1
|
Shukla A, López-González S, Hoffmann G, Hafrén A. Diverse plant viruses: a toolbox for dissection of cellular pathways. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3029-3034. [PMID: 30882863 PMCID: PMC6598076 DOI: 10.1093/jxb/erz122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/11/2019] [Indexed: 05/12/2023]
Abstract
Research in virology has usually focused on one selected host-virus pathosystem to examine the mechanisms underlying a particular disease. However, as exemplified by the mechanistically versatile suppression of antiviral RNA silencing by plant viruses, there may be functionally convergent evolution. Assuming this is a widespread feature, we propose that effector proteins from diverse plant viruses can be a powerful resource for discovering new regulatory mechanisms of distinct cellular pathways. The efficiency of this approach will depend on how deeply and widely the studied pathway is integrated into viral infections. Beyond this, comparative studies using broad virus diversity should increase our global understanding of plant-virus interactions.
Collapse
Affiliation(s)
- Aayushi Shukla
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Silvia López-González
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Gesa Hoffmann
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Anders Hafrén
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| |
Collapse
|
2
|
Wu B, Zwart MP, Sánchez-Navarro JA, Elena SF. Within-host Evolution of Segments Ratio for the Tripartite Genome of Alfalfa Mosaic Virus. Sci Rep 2017; 7:5004. [PMID: 28694514 PMCID: PMC5504059 DOI: 10.1038/s41598-017-05335-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/25/2017] [Indexed: 12/19/2022] Open
Abstract
The existence of multipartite viruses is an intriguing mystery in evolutionary virology. Several hypotheses suggest benefits that should outweigh the costs of a reduced transmission efficiency and of segregation of coadapted genes associated with encapsidating each segment into a different particle. Advantages range from increasing genome size despite high mutation rates, faster replication, more efficient selection resulting from reassortment during mixed infections, better regulation of gene expression, or enhanced virion stability and cell-to-cell movement. However, support for these hypotheses is scarce. Here we report experiments testing whether an evolutionary stable equilibrium exists for the three genomic RNAs of Alfalfa mosaic virus (AMV). Starting infections with different segment combinations, we found that the relative abundance of each segment evolves towards a constant ratio. Population genetic analyses show that the segment ratio at this equilibrium is determined by frequency-dependent selection. Replication of RNAs 1 and 2 was coupled and collaborative, whereas the replication of RNA 3 interfered with the replication of the other two. We found that the equilibrium solution is slightly different for the total amounts of RNA produced and encapsidated, suggesting that competition exists between all RNAs during encapsidation. Finally, we found that the observed equilibrium appears to be host-species dependent.
Collapse
Affiliation(s)
- Beilei Wu
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mark P Zwart
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
- Institute of Theoretical Physics, University of Cologne, Cologne, Germany
| | - Jesús A Sánchez-Navarro
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| | - Santiago F Elena
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain.
- Instituto de Biología Integrativa de Sistemas (I2SysBio), Consejo Superior de Investigaciones Científicas-Universitat de València, Valencia, Spain.
- The Santa Fe Institute, New Mexico, USA.
| |
Collapse
|
3
|
Ouibrahim L, Caranta C. Exploitation of natural genetic diversity to study plant-virus interactions: what can we learn from Arabidopsis thaliana? MOLECULAR PLANT PATHOLOGY 2013; 14:844-54. [PMID: 23790151 PMCID: PMC6638744 DOI: 10.1111/mpp.12052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The development and use of cultivars that are genetically resistant to viruses is an efficient strategy to tackle the problems of virus diseases. Over the past two decades, the model plant Arabidopsis thaliana has been documented as a host for a broad range of viral species, providing access to a large panel of resources and tools for the study of viral infection processes and resistance mechanisms. Exploration of its natural genetic diversity has revealed a wide range of genes conferring virus resistance. The molecular characterization of some of these genes has unveiled resistance mechanisms distinct from those described in crops. In these respects, Arabidopsis represents a rich and largely untapped source of new genes and mechanisms involved in virus resistance. Here, we review the current status of our knowledge concerning natural virus resistance in Arabidopsis. We also address the impact of environmental conditions on Arabidopsis-virus interactions and resistance mechanisms, and discuss the potential of applying the knowledge gained from the study of Arabidopsis natural diversity for crop improvement.
