1
|
Masimov R, Wasan EK. Chitosan non-particulate vaccine delivery systems. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2024; 27:12921. [PMID: 39114808 PMCID: PMC11303186 DOI: 10.3389/jpps.2024.12921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024]
Abstract
Chitosan is an extensively used polymer for drug delivery applications in particulate and non-particulate carriers. Chitosan-based particulate, nano-, and microparticle, carriers have been the most extensively studied for the delivery of therapeutics and vaccines. However, chitosan has also been used in vaccine applications for its adjuvant properties in various hydrogels or as a carrier coating material. The focus of this review will be on the usage of chitosan as a vaccine adjuvant based on its intrinsic immunogenicity; the various forms of chitosan-based non-particulate delivery systems such as thermosensitive hydrogels, microneedles, and conjugates; and the advantages of its role as a coating material for vaccine carriers.
Collapse
Affiliation(s)
| | - Ellen K. Wasan
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
2
|
Li H, Liang X, Sun W, Zhuang B, Cao Y, Zhang J, Shen J, Wang Y, Yu L. Immunological evaluation of a recombinant vaccine delivered with an analogous hyaluronic acid chitosan nanoparticle-hydrogel against Toxoplasma gondii in mice. Microb Pathog 2023; 179:106092. [PMID: 37003502 DOI: 10.1016/j.micpath.2023.106092] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
BACKGROUND Toxoplasma gondii (T. gondii) is not only a threat to the public health but it also poses adverse impacts on the livestock industry. This study aimed to develop a recombinant vaccine composed of T. gondii microneme protein 6 (TgMIC6) and T. gondii rhoptry protein 18 (TgROP18).The vaccine was delivered with a novel vector, named analogous hyaluronic acid chitosan nanoparticle-hydrogel (AHACNP-HG) and its immune protection was evaluated. METHODS The recombinant MIC6 and ROP18 proteins were obtained by affinity chromatography and loaded onto AHACNP-HG by magnetic stirring. The characterizations of AHACNP-HG were investigated, including its structure, rheological property, nanoparticle size and zeta potential, its ability to release protein in vitro and toxicology in vivo. The immunological and anti-infection effects of AHACNP-HG/rMIC6/rROP18 were examined in the mice model. RESULTS AHACNP-HG presented a characteristic of composite system and possessed biosecurity with excellent protein control-release property. AHACNP-HG/rMIC6/rROP18 vaccine enhanced a mixed Th1/Th2 cellular immune response accompanied by an increased level of the cytokines, IFN-γ and IL-10. It also provoked a stronger humoral immune response. Additionally, after challenge with T. gondii tachyzoite, AHACNP-HG/rMIC6/rROP18 inoculation prolonged the survival time of mice. CONCLUSION Our data indicated that mixed rMIC6 and rROP18 induced strong immune response and played a certain protective role in controlling T. gondii infection, and the novel adjuvant AHACNP-HG improved modestly some immunogenicity properties in mouse model, which indicated that it can be used as a novel delivery system in vaccine development.
Collapse
Affiliation(s)
- Hu Li
- Department of Microbiology and Parasitology, Anhui Province Key Laboratory of Microbiology and Parasitology, The Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China; Department of Clinical Laboratory, Taihe People's Hospital, Fuyang, 236600, China.
| | - Xiao Liang
- School of Life Sciences, Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, 230032, China.
| | - Wenze Sun
- Department of Microbiology and Parasitology, Anhui Province Key Laboratory of Microbiology and Parasitology, The Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| | - Baocan Zhuang
- Department of Microbiology and Parasitology, Anhui Province Key Laboratory of Microbiology and Parasitology, The Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| | - Yuanyuan Cao
- Department of Microbiology and Parasitology, Anhui Province Key Laboratory of Microbiology and Parasitology, The Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| | - Junling Zhang
- Department of Microbiology and Parasitology, Anhui Province Key Laboratory of Microbiology and Parasitology, The Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| | - Jilong Shen
- Department of Microbiology and Parasitology, Anhui Province Key Laboratory of Microbiology and Parasitology, The Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| | - Yongzhong Wang
- School of Life Sciences, Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, 230032, China.
| | - Li Yu
- Department of Microbiology and Parasitology, Anhui Province Key Laboratory of Microbiology and Parasitology, The Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
3
|
Multi-Omic Profiling, Structural Characterization, and Potent Inhibitor Screening of Evasion-Related Proteins of a Parasitic Nematode, Haemonchus contortus, Surviving Vaccine Treatment. Biomedicines 2023; 11:biomedicines11020411. [PMID: 36830947 PMCID: PMC9952990 DOI: 10.3390/biomedicines11020411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/15/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023] Open
Abstract
The emergence of drug-resistant parasitic nematodes in both humans and livestock calls for development of alternative and cost-effective control strategies. Barbervax® is the only registered vaccine for the economically important ruminant strongylid Haemonchus contortus. In this study, we compared the microbiome, genome-wide diversity, and transcriptome of H. contortus adult male populations that survived vaccination with an experimental vaccine after inoculation in sheep. Our genome-wide SNP analysis revealed 16 putative candidate vaccine evasion genes. However, we did not identify any evidence for changes in microbial community profiling based on the 16S rRNA gene sequencing results of the vaccine-surviving parasite populations. A total of fifty-eight genes were identified as significantly differentially expressed, with six genes being long non-coding (lnc) RNAs and none being putative candidate SNP-associated genes. The genes that highly upregulated in surviving parasites from vaccinated animals were associated with GO terms belonging to predominantly molecular functions and a few biological processes that may have facilitated evasion or potentially lessened the effect of the vaccine. These included five targets: astacin (ASTL), carbonate dehydratase (CA2), phospholipase A2 (PLA2), glutamine synthetase (GLUL), and fatty acid-binding protein (FABP3). Our tertiary structure predictions and modelling analyses were used to perform in silico searches of all published and commercially available inhibitor molecules or substrate analogs with potential broad-spectrum efficacy against nematodes of human and veterinary importance.
Collapse
|
4
|
Malek-Khatabi A, Tabandeh Z, Nouri A, Mozayan E, Sartorius R, Rahimi S, Jamaledin R. Long-Term Vaccine Delivery and Immunological Responses Using Biodegradable Polymer-Based Carriers. ACS APPLIED BIO MATERIALS 2022; 5:5015-5040. [PMID: 36214209 DOI: 10.1021/acsabm.2c00638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Biodegradable polymers are largely employed in the biomedical field, ranging from tissue regeneration to drug/vaccine delivery. The biodegradable polymers are highly biocompatible and possess negligible toxicity. In addition, biomaterial-based vaccines possess adjuvant properties, thereby enhancing immune responses. This Review introduces the use of different biodegradable polymers and their degradation mechanism. Different kinds of vaccines, as well as the interaction between the carriers with the immune system, then are highlighted. Natural and synthetic biodegradable micro-/nanoplatforms, hydrogels, and scaffolds for local or targeted and controlled vaccine release are subsequently discussed.
Collapse
Affiliation(s)
- Atefeh Malek-Khatabi
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Zahra Tabandeh
- Department of Physical Chemistry, Faculty of Chemistry, University of Kashan, Kashan 8731753153, Iran
| | - Akram Nouri
- School of Chemistry, College of Science, University of Tehran, Tehran 141556455, Iran
| | - Elaheh Mozayan
- Department of Cell and Molecular Biology, University of Kashan, Kashan 8731753153, Iran
| | | | - Shahnaz Rahimi
- School of Chemistry, College of Science, University of Tehran, Tehran 141556455, Iran
| | - Rezvan Jamaledin
- Department of Chemical, Materials & Industrial Production Engineering, University of Naples Federico II, Naples 80125, Italy
| |
Collapse
|
5
|
|
6
|
Wang L, Gao J, Lan X, Zhao H, Shang X, Tian F, Wen H, Ding J, Luo L, Ma X. Identification of combined T-cell and B-cell reactive Echinococcus granulosus 95 antigens for the potential development of a multi-epitope vaccine. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:652. [PMID: 31930053 DOI: 10.21037/atm.2019.10.87] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Background Identification of combined T-cell and B-cell reactive Eg95 antigens for the potential development of a multi-epitope vaccine against Echinococcus granulosus (EG), the causative agent of cystic echinococcosis (CE). Methods This study involved the recombinant expression of Eg95 along with associated immune rabbit antiserum preparation. Bioinformatics technology was used to facilitate the analysis of Eg95 molecules. PCR was subsequently used to amplify genetic sequences of the epitopes encoding the T-cell and B-cell reactive peptide fragments. SDS-PAGE was used to assess the expression levels of three proteins. Eg95 serum and patient antiserum, which were assessed using Western blot in order to identify suitable antigenic epitope peptides. ELISA detection assay facilitated comparison of the immune reactivity of the short peptide epitopes. The assay results could be used to determine an EG epitope-based vaccine candidate list from suitably reactive Eg95 epitopes. Results Eg95 molecules have 3 T-B table. The phage display systems were successfully built using the M13KE carrier. Expression of the three fusion protein peptides were detected. Western blot showed Eg95 antiserum against EG facilitated identification of the three T-cell and B-cell reactive epitopes. After the reaction intensities analyzed by the ELISA, both of the short peptide epitopes Eg95-2 and Eg95-3 showed strong signal strength and associated antigenicity when combined with patient serum and rabbit anti-rEg95 serum. Conclusions This study used bioinformatics methods to construct successfully a T-cell and B-cell epitope phage display system for the Eg95 antigen from EG. The two epitopes of Eg95-2 and Eg95-3 demonstrated strong antigenicity with potential applications for peptide vaccine development.
Collapse
Affiliation(s)
- Liang Wang
- Clinical Medical Research Institute, State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, China
| | - Jian Gao
- College of Basic Medicine of Xinjiang Medical University, Urumqi 830011, China
| | - Xi Lan
- Clinical Medical Research Institute, State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, China.,Shenzhen Hospital, Southern Medical University, Shenzhen 518000, China
| | - Hui Zhao
- Clinical Medical Research Institute, State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, China
| | - Xiaoqian Shang
- Clinical Medical Research Institute, State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, China
| | - Fengming Tian
- Clinical Medical Research Institute, State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, China
| | - Hao Wen
- Clinical Medical Research Institute, State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, China
| | - Jianbing Ding
- Clinical Medical Research Institute, State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, China.,College of Basic Medicine of Xinjiang Medical University, Urumqi 830011, China
| | - Li Luo
- Clinical Medical Research Institute, State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, China
| | - Xiumin Ma
- Clinical Medical Research Institute, State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, China.,College of Basic Medicine of Xinjiang Medical University, Urumqi 830011, China
| |
Collapse
|
7
|
Gholizadeh H, Cheng S, Pozzoli M, Messerotti E, Traini D, Young P, Kourmatzis A, Ong HX. Smart thermosensitive chitosan hydrogel for nasal delivery of ibuprofen to treat neurological disorders. Expert Opin Drug Deliv 2019; 16:453-466. [PMID: 30884987 DOI: 10.1080/17425247.2019.1597051] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND The in-situ gelation of thermosensitive nasal formulations with desirable spray characteristics at room temperature and ability to undergo a phase change to a semi-solid state with mucoadhesive behavior at physiological temperature has the potential to efficiently deliver therapeutics to brain. However, their application in nasal spray generation with favorable characteristics has not been investigated. METHODS Thermosensitive chitosan (CS)-based formulations with different viscosities were prepared for intranasal delivery of ibuprofen using CS of various molecular weights. The formulation developed was optimized with regards to its physicochemical, rheological, biological properties and the generated aerosol characteristics. RESULTS The formulations showed rapid gelation (4-7 min) at 30-35°C, which lies in the human nasal cavity temperature spectrum. The decrease in CS molecular weight to 110-150 kDa led to generation of optimum spray with lower Dv50, wider spray area, and higher surface area coverage. This formulation also showed improved ibuprofen solubility that is approximately 100× higher than its intrinsic aqueous solubility, accelerated ibuprofen transport across human nasal epithelial cells and transient modulation of tight junctions. CONCLUSIONS A thermosensitive CS-based formulation has been successfully developed with suitable rheological properties, aerosol performance and biological properties that is beneficial for nose-to-brain drug delivery.
Collapse
Affiliation(s)
- Hanieh Gholizadeh
- a School of Engineering , Macquarie University , Sydney , Australia.,b Respiratory Technology, Woolcock Institute of Medical Research, Discipline of Pharmacology , Faculty of Medicine and Health , Sydney , Australia
| | - Shaokoon Cheng
- a School of Engineering , Macquarie University , Sydney , Australia
| | - Michele Pozzoli
- b Respiratory Technology, Woolcock Institute of Medical Research, Discipline of Pharmacology , Faculty of Medicine and Health , Sydney , Australia
| | - Elisa Messerotti
- b Respiratory Technology, Woolcock Institute of Medical Research, Discipline of Pharmacology , Faculty of Medicine and Health , Sydney , Australia.,c Department of Drug Sciences , University of Pavia , Pavia , Italy
| | - Daniela Traini
- b Respiratory Technology, Woolcock Institute of Medical Research, Discipline of Pharmacology , Faculty of Medicine and Health , Sydney , Australia
| | - Paul Young
- b Respiratory Technology, Woolcock Institute of Medical Research, Discipline of Pharmacology , Faculty of Medicine and Health , Sydney , Australia
| | - Agisilaos Kourmatzis
- d School of Aerospace, Mechanical and Mechatronic Engineering , The University of Sydney , Sydney , Australia
| | - Hui Xin Ong
- b Respiratory Technology, Woolcock Institute of Medical Research, Discipline of Pharmacology , Faculty of Medicine and Health , Sydney , Australia
| |
Collapse
|
8
|
Mu M, Li X, Tong A, Guo G. Multi-functional chitosan-based smart hydrogels mediated biomedical application. Expert Opin Drug Deliv 2019; 16:239-250. [PMID: 30753086 DOI: 10.1080/17425247.2019.1580691] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Min Mu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, R. P. China
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, R. P. China
- Collaborative Innovation Center for Biotherapy, Chengdu, R. P. China
| | - Xiaoling Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, R. P. China
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, R. P. China
- Collaborative Innovation Center for Biotherapy, Chengdu, R. P. China
| | - Aiping Tong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, R. P. China
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, R. P. China
- Collaborative Innovation Center for Biotherapy, Chengdu, R. P. China
| | - Gang Guo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, R. P. China
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, R. P. China
- Collaborative Innovation Center for Biotherapy, Chengdu, R. P. China
| |
Collapse
|