-León, C.P. 36821 Irapuato, Guanajuato, Mexico
| | - José Roberto Bermúdez-Barrientos
- Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Km 9.6 Libramiento Norte Carretera Irapuato-León, C.P. 36821 Irapuato, Guanajuato, Mexico
| | - Cei Abreu-Goodger
- Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Km 9.6 Libramiento Norte Carretera Irapuato-León, C.P. 36821 Irapuato, Guanajuato, Mexico
| | - Norberto Chavarría-Hernández
- Cuerpo Académico de Biotecnología Agroalimentaria. Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo. Av. Universidad Km 1, Rancho Universitario, Tulancingo de Bravo, Hidalgo, C.P. 43600, Mexico
| | - Nelson Simões
- CIRN/Departamento de Biologia, Universidade dos Açores, Rua Mãe de Deus, 13. 9500-321 Ponta Delgada. S. Miguel-Açores, Portugal
| | - Rafael Montiel
- Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Km 9.6 Libramiento Norte Carretera Irapuato-León, C.P. 36821 Irapuato, Guanajuato, Mexico
| |
Collapse
|
5
|
Stroehlein AJ, Young ND, Hall RS, Korhonen PK, Hofmann A, Sternberg PW, Jabbar A, Gasser RB. CAP protein superfamily members in Toxocara canis. Parasit Vectors 2016; 9:360. [PMID: 27342979 PMCID: PMC4921028 DOI: 10.1186/s13071-016-1642-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 06/13/2016] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Proteins of the cysteine-rich secretory proteins, antigen 5 and pathogenesis-related 1 (CAP) superfamily are recognized or proposed to play roles in parasite development and reproduction, and in modulating host immune attack and infection processes. However, little is known about these proteins for most parasites. RESULTS In the present study, we explored CAP proteins of Toxocara canis, a socioeconomically important zoonotic roundworm. To do this, we mined and curated transcriptomic and genomic data, predicted and curated full-length protein sequences (n = 28), conducted analyses of these data and studied the transcription of respective genes in different developmental stages of T. canis. In addition, based on information available for Caenorhabditis elegans, we inferred that selected genes (including lon-1, vap-1, vap-2, scl-1, scl-8 and scl-11 orthologs) of T. canis and their interaction partners likely play central roles in this parasite's development and/or reproduction via TGF-beta and/or insulin-like signaling pathways, or via host interactions. CONCLUSION In conclusion, this study could provide a foundation to guide future studies of CAP proteins of T. canis and related parasites, and might assist in finding new interventions against diseases caused by these parasites.
Collapse
Affiliation(s)
- Andreas J Stroehlein
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia.
| | - Neil D Young
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Ross S Hall
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Pasi K Korhonen
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Andreas Hofmann
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia.,Structural Chemistry Program, Eskitis Institute, Griffith University, Brisbane, Australia
| | - Paul W Sternberg
- HHMI and Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Abdul Jabbar
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
6
|
Stroehlein AJ, Young ND, Korhonen PK, Jabbar A, Hofmann A, Sternberg PW, Gasser RB. The Haemonchus contortus kinome--a resource for fundamental molecular investigations and drug discovery. Parasit Vectors 2015; 8:623. [PMID: 26644012 PMCID: PMC4672506 DOI: 10.1186/s13071-015-1231-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 11/25/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Protein kinases regulate a plethora of essential signalling and other biological pathways in all eukaryotic organisms, but very little is known about them in most parasitic nematodes. METHODS Here, we defined, for the first time, the entire complement of protein kinases (kinome) encoded in the barber's pole worm (Haemonchus contortus) through an integrated analysis of transcriptomic and genomic datasets using an advanced bioinformatic workflow. RESULTS We identified, curated and classified 432 kinases representing ten groups, 103 distinct families and 98 subfamilies. A comparison of the kinomes of H. contortus and Caenorhabditis elegans (a related, free-living nematode) revealed considerable variation in the numbers of casein kinases, tyrosine kinases and Ca(2+)/calmodulin-dependent protein kinases, which likely relate to differences in biology, habitat and life cycle between these worms. Moreover, a suite of kinase genes was selectively transcribed in particular developmental stages of H. contortus, indicating central roles in developmental and reproductive processes. In addition, using a ranking system, drug targets (n = 13) and associated small-molecule effectors (n = 1517) were inferred. CONCLUSIONS The H. contortus kinome will provide a useful resource for fundamental investigations of kinases and signalling pathways in this nematode, and should assist future anthelmintic discovery efforts; this is particularly important, given current drug resistance problems in parasitic nematodes.
