1
|
Gallay K, Blot G, Chahpazoff M, Yajjou-Hamalian H, Confort MP, De Boisséson C, Leroux A, Luengo C, Fiorini F, Lavigne M, Chebloune Y, Gouet P, Moreau K, Blanchard Y, Ronfort C. In vitro, in cellulo and structural characterizations of the interaction between the integrase of Porcine Endogenous Retrovirus A/C and proteins of the BET family. Virology 2019; 532:69-81. [DOI: 10.1016/j.virol.2019.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/30/2019] [Accepted: 04/09/2019] [Indexed: 01/17/2023]
|
2
|
Abstract
Integration of the reverse-transcribed viral cDNA into the host's genome is a critical step in the lifecycle of all retroviruses. Retrovirus integration is carried out by integrase (IN), a virus-encoded enzyme that forms an oligomeric 'intasome' complex with both ends of the linear viral DNA to catalyze their concerted insertions into the backbones of the host's DNA. IN also forms a complex with host proteins, which guides the intasome to the host's chromosome. Recent structural studies have revealed remarkable diversity as well as conserved features among the architectures of the intasome assembly from different genera of retroviruses. This chapter will review how IN oligomerizes to achieve its function, with particular focus on alpharetrovirus including the avian retrovirus Rous sarcoma virus. Another chapter (Craigie) will focus on the structure and function of IN from HIV-1.
Collapse
Affiliation(s)
- Duane P Grandgenett
- Saint Louis University Health Sciences Center, Department of Microbiology and Immunology, Institute for Molecular Virology, Doisy Research Center, St. Louis, MO, USA
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
3
|
Demange A, Yajjou-Hamalian H, Gallay K, Luengo C, Beven V, Leroux A, Confort MP, Al Andary E, Gouet P, Moreau K, Ronfort C, Blanchard Y. Porcine endogenous retrovirus-A/C: biochemical properties of its integrase and susceptibility to raltegravir. J Gen Virol 2015; 96:3124-3130. [PMID: 26296914 DOI: 10.1099/jgv.0.000236] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Porcine endogenous retroviruses (PERVs) are present in the genomes of pig cells. The PERV-A/C recombinant virus can infect human cells and is a major risk of zoonotic disease in the case of xenotransplantation of pig organs to humans. Raltegravir (RAL) is a viral integrase (IN) inhibitor used in highly active antiretroviral treatment. In the present study, we explored the potential use of RAL against PERV-A/C. We report (i) a three-dimensional model of the PERV-A/C intasome complexed with RAL, (ii) the sensitivity of PERV-A/C IN to RAL in vitro and (iii) the sensitivity of a PERV-A/C-IRES-GFP recombinant virus to RAL in cellulo. We demonstrated that RAL is a potent inhibitor against PERV-A/C IN and PERV-A/C replication with IC50s in the nanomolar range. To date, the use of retroviral inhibitors remains the only way to control the risk of zoonotic PERV infection during pig-to-human xenotransplantation.
Collapse
Affiliation(s)
- Antonin Demange
- ANSES, Ploufragan/Plouzané Laboratory, Viral Genetics and Bio-Security Unit, Université Européenne de Bretagne, Ploufragan, France
| | - Halima Yajjou-Hamalian
- Institut de Biologie et Chimie des Protéines, BMSSI-IBCP, UMR 5086 CNRS Université Lyon 1, 7, passage du Vercors, 69367 Lyon Cedex 07, France.,INRA, Université Lyon 1, UMR754, Rétrovirus