1
|
Fernandez-Baca MV, Castellanos-Gonzalez A, Ore RA, Alccacontor-Munoz JL, Hoban C, Castro CA, Tanabe MB, Morales ML, Ortiz P, White AC, Cabada MM. A PCR Test Using the Mini-PCR Platform and Simplified Product Detection Methods Is Highly Sensitive and Specific to Detect Fasciola hepatica DNA Mixed in Human Stool, Snail Tissue, and Water DNA Specimens. Pathogens 2024; 13:440. [PMID: 38921738 PMCID: PMC11206539 DOI: 10.3390/pathogens13060440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Fasciola hepatica has a complex lifecycle with multiple intermediate and definitive hosts and influenced by environmental factors. The disease causes significant morbidity in children and its prevalent worldwide. There is lack of data about distribution and burden of the disease in endemic regions, owing to poor efficacy of the different diagnostic methods used. A novel PCR-based test was developed by using a portable mini-PCR® platform to detect Fasciola sp. DNA and interpret the results via a fluorescence viewer and smartphone image analyzer application. Human stool, snail tissue, and water samples were used to extract DNA. Primers targeting the ITS-1 of the 18S rDNA gene of Fasciola sp. were used. The limit of detection of the mini-PCR test was 1 fg/μL for DNA samples diluted in water, 10 fg/μL for Fasciola/snail DNA scramble, and 100 fg/μL for Fasciola/stool DNA scramble. The product detection by agarose gel, direct visualization, and image analyses showed the same sensitivity. The Fh mini-PCR had a sensitivity and specificity equivalent to real-time PCR using the same specimens. Testing was also done on infected human stool and snail tissue successfully. These experiments demonstrated that Fh mini-PCR is as sensitive and specific as real time PCR but without the use of expensive equipment and laboratory facilities. Further testing of multiple specimens with natural infection will provide evidence for feasibility of deployment to resource constrained laboratories.
Collapse
Affiliation(s)
- Martha V. Fernandez-Baca
- Sede Cusco—Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Cusco 08002, Peru (R.A.O.); (M.L.M.)
| | - Alejandro Castellanos-Gonzalez
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA; (A.C.-G.); (M.B.T.)
| | - Rodrigo A. Ore
- Sede Cusco—Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Cusco 08002, Peru (R.A.O.); (M.L.M.)
| | - Jose L. Alccacontor-Munoz
- Sede Cusco—Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Cusco 08002, Peru (R.A.O.); (M.L.M.)
| | - Cristian Hoban
- Facultad de Ciencias Veterinarias, Universidad Nacional de Cajamarca, Cajamarca 06003, Peru; (C.H.); (P.O.)
| | - Carol A. Castro
- Sede Cusco—Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Cusco 08002, Peru (R.A.O.); (M.L.M.)
| | - Melinda B. Tanabe
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA; (A.C.-G.); (M.B.T.)
| | - Maria L. Morales
- Sede Cusco—Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Cusco 08002, Peru (R.A.O.); (M.L.M.)
- Universidad Peruana Cayetano Heredia-University of Texas Medical Branch Collaborative Research Center, Universidad Peruana Cayetano Heredia, Cusco 08002, Peru
| | - Pedro Ortiz
- Facultad de Ciencias Veterinarias, Universidad Nacional de Cajamarca, Cajamarca 06003, Peru; (C.H.); (P.O.)
| | - A. Clinton White
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA; (A.C.-G.); (M.B.T.)
- Universidad Peruana Cayetano Heredia-University of Texas Medical Branch Collaborative Research Center, Universidad Peruana Cayetano Heredia, Cusco 08002, Peru
| | - Miguel M. Cabada
- Sede Cusco—Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Cusco 08002, Peru (R.A.O.); (M.L.M.)
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA; (A.C.-G.); (M.B.T.)