Collapse
Affiliation(s)
- Laurence Ouibrahim
- Laboratoire de Génétique et Biophysique des Plantes, UMR 7265, CEA/CNRS, Aix Marseille Université, Faculté des Sciences de Luminy, 163 Avenue de Luminy, Marseille, France
| | | |
Collapse
|
4
|
Dzianott A, Sztuba-Solińska J, Bujarski JJ. Mutations in the antiviral RNAi defense pathway modify Brome mosaic virus RNA recombinant profiles. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:97-106. [PMID: 21936664 DOI: 10.1094/mpmi-05-11-0137] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
RNA interference (RNAi) mechanism targets viral RNA for degradation. To test whether RNAi gene products contributed to viral RNA recombination, a series of Arabidopsis thaliana RNAi-defective mutants were infected with Brome mosaic virus (BMV) RNAs that have been engineered to support crossovers within the RNA3 segment. Single-cross RNA3-RNA1, RNA3-RNA2, and RNA3-RNA3 recombinants accumulated in both the wild-type (wt) and all knock-out lines at comparable frequencies. However, a reduced accumulation of novel 3' mosaic RNA3 recombinants was observed in ago1, dcl2, dcl4, and rdr6 lines but not in wt Col-0 or the dcl3 line. A BMV replicase mutant accumulated a low level of RNA3-RNA1 single-cross recombinants in Col-0 plants while, in a dcl2 dcl4 double mutant, the formation of both RNA3-RNA1 and mosaic recombinants was at a low level. A control infection in the cpr5-2 mutant, a more susceptible BMV Arabidopsis host, generated similar-to-Col-0 profiles of both single-cross and mosaic recombinants, indicating that recombinant profiles were, to some extent, independent of a viral replication rate. Also, the relative growth experiments revealed similar selection pressure for recombinants among the host lines. Thus, the altered recombinant RNA profiles have originated at the level of recombinant formation rather than because of altered selection. In conclusion, the viral replicase and the host RNAi gene products contribute in distinct ways to BMV RNA recombination. Our studies reveal that the antiviral RNAi mechanisms are utilized by plant RNA viruses to increase their variability, reminiscent of phenomena previously demonstrated in fungi.
Collapse
Affiliation(s)
- Aleksandra Dzianott
- Department of Biological sciences, Northern Illinois University, DeKalb, IL, USA
| | | | | |
Collapse
|
5
|
Sztuba-Solińska J, Urbanowicz A, Figlerowicz M, Bujarski JJ. RNA-RNA recombination in plant virus replication and evolution. ANNUAL REVIEW OF PHYTOPATHOLOGY 2011; 49:415-43. [PMID: 21529157 DOI: 10.1146/annurev-phyto-072910-095351] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
RNA-RNA recombination is one of the strongest forces shaping the genomes of plant RNA viruses. The detection of recombination is a challenging task that prompted the development of both in vitro and in vivo experimental systems. In the divided genome of Brome mosaic virus system, both inter- and intrasegmental crossovers are described. Other systems utilize satellite or defective interfering RNAs (DI-RNAs) of Turnip crinkle virus, Tomato bushy stunt virus, Cucumber necrosis virus, and Potato virus X. These assays identified the mechanistic details of the recombination process, revealing the role of RNA structure and proteins in the replicase-mediated copy-choice mechanism. In copy choice, the polymerase and the nascent RNA chain from which it is synthesized switch from one RNA template to another. RNA recombination was found to mediate the rearrangement of viral genes, the repair of deleterious mutations, and the acquisition of nonself sequences influencing the phylogenetics of viral taxa. The evidence for recombination, not only between related viruses but also among distantly related viruses, and even with host RNAs, suggests that plant viruses unabashedly test recombination with any genetic material at hand.