Collapse
Affiliation(s)
- Andreas J Stroehlein
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia.
| | - Neil D Young
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia.
| | - Pasi K Korhonen
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia.
| | - Abdul Jabbar
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia.
| | - Andreas Hofmann
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia.
- Structural Chemistry Program, Eskitis Institute, Griffith University, Brisbane, Australia.
| | - Paul W Sternberg
- HHMI, Division of Biology, California Institute of Technology, Pasadena, CA, USA.
| | - Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
7
|
Courtot E, Charvet CL, Beech RN, Harmache A, Wolstenholme AJ, Holden-Dye L, O’Connor V, Peineau N, Woods DJ, Neveu C. Functional Characterization of a Novel Class of Morantel-Sensitive Acetylcholine Receptors in Nematodes. PLoS Pathog 2015; 11:e1005267. [PMID: 26625142 PMCID: PMC4666645 DOI: 10.1371/journal.ppat.1005267] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 10/20/2015] [Indexed: 01/06/2023] Open
Abstract
Acetylcholine receptors are pentameric ligand-gated channels involved in excitatory neuro-transmission in both vertebrates and invertebrates. In nematodes, they represent major targets for cholinergic agonist or antagonist anthelmintic drugs. Despite the large diversity of acetylcholine-receptor subunit genes present in nematodes, only a few receptor subtypes have been characterized so far. Interestingly, parasitic nematodes affecting human or animal health possess two closely related members of this gene family, acr-26 and acr-27 that are essentially absent in free-living or plant parasitic species. Using the pathogenic parasitic nematode of ruminants, Haemonchus contortus, as a model, we found that Hco-ACR-26 and Hco-ACR-27 are co-expressed in body muscle cells. We demonstrated that co-expression of Hco-ACR-26 and Hco-ACR-27 in Xenopus laevis oocytes led to the functional expression of an acetylcholine-receptor highly sensitive to the anthelmintics morantel and pyrantel. Importantly we also reported that ACR-26 and ACR-27, from the distantly related parasitic nematode of horses, Parascaris equorum, also formed a functional acetylcholine-receptor highly sensitive to these two drugs. In Caenorhabditis elegans, a free-living model nematode, we demonstrated that heterologous expression of the H. contortus and P. equorum receptors drastically increased its sensitivity to morantel and pyrantel, mirroring the pharmacological properties observed in Xenopus oocytes. Our results are the first to describe significant molecular determinants of a novel class of nematode body wall muscle AChR.
Collapse
Affiliation(s)
- Elise Courtot
- INRA, UMR1282 Infectiologie et Santé Publique, Nouzilly, France
- Université de François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, Tours, France
| | - Claude L. Charvet
- INRA, UMR1282 Infectiologie et Santé Publique, Nouzilly, France
- Université de François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, Tours, France
| | - Robin N. Beech
- INRA, UMR1282 Infectiologie et Santé Publique, Nouzilly, France
- Institute of Parasitology, McGill University, Macdonald Campus, Sainte Anne de Bellevue, Québec, Canada
| | - Abdallah Harmache
- INRA, UMR1282 Infectiologie et Santé Publique, Nouzilly, France
- Université de François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, Tours, France
| | - Adrian J. Wolstenholme
- Department of Infectious Disease and Center for Tropical and Emerging Global Disease, University of Georgia, Athens, Georgia, United States of America
| | - Lindy Holden-Dye
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Vincent O’Connor
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Nicolas Peineau
- Université François Rabelais de Tours, Département de physiologie animale, Tours, France
| | - Debra J. Woods
- Veterinary Medicine Research and Development, Zoetis LLC, Kalamazoo, Michigan, United States of America
| | - Cedric Neveu
- INRA, UMR1282 Infectiologie et Santé Publique, Nouzilly, France
- Université de François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, Tours, France
- * E-mail:
| |
Collapse
|
8
|
The barber's pole worm CAP protein superfamily--A basis for fundamental discovery and biotechnology advances. Biotechnol Adv 2015; 33:1744-54. [PMID: 26239368 DOI: 10.1016/j.biotechadv.2015.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/02/2015] [Accepted: 07/11/2015] [Indexed: 01/22/2023]
Abstract
Parasitic worm proteins that belong to the cysteine-rich secretory proteins, antigen 5 and pathogenesis-related 1 (CAP) superfamily are proposed to play key roles in the infection process and the modulation of immune responses in host animals. However, there is limited information on these proteins for most socio-economically important worms. Here, we review the CAP protein superfamily of Haemonchus contortus (barber's pole worm), a highly significant parasitic roundworm (order Strongylida) of small ruminants. To do this, we mined genome and transcriptomic datasets, predicted and curated full-length amino acid sequences (n=45), undertook systematic phylogenetic analyses of these data and investigated transcription throughout the life cycle of H. contortus. We inferred functions for selected Caenorhabditis elegans orthologs (including vap-1, vap-2, scl-5 and lon-1) based on genetic networking and by integrating data and published information, and were able to infer that a subset of orthologs and their interaction partners play pivotal roles in growth and development via the insulin-like and/or the TGF-beta signalling pathways. The identification of the important and conserved growth regulator LON-1 led us to appraise the three-dimensional structure of this CAP protein by comparative modelling. This model revealed the presence of different topological moieties on the canonical fold of the CAP domain, which coincide with an overall charge separation as indicated by the electrostatic surface potential map. These observations suggest the existence of separate sites for effector binding and receptor interactions, and thus support the proposal that these worm molecules act in similar ways as venoms act as ligands for chemokine receptors or G protein-coupled receptor effectors. In conclusion, this review should guide future molecular studies of these molecules, and could support the development of novel interventions against haemonchosis.
Collapse
|
9
|
Issouf M, Guégnard F, Koch C, Le Vern Y, Blanchard-Letort A, Che H, Beech RN, Kerboeuf D, Neveu C. Haemonchus contortus P-glycoproteins interact with host eosinophil granules: a novel insight into the role of ABC transporters in host-parasite interaction. PLoS One 2014; 9:e87802. [PMID: 24498376 PMCID: PMC3912070 DOI: 10.1371/journal.pone.0087802] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 12/30/2013] [Indexed: 01/21/2023] Open
Abstract
Eosinophils are one of the major mammalian effector cells encountered by helminths during infection. In the present study, we investigated the effects of eosinophil granule exposure on the sheep parasitic nematode Haemonchus contortus as a model. H. contortus eggs exposed to eosinophil granule products showed increased rhodamine 123 efflux and this effect was not due to loss of egg integrity. Rh123 is known to be a specific P-glycoprotein (Pgp) substrate and led to the hypothesis that in addition to their critical role in xenobiotic resistance, helminth ABC transporters such as Pgp may also be involved in the detoxification of host cytotoxic products. We showed by quantitative RT-PCR that, among nine different H. contortus Pgp genes, Hco-pgp-3, Hco-pgp-9.2, Hco-pgp-11 and, Hco-pgp-16 were specifically up-regulated in parasitic life stages suggesting a potential involvement of these Pgps in the detoxification of eosinophil granule products. Using exsheathed L3 larvae that mimic the first life stage in contact with the host, we demonstrated that eosinophil granules induced a dose dependent overexpression of Hco-pgp-3 and the closely related Hco-pgp-16. Taken together, our results provide the first evidence that a subset of helminth Pgps interact with, and could be involved in the detoxification of, host products. This opens the way for further studies aiming to explore the role of helminth Pgps in the host-parasite interaction, including evasion of the host immune response.
Collapse
Affiliation(s)
- Mohamed Issouf
- INRA, UMR1282 Infectiologie et Santé Publique, Nouzilly, France
- Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, Tours, France
| | - Fabrice Guégnard
- INRA, UMR1282 Infectiologie et Santé Publique, Nouzilly, France
- Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, Tours, France
| | - Christine Koch
- INRA, UMR1282 Infectiologie et Santé Publique, Nouzilly, France
- Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, Tours, France
| | - Yves Le Vern
- INRA, UMR1282 Infectiologie et Santé Publique, Nouzilly, France
- Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, Tours, France
| | - Alexandra Blanchard-Letort
- INRA, UMR1282 Infectiologie et Santé Publique, Nouzilly, France
- Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, Tours, France
| | - Hua Che
- Institute of Parasitology, McGill University, Quebec, Canada
| | - Robin N. Beech
- INRA, UMR1282 Infectiologie et Santé Publique, Nouzilly, France
- Institute of Parasitology, McGill University, Quebec, Canada
| | - Dominique Kerboeuf
- INRA, UMR1282 Infectiologie et Santé Publique, Nouzilly, France
- Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, Tours, France
| | - Cedric Neveu
- INRA, UMR1282 Infectiologie et Santé Publique, Nouzilly, France
- Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, Tours, France
- * E-mail:
| |
Collapse
|
10
|
Tsotetsi AM, Njiro S, Katsande TC, Moyo G, Baloyi F, Mpofu J. Prevalence of gastrointestinal helminths and anthelmintic resistance on small-scale farms in Gauteng Province, South Africa. Trop Anim Health Prod 2012; 45:751-61. [DOI: 10.1007/s11250-012-0285-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2012] [Indexed: 10/27/2022]
|