- Universidad Peruana Cayetano Heredia-University of Texas Medical Branch Collaborative Research Center, Universidad Peruana Cayetano Heredia, Cusco 08002, Peru
| | | |
Collapse
|
2
|
Pathak CR, Luitel H, Utaaker KS, Khanal P. One-health approach on the future application of snails: a focus on snail-transmitted parasitic diseases. Parasitol Res 2023; 123:28. [PMID: 38082123 PMCID: PMC10713800 DOI: 10.1007/s00436-023-08021-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023]
Abstract
Snails are fascinating molluscs with unique morphological and physiological adaptive features to cope with various environments. They have traditionally been utilized as food and feed sources in many regions of the world. The future exploitation of alternative nutrient sources, like snails, is likely to increase further. Snails, however, also serve as an intermediate host for several zoonotic parasites. A category of parasitic infections, known as snail-transmitted parasitic diseases (STPDs), is harmful to humans and animals and is mainly driven by various trematodes, cestodes, and nematodes. The environment plays a crucial role in transmitting these parasites, as suitable habitats and conditions can facilitate their growth and proliferation in snails. In light of diverse environmental settings and biologically categorized snail species, this review evaluates the dynamics of significant STPDs of zoological importance. Additionally, possible diagnostic approaches for the prevention of STPDs are highlighted. One-health measures must be considered when employing snails as an alternative food or feed source to ensure the safety of snail-based products and prevent any adverse effects on humans, animals, and the environment.
Collapse
Affiliation(s)
- Chet Raj Pathak
- Faculty of Animal Science, Veterinary Science and Fisheries, Agriculture and Forestry University, Rampur, Nepal.
- Animal Science, Production and Welfare Division, Faculty of Biosciences and Aquaculture, Nord University, Skolegata 22, 7713, Steinkjer, Norway.
| | - Himal Luitel
- Center for Biotechnology, Agriculture and Forestry University, Rampur, Nepal
| | - Kjersti Selstad Utaaker
- Animal Science, Production and Welfare Division, Faculty of Biosciences and Aquaculture, Nord University, Skolegata 22, 7713, Steinkjer, Norway
| | - Prabhat Khanal
- Animal Science, Production and Welfare Division, Faculty of Biosciences and Aquaculture, Nord University, Skolegata 22, 7713, Steinkjer, Norway.
| |
Collapse
|
3
|
Mas-Coma S, Valero MA, Bargues MD. One Health for fascioliasis control in human endemic areas. Trends Parasitol 2023; 39:650-667. [PMID: 37385922 DOI: 10.1016/j.pt.2023.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 07/01/2023]
Abstract
Fasciola hepatica and F. gigantica are liver flukes causing fascioliasis, a worldwide zoonotic, complex disease. Human infection/reinfection occurs in endemic areas where preventive chemotherapy is applied, because of fasciolid transmission ensured by livestock and lymnaeid snail vectors. A One Health control action is the best complement to decrease infection risk. The multidisciplinary framework needs to focus on freshwater transmission foci and their environment, lymnaeids, mammal reservoirs, and inhabitant infection, ethnography and housing. Local epidemiological and transmission knowledge furnished by previous field and experimental research offers the baseline for control design. A One Health intervention should be adapted to the endemic area characteristics. Long-term control sustainability may be achieved by prioritizing measures according to impact depending on available funds.
Collapse
Affiliation(s)
- Santiago Mas-Coma
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicente Andrés Estellés s/n, 46100 Burjassot, - Valencia, Spain; CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, C/Monforte de Lemos 3-5. Pabellón 11. Planta 0, 28029 Madrid, Spain.
| | - M Adela Valero
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicente Andrés Estellés s/n, 46100 Burjassot, - Valencia, Spain; CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, C/Monforte de Lemos 3-5. Pabellón 11. Planta 0, 28029 Madrid, Spain
| | - M Dolores Bargues
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicente Andrés Estellés s/n, 46100 Burjassot, - Valencia, Spain; CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, C/Monforte de Lemos 3-5. Pabellón 11. Planta 0, 28029 Madrid, Spain
| |
Collapse
|
4
|
Kestel JH, Field DL, Bateman PW, White NE, Allentoft ME, Hopkins AJM, Gibberd M, Nevill P. Applications of environmental DNA (eDNA) in agricultural systems: Current uses, limitations and future prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157556. [PMID: 35882340 DOI: 10.1016/j.scitotenv.2022.157556] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/29/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Global food production, food supply chains and food security are increasingly stressed by human population growth and loss of arable land, becoming more vulnerable to anthropogenic and environmental perturbations. Numerous mutualistic and antagonistic species are interconnected with the cultivation of crops and livestock and these can be challenging to identify on the large scales of food production systems. Accurate identifications to capture this diversity and rapid scalable monitoring are necessary to identify emerging threats (i.e. pests and pathogens), inform on ecosystem health (i.e. soil and pollinator diversity), and provide evidence for new management practices (i.e. fertiliser and pesticide applications). Increasingly, environmental DNA (eDNA) is providing rapid and accurate classifications for specific organisms and entire species assemblages in substrates ranging from soil to air. Here, we aim to discuss how eDNA is being used for monitoring of agricultural ecosystems, what current limitations exist, and how these could be managed to expand applications into the future. In a systematic review we identify that eDNA-based monitoring in food production systems accounts for only 4 % of all eDNA studies. We found that the majority of these eDNA studies target soil and plant substrates (60 %), predominantly to identify microbes and insects (60 %) and are biased towards Europe (42 %). While eDNA-based monitoring studies are uncommon in many of the world's food production systems, the trend is most pronounced in emerging economies often where food security is most at risk. We suggest that the biggest limitations to eDNA for agriculture are false negatives resulting from DNA degradation and assay biases, as well as incomplete databases and the interpretation of abundance data. These require in silico, in vitro, and in vivo approaches to carefully design, test and apply eDNA monitoring for reliable and accurate taxonomic identifications. We explore future opportunities for eDNA research which could further develop this useful tool for food production system monitoring in both emerging and developed economies, hopefully improving monitoring, and ultimately food security.
Collapse
Affiliation(s)
- Joshua H Kestel
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Perth 6102, WA, Australia; Molecular Ecology and Evolution Group (MEEG), School of Science, Edith Cowan University, Joondalup 6027, Australia.
| | - David L Field
- Molecular Ecology and Evolution Group (MEEG), School of Science, Edith Cowan University, Joondalup 6027, Australia
| | - Philip W Bateman
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Perth 6102, WA, Australia; Behavioural Ecology Laboratory, School of Molecular and Life Sciences, Curtin University, Perth 6102, WA, Australia
| | - Nicole E White
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Perth 6102, WA, Australia
| | - Morten E Allentoft
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Perth 6102, WA, Australia; Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen, Denmark
| | - Anna J M Hopkins
- Molecular Ecology and Evolution Group (MEEG), School of Science, Edith Cowan University, Joondalup 6027, Australia
| | - Mark Gibberd
- Centre for Crop Disease Management (CCDM), School of Molecular and Life Sciences, Curtin University, Perth 6102, WA, Australia
| | - Paul Nevill
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Perth 6102, WA, Australia
| |
Collapse
|
5
|
Environmental DNA in human and veterinary parasitology - Current applications and future prospects for monitoring and control. Food Waterborne Parasitol 2022; 29:e00183. [DOI: 10.1016/j.fawpar.2022.e00183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 11/15/2022] Open
|
6
|
Tran L, Toet H, Beddoe T. Environmental detection of Fasciola hepatica by loop-mediated isothermal amplification. PeerJ 2022; 10:e13778. [PMID: 35945935 PMCID: PMC9357369 DOI: 10.7717/peerj.13778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 07/02/2022] [Indexed: 01/17/2023] Open
Abstract
Fasciola hepatica, commonly referred to as liver flukes, is a substantial zoonotic parasitic disease of humans and livestock globally. While infection is readily controlled by anthelmintics, namely triclabendazole, the heavy reliance on triclabendazole has resulted in drug resistance appearing worldwide. Due to drug resistance, it is imperative to adopt an integrated parasite management program to preserve the efficacy of currently available anthelmintics. A integrated liver fluke management plan would benefit from a simple rapid, field-deployable diagnostic for detection of F. hepatica in environment and the host. Therefore, a rapid DNA test using loop-mediated isothermal amplification was developed and optimised for the detection of F. hepatica from faecal and water samples to enable the detection of parasites both within the host and from the environment. The assay presented here is fast, with amplification in ≤20 min, and highly sensitive, with a detection limit of 5 × 10-4 ng/µL. The workflow presented here provides a time to result of ≤60 min without requiring a commercial kit for the extraction of DNA from faecal and water samples, and pending further validation from field-samples, could potentially be used to enable real-time decision making to mitigate parasite prevalence on a farming property and with no requirement for sample transportation.
Collapse
|
7
|
An Overview of Microbial Source Tracking Using Host-Specific Genetic Markers to Identify Origins of Fecal Contamination in Different Water Environments. WATER 2022. [DOI: 10.3390/w14111809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Fecal contamination of water constitutes a serious health risk to humans and environmental ecosystems. This is mainly due to the fact that fecal material carries a variety of enteropathogens, which can enter and circulate in water bodies through fecal pollution. In this respect, the prompt identification of the polluting source(s) is pivotal to guiding appropriate target-specific remediation actions. Notably, microbial source tracking (MST) is widely applied to determine the host origin(s) contributing to fecal water pollution through the identification of zoogenic and/or anthropogenic sources of fecal environmental DNA (eDNA). A wide array of host-associated molecular markers have been developed and exploited for polluting source attribution in various aquatic ecosystems. This review is intended to provide the most up-to-date overview of genetic marker-based MST studies carried out in different water types, such as freshwaters (including surface and groundwaters) and seawaters (from coasts, beaches, lagoons, and estuaries), as well as drinking water systems. Focusing on the latest scientific progress/achievements, this work aims to gain updated knowledge on the applicability and robustness of using MST for water quality surveillance. Moreover, it also provides a future perspective on advancing MST applications for environmental research.
Collapse
|
8
|
Tran L, Rathinasamy VA, Beddoe T. Development of a loop-mediated isothermal amplification assay for detection of Austropeplea tomentosa from environmental water samples. ANIMAL DISEASES 2022; 2:29. [PMCID: PMC9743122 DOI: 10.1186/s44149-022-00061-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022] Open
Abstract
Lymnaeid snails are key intermediate hosts for the development and survival of Fasciola spp., the causative agent of Fascioliasis which are economically important parasites infecting humans and livestock globally. The current control method for treating Fascioliasis is heavily reliant on anthelmintic drugs, particularly Triclabendazole (TCBZ) which has resulted in drug-resistant parasites and poses significant risk as there are no long-term efficacious alternatives available. Sustainable control measures at the farm level could include both parasite and snail control will play an important role in Fasciola spp. control and reduce the reliance on anthelmintic drugs. Implementation of such sustainable control measures requires effective identification of snails on the property however Lymnaeid snails are small and difficult to physically locate. Snail identification using an environmental DNA approach is a recent approach in which physically locating snails are not required. Austropeplea tomentosa, is the primary intermediate snail host for F. hepatica transmission in South-East Australia and we present an in-field loop-mediated isothermal amplification and water filtering method for the detection of A. tomentosa eDNA from water samples to improve current surveillance methods. This methodology is highly sensitive with a detection limit of 5 × 10− 6 ng/μL, detected in < 20 minutes, with cumulative sample preparation and amplification time under 1 hour. This proposed workflow could assist in monitoring areas to determine the risk of Fascioliasis infection and implement strategies to manage snail populations to ultimately reduce the risk of infection for humans and livestock.
Collapse
Affiliation(s)
- Lily Tran
- grid.1018.80000 0001 2342 0938Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3083 Australia
| | - Vignesh A. Rathinasamy
- grid.1011.10000 0004 0474 1797Australian Institute of Tropical Health and Medicine and Queensland Tropical Health Alliance, James Cook University, Cairns, QLD 4870 Australia
| | - Travis Beddoe
- grid.1018.80000 0001 2342 0938Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3083 Australia
| |
Collapse
|
9
|
Amarasiri M, Furukawa T, Nakajima F, Sei K. Pathogens and disease vectors/hosts monitoring in aquatic environments: Potential of using eDNA/eRNA based approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:148810. [PMID: 34265610 DOI: 10.1016/j.scitotenv.2021.148810] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/20/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Infectious diseases are spreading in to previously unreported geographical regions, and are reappeared in regions 75 or 100 years after their last reported case, as a result of environmental changes caused by anthropogenic activities. A pathogen, vector/host monitoring methodology is therefore indispensable in identifying potential transmission sites, providing early warnings and evaluating the human health risks of these infectious diseases in a given area. Recently, environmental DNA (eDNA) and environmental RNA approach (eRNA) have become widespread in monitoring organisms in the environment due to advantages like lower cost, time, and labour requirements. However, eDNA/eRNA based monitoring of pathogens and vectors/hosts using aquatic samples is limited to very few studies. In this review, we summarized the currently available eDNA/eRNA based human and non-human pathogens and vectors/hosts detection studies in aquatic samples. Species-specific shedding, transport, and decay of eDNA/eRNA in aquatic environments which is essential in estimating the abundance of pathogen, vectors/host in focus is also summarized. We also suggest the usage of eDNA/eRNA approach in urban aquatic samples like runoff in identifying the disease vectors/hosts inhabiting in locations which are not accessible easily.
Collapse
Affiliation(s)
- Mohan Amarasiri
- Laboratory of Environmental Hygiene, Department of Health Science, School of Allied Health Sciences, Kitasato University, 1-15-1, Kitasato, Sagamihara-Minami 252-0373, Japan.
| | - Takashi Furukawa
- Laboratory of Environmental Hygiene, Department of Health Science, School of Allied Health Sciences, Kitasato University, 1-15-1, Kitasato, Sagamihara-Minami 252-0373, Japan
| | - Fumiyuki Nakajima
- Environmental Science Center, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazunari Sei
- Laboratory of Environmental Hygiene, Department of Health Science, School of Allied Health Sciences, Kitasato University, 1-15-1, Kitasato, Sagamihara-Minami 252-0373, Japan
| |
Collapse
|
10
|
Temporal dynamics of trematode intermediate snail host environmental DNA in small water body habitats. Parasitology 2021; 148:1490-1496. [PMID: 34193321 PMCID: PMC8426146 DOI: 10.1017/s0031182021001104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Environmental DNA (eDNA) surveying has potential to become a powerful tool for sustainable parasite control. As trematode parasites require an intermediate snail host that is often aquatic or amphibious to fulfil their lifecycle, water-based eDNA analyses can be used to screen habitats for the presence of snail hosts and identify trematode infection risk areas. The aim of this study was to identify climatic and environmental factors associated with the detection of Galba truncatula eDNA. Fourteen potential G. truncatula habitats on two farms were surveyed over a 9-month period, with eDNA detected using a filter capture, extraction and PCR protocol with data analysed using a generalized estimation equation. The probability of detecting G. truncatula eDNA increased in habitats where snails were visually detected, as temperature increased, and as water pH decreased (P < 0.05). Rainfall was positively associated with eDNA detection in watercourse habitats on farm A, but negatively associated with eDNA detection in watercourse habitats on farm B (P < 0.001), which may be explained by differences in watercourse gradient. This study is the first to identify factors associated with trematode intermediate snail host eDNA detection. These factors should be considered in standardized protocols to evaluate the results of future eDNA surveys.
Collapse
|
11
|
Zerna G, Spithill TW, Beddoe T. Current Status for Controlling the Overlooked Caprine Fasciolosis. Animals (Basel) 2021; 11:1819. [PMID: 34207215 PMCID: PMC8235714 DOI: 10.3390/ani11061819] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 01/17/2023] Open
Abstract
The disease fasciolosis is caused by the liver flukes Fasciola hepatica and F. gigantica, which infect a wide range of mammals and production livestock, including goats. These flatworm parasites are globally distributed and predicted to cost the livestock industry a now conservative USD 3 billion per year in treatment and lowered on-farm productivity. Infection poses a risk to animal welfare and results in lowered fertility rates and reduced production yields of meat, milk and wool. This zoonotic disease is estimated to infect over 600 million animals and up to 2.4 million humans. Current and future control is threatened with the global emergence of flukes resistant to anthelmintics. Drug resistance calls for immediate on-farm parasite management to ensure treatments are effective and re-infection rates are kept low, while a sustainable long-term control method, such as a vaccine, is being developed. Despite the recent expansion of the goat industry, particularly in developing countries, there are limited studies on goat-focused vaccine control studies and the effectiveness of drug treatments. There is a requirement to collate caprine-specific fasciolosis knowledge. This review will present the current status of liver fluke caprine infections and potential control methods for application in goat farming.
Collapse
Affiliation(s)
| | | | - Travis Beddoe
- Department of Animal, Plant and Soil Sciences and Centre for AgriBioscience, La Trobe University, Bundoora, Victoria 3083, Australia; (G.Z.); (T.W.S.)
| |
Collapse
|