Collapse
Affiliation(s)
- Joanna Sztuba-Solińska
- Plant Molecular Biology Center, Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois 60115, USA
| | | | | | | |
Collapse
|
6
|
Groenenboom MAC, Hogeweg P. The dynamics and efficacy of antiviral RNA silencing: A model study. BMC SYSTEMS BIOLOGY 2008; 2:28. [PMID: 18366769 PMCID: PMC2373878 DOI: 10.1186/1752-0509-2-28] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Accepted: 03/26/2008] [Indexed: 11/10/2022]
Abstract
Background Mathematical modeling is important to provide insight in the complicated pathway of RNA silencing. RNA silencing is an RNA based mechanism that is widely used by eukaryotes to fight viruses, and to control gene expression. Results We here present the first mathematical model that combines viral growth with RNA silencing. The model involves a plus-strand RNA virus that replicates through a double-strand RNA intermediate. The model of the RNA silencing pathway consists of cleavage of viral RNA into siRNA by Dicer, target cleavage of viral RNA via the RISC complex, and a secondary response. We found that, depending on the strength of the silencing response, different viral growth patterns can occur. Silencing can decrease viral growth, cause oscillations, or clear the virus completely. Our model can explain various observed phenomena, even when they seem contradictory at first: the diverse responses to the removal of RNA dependent RNA polymerase; different viral growth curves; and the great diversity in observed siRNA ratios. Conclusion The model presented here is an important step in the understanding of the natural functioning of RNA silencing in viral infections.
Collapse
Affiliation(s)
- Marian A C Groenenboom
- Theoretical Biology and Bioinformatics, University of Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | | |
Collapse
|
7
|
Vega-Arreguín JC, Gronenborn B, Ramírez BC. Arabidopsis thaliana is a host of the legume nanovirus Faba bean necrotic yellows virus. Virus Res 2007; 128:81-7. [PMID: 17512075 DOI: 10.1016/j.virusres.2007.04.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 04/09/2007] [Accepted: 04/09/2007] [Indexed: 10/23/2022]
Abstract
We report infection of Arabidopsis thaliana with the legume nanovirus Faba bean necrotic yellows virus (FBNYV) by its insect vector Aphis craccivora. Symptoms of FBNYV infection on A. thaliana include stunting and reduced apical dominance, and are rather mild, compared to the severe necrosis and early plant death induced by the virus in the natural host Vicia faba. An inoculation access period of 6h is sufficient to transmit FBNYV to A. thaliana. FBNYV is readily transmitted back from A. thaliana to V. faba, where it induces the characteristic severe disease symptoms. Hence, passage through A. thaliana does not affect FBNYV pathogenicity. FBNYV accumulates to the highest levels in roots and stems, compared to cauline and rosette leaves. In cauline leaves, the kinetics of virus accumulation correlates with the amount of master Rep protein accumulation.
Collapse
Affiliation(s)
- Julio C Vega-Arreguín
- Institut des Sciences du Végétal, CNRS, Avenue de la Terrasse, Bât 23, Gif-sur-Yvette 91198, France.
| | | | | |
Collapse
|
8
|
Wierzchoslawski R, Urbanowicz A, Dzianott A, Figlerowicz M, Bujarski JJ. Characterization of a novel 5' subgenomic RNA3a derived from RNA3 of Brome mosaic bromovirus. J Virol 2006; 80:12357-66. [PMID: 17005659 PMCID: PMC1676258 DOI: 10.1128/jvi.01207-06] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The synthesis of 3' subgenomic RNA4 (sgRNA4) by initiation from an internal sg promoter in the RNA3 segment was first described for Brome mosaic bromovirus (BMV), a model tripartite positive-sense RNA virus (W. A. Miller, T. W. Dreher, and T. C. Hall, Nature 313:68-70, 1985). In this work, we describe a novel 5' sgRNA of BMV (sgRNA3a) that we propose arises by premature internal termination and that encapsidates in BMV virions. Cloning and sequencing revealed that, unlike any other BMV RNA segment, sgRNA3a carries a 3' oligo(A) tail, in which respect it resembles cellular mRNAs. Indeed, both the accumulation of sgRNA3a in polysomes and the synthesis of movement protein 3a in in vitro systems suggest active functions of sgRNA3a during protein synthesis. Moreover, when copied in the BMV replicase in vitro reaction, the minus-strand RNA3 template generated the sgRNA3a product, likely by premature termination at the minus-strand oligo(U) tract. Deletion of the oligo(A) tract in BMV RNA3 inhibited synthesis of sgRNA3a during infection. We propose a model in which the synthesis of RNA3 is terminated prematurely near the sg promoter. The discovery of 5' sgRNA3a sheds new light on strategies viruses can use to separate replication from the translation functions of their genomic RNAs.
Collapse
Affiliation(s)
- Rafal Wierzchoslawski
- Plant Molecular Biology Center and the Department of Biological Sciences, Montgomery Hall, Northern Illinois University, De Kalb, IL 60115, USA
| | | | | | | | | |
Collapse
|
9
|
Meier M, Truve E. An attempt to identify recombinants between two sobemoviruses in doubly infected oat plants. ACTA ACUST UNITED AC 2006; 5:47-56. [PMID: 16978574 DOI: 10.1051/ebr:2006013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Recombination in RNA viruses is considered to play a major role as a driving force in virus variability to counterbalance loss in fitness that can be due to the accumulation of detrimental mutations. Studies on mixed infections are pertinent for understanding the role of recombination in virus evolution. They also provide important baseline information for studying the biosafety of plants expressing viral sequences. To investigate the possibility of RNA recombination occurrence between two sobemoviruses under little or no selection pressure, we co-infected test plants with Cocksfoot mottle virus (CfMV) and Ryegrass mottle virus (RGMoV). CfMV and RGMoV were selected because of their overlapping host range and geographical distribution. First, symptom development of both viruses in barley (Hordeum vulgare) and oat (Avena sativa) was examined. Both viruses generated quite strong infection symptoms in oat, but synergism was not detected. RGMoV was lethal for barley, whereas CfMV infection in barley was nearly symptomless. RT-PCR analysis revealed 100% infection with both viruses in oat but not in barley. Therefore, an RNA recombination study of CfMV and RGMoV was performed in oat. 105 plants were co-inoculated with both viruses and putative recombinational hot spot regions were screened for recombination events by RT-PCR analysis at a sensitivity level down to 0.1-100 pg of viral genomic RNA. No recombination events between the two sobemoviruses were detected.
Collapse
Affiliation(s)
- Merike Meier
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, 19086 Tallinn, Estonia
| | | |
Collapse
|
10
|
Balasubramaniam M, Ibrahim A, Kim BS, Loesch-Fries LS. Arabidopsis thaliana is an asymptomatic host of Alfalfa mosaic virus. Virus Res 2006; 121:215-9. [PMID: 16875753 DOI: 10.1016/j.virusres.2006.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Revised: 04/17/2006] [Accepted: 04/18/2006] [Indexed: 10/24/2022]
Abstract
The susceptibility of Arabidopsis thaliana ecotypes to infection by Alfalfa mosaic virus (AMV) was evaluated. Thirty-nine ecotypes supported both local and systemic infection, 26 ecotypes supported only local infection, and three ecotypes could not be infected. No obvious symptoms characteristic of virus infection developed on the susceptible ecotypes under standard conditions of culture. Parameters of AMV infection were characterized in ecotype Col-0, which supported systemic infection and accumulated higher levels of AMV than the symptomatic host Nicotiana tabacum. The formation of infectious AMV particles in infected Col-0 was confirmed by infectivity assays on a hypersensitive host and by electron microscopy of purified virions. Replication and transcription of AMV was confirmed by de novo synthesis of AMV subgenomic RNA in Col-0 protoplasts transfected with AMV RNA or plasmids harboring AMV cDNAs.
Collapse
Affiliation(s)
- Muthukumar Balasubramaniam
- Department of Botany and Plant Pathology, Lilly Hall of Life Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | |
Collapse
|
11
|
Zhang C, Ghabrial SA. Development of Bean pod mottle virus-based vectors for stable protein expression and sequence-specific virus-induced gene silencing in soybean. Virology 2006; 344:401-11. [PMID: 16226780 DOI: 10.1016/j.virol.2005.08.046] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Revised: 08/09/2005] [Accepted: 08/30/2005] [Indexed: 10/25/2022]
Abstract
Plant virus-based vectors provide valuable tools for expression of foreign proteins in plants and for gene function studies. None of the presently available virus vectors is suitable for use in soybean. In the present study, we produced Bean pod mottle virus (BPMV)-based vectors that are appropriate for gene expression and virus-induced gene silencing (VIGS) in soybean. The genes of interest were inserted into the RNA2-encoded polyprotein open reading frame between the movement protein (MP) and the large coat protein (L-CP) coding regions. Additional proteinase cleavage sites were created to flank the foreign protein by duplicating the MP/L-CP cleavage site. To minimize the chances of homologous recombination and thus insert instability, we took advantage of the genetic code degeneracy and altered the nucleotide sequence of the duplicated regions without affecting amino acid sequences. The recombinant BPMV constructs were stable following several serial passages in soybean and relatively high levels of protein expression were attained. Successful expression of several proteins with different biological activities was demonstrated from the BPMV vector. These included the reporter proteins GFP and DsRed, phosphinothricin acetyltransferase (encoded by the herbicide resistance bar gene), and the RNA silencing suppressors encoded by Tomato bushy stunt virus, Turnip crinkle virus, Tobacco etch virus, and Soybean mosaic virus. The possible use of BPMV as a VIGS vector to study gene function in soybean was also demonstrated with the phytoene desaturase gene. Our results suggest that the BPMV-based vectors are suitable for expression of foreign proteins in soybean and for functional genomics applications.
Collapse
Affiliation(s)
- Chunquan Zhang
- Department of Plant Pathology, 201F Plant Science Building, University of Kentucky, 1405 Veterans Drive, Lexington, KY 40546-0312, USA
| | | |
Collapse
|
12
|
Tanne E, Sela I. Occurrence of a DNA sequence of a non-retro RNA virus in a host plant genome and its expression: evidence for recombination between viral and host RNAs. Virology 2005; 332:614-22. [PMID: 15680426 DOI: 10.1016/j.virol.2004.11.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2004] [Revised: 10/26/2004] [Accepted: 11/09/2004] [Indexed: 11/18/2022]
Abstract
This study demonstrates that sequences homologous to those of the non-retro RNA virus (Potato virus Y; PVY) are integrated into the genome of several grapevine varieties. The integrated PVY-coat-protein-like cistron is expressed in the grapevine as indicated by Southern and Western blot analyses as well as by RNase protection assay. In addition, genome-walking studies showed that one PVY-like sequence is flanked by 41-bp direct repeats and is embedded in authentic grapevine sequences, flanked by inverted repeats. Rearranged PVY-like sequences were also found in tobacco. It is suggested that nonhomologous recombination of a potyviral RNA with RNA of a retrotransposable element took place at some point in evolution. The initial integration locus was probably within a grapevine gene homologous to a pentatricopeptide repeat-carrying protein, and was later transposed to other locations. The current location is reminiscent of a MITE-type retroelement, indicating transposition history. Because grapevine cultivars are propagated asexually, without going through a meiotic phase, the chance for DNA recombination is minimal and the foreign integrated sequence may be better conserved, enabling it to be expressed correctly in the recipient genome.
Collapse
Affiliation(s)
- Edna Tanne
- Virus Laboratory, The Hebrew University of Jerusalem, Faculty of Agricultural, Food and Environmental Quality Sciences, Robert H. Smith Institute for Plant Sciences and Genetics, Rehovot 76100, Israel
| | | |
Collapse
|
13
|
Fujisaki K, Hagihara F, Azukawa Y, Kaido M, Okuno T, Mise K. Identification and characterization of the SSB1 locus involved in symptom development by Spring beauty latent virus infection in Arabidopsis thaliana. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2004; 17:967-975. [PMID: 15384487 DOI: 10.1094/mpmi.2004.17.9.967] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The natural variation of Arabidopsis thaliana in response to a bromovirus, Spring beauty latent virus (SBLV), was examined. Of 63 Arabidopsis accessions tested, all were susceptible when inoculated with SBLV, although there was a large degree of variation in symptom development. Most accessions, including Columbia (Col-0), were symptomless or developed only mild symptoms, but four accessions, including S96, showed severe symptoms of SBLV infection. Genetic analysis suggested that the difference in the responses of Col-0 and S96 to SBLV was controlled by a single semidominant locus. We have designated this locus SSB1 (symptom development by SBLV infection). By using genetic markers, SSB1 was mapped to chromosome IV. The patterns of distribution and accumulation of SBLV in sensitive accessions were similar to those in the insensitive accessions. In addition, symptom development in S96 by SBLV infection was critically interrupted by the presence of the NahG gene, which encodes salicylic acid (SA) hydroxylase. These data suggest that symptom development in A. thaliana controlled by SSB1 is independent of the efficiency of SBLV multiplication and is dependent on SA signaling.
Collapse
Affiliation(s)
- Koki Fujisaki
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | | | |
Collapse
|