1
|
Mei R, Shi Y, Li X, Li Y, Yang Y, Cai L, Ding Z. Detoxification Mechanism of Hinokitiol by Alternaria alternata and Its Application in Agricultural Antifungal Control. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21495-21502. [PMID: 39298264 DOI: 10.1021/acs.jafc.4c06242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Alternaria alternata is a common plant pathogen that can infect crops and reduce their production. In this work, an antagonism experiment between A. alternata and the essential oil of arborvitae (Platycladus orientalis) was performed, and it was proven that A. alternata had developed resistance to this plant-derived fungicide. A. alternata facilitated the biotransformation of hinokitiol (1), the main antifungal compound in the essential oil of arborvitae, into (R)-2-hydroxy-β-methylbenzeneethanol (2), which does not have antifungal activity against A. alternata. This biotransformation is an unusual ring-contraction reaction that was verified to be catalyzed by P450 enzyme hydroxylation and Baeyer-Villiger oxidation. In addition, the P450 enzyme inhibitors 1-aminobenzotriazole and piperonyl butoxide effectively prevented the destruction of the hinokitiol structure by A. alternata, and the combined use of these P450 enzyme inhibitors significantly increased the antifungal activity of hinokitiol. This work provides a theoretical reference for the further development of botanical fungicides.
Collapse
Affiliation(s)
- Ruifeng Mei
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Yaxian Shi
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, P. R. China
| | - Xiya Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Yani Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Yabin Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Le Cai
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Zhongtao Ding
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, P. R. China
| |
Collapse
|
2
|
Perrot T, Bonmatin JM, Jactel H, Leboulanger C, Goffaux R, Gaba S. Temporal and spatial trends of imidacloprid-related hazards in France. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173950. [PMID: 38879021 DOI: 10.1016/j.scitotenv.2024.173950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/20/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
Neonicotinoids are the top-selling insecticides worldwide. Because of their method of use, mainly to coat seeds, neonicotinoids have been found to widely contaminate the environment. Their high toxicity has been shown to be a major concern in terms of impact on biodiversity, and the use of these insecticides has been associated with population declines of species in different countries. Despite the widespread recognition of the risk of neonicotinoids to biodiversity, their temporal and spatial use remains poorly known in many countries. Yet this information is essential to address the potential impacts of these pesticides on biodiversity and to inform measures to establish protected areas or biodiversity restoration. The present study relied a large publicly available dataset to characterise the temporal and spatial use in France of imidacloprid, the most widely used neonicotinoid worldwide, as well as analysed water contamination surveys between 2005 and 2022 to assess the contamination of the environment. The results show that imidacloprid was the main neonicotinoid used in France over the study period. This use was spatially structured, with higher use in northern and western France, particularly related to cereal and beet crops area. The water contamination survey indicated that imidacloprid has widely contaminated the environment and consequently increased the risk to biodiversity, especially in counties crossed by the Loire, Seine and Vilaine rivers. This risk increased between 2005 and 2018 due to the higher use of imidacloprid and decreased sharply after 2018 due to its ban, although it was reauthorized by derogation for sugar beet in 2021. This study is the first assessment of imidacloprid pressure on biodiversity in France and shows the spatial and temporal correlation between agricultural practices and the freshwater contamination level. These results will help to identify priority areas for mitigation and restoration measures.
Collapse
Affiliation(s)
- Thomas Perrot
- Fondation pour la Recherche sur la Biodiversité, Centre de Synthèse et d'Analyse sur la Biodiversité (FRB-Cesab), la Maison des Océans, 195 rue Saint-Jacques, Paris, France.
| | - Jean-Marc Bonmatin
- Centre de biophysique moléculaire (CNRS), rue Charles Sadron, 45071 Orléans Cedex 02, France.
| | - Hervé Jactel
- INRAE, University of Bordeaux, Biogeco, 33610 Cestas, France
| | | | - Robin Goffaux
- Fondation pour la Recherche sur la Biodiversité, Centre de Synthèse et d'Analyse sur la Biodiversité (FRB-Cesab), la Maison des Océans, 195 rue Saint-Jacques, Paris, France
| | - Sabrina Gaba
- Centre d'Etudes Biologiques de Chizé, USC 1339 CNRS INRAE Université de La Rochelle, 79360 Villiers en Bois, France
| |
Collapse
|
3
|
Tsotesti PAA, Mazibuko SS, Nyoka NWK, Mnkandla SM, Fouché T, Otomo PV. Behavioural changes and flight response of a mosquito (Culicidae) and an earthworm (Lumbricidae), respectively, after exposure to imidacloprid. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:367-375. [PMID: 35001259 DOI: 10.1007/s10646-021-02513-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
A major point of concern in ecotoxicology is the effects of pesticides on nontarget organisms. This can impact the ecological role played by certain beneficial species in nature. Regarding neonicotinoid insecticides such as imidacloprid (IMI), several measures, including limited trade, restrictive use, and ban have been implemented in Europe and the USA but not globally. The goal of our study was to evaluate the potential risk of this still widely used agrochemical on the behaviour of mosquito larvae (Culicidae) and the escape behaviour of earthworms (Lumbricidae). Changes in breathing, swimming and resting were recorded in mosquitoes postexposure to 0, 1 and 2 mg IMI/L for 10 min. Earthworms were topically exposed in water for 2 minutes to 0, 5, 10 and 20 mg IMI/L. The escape behaviour (initial escape distance and speed) of the earthworms were recorded. In culicids, resting particularly was significantly increased by the exposure to imidacloprid (p < 0.05). In earthworms, the initial escape distance was statistically longer (p < 0.05) when fleeing from the 5 mg IMI/L solution than the solutions with the two highest concentrations. The worms exposed to the 5 mg IMI/L reacted faster than those exposed to the higher concentrations, which explained the long distance covered in the same amount of time. These results point to the relatively quick onset of the neurotoxic effects of imidacloprid, crippling earthworms and altering the buoyancy of mosquito larvae. The ecological consequences of these findings on the completion of life cycles and the survival of these species in nature are yet to be established.
Collapse
Affiliation(s)
- Palesa Andile Adrena Tsotesti
- Ecotoxicology Research Group, Department of Zoology and Entomology, Faculty of Natural and Agricultural Sciences, University of the Free State, QwaQwa, South Africa
| | - Simangele Sandra Mazibuko
- Ecotoxicology Research Group, Department of Zoology and Entomology, Faculty of Natural and Agricultural Sciences, University of the Free State, QwaQwa, South Africa
- Department of Environmental Science, University of South Africa, Florida, South Africa
| | - Ngitheni Winnie-Kate Nyoka
- Ecotoxicology Research Group, Department of Zoology and Entomology, Faculty of Natural and Agricultural Sciences, University of the Free State, QwaQwa, South Africa.
- Afromontane Research Unit, Phuthaditjhaba, Free State, Republic of South Africa.
| | - Sanele Michelle Mnkandla
- Ecotoxicology Research Group, Department of Zoology and Entomology, Faculty of Natural and Agricultural Sciences, University of the Free State, QwaQwa, South Africa
- Ecotoxicology Research Group, Department of Applied Biology and Biochemistry, National University of Science and Technology, Bulawayo, Zimbabwe
| | - Tanya Fouché
- Department of Environmental Science, University of South Africa, Florida, South Africa
| | - Patricks Voua Otomo
- Ecotoxicology Research Group, Department of Zoology and Entomology, Faculty of Natural and Agricultural Sciences, University of the Free State, QwaQwa, South Africa
- Afromontane Research Unit, Phuthaditjhaba, Free State, Republic of South Africa
| |
Collapse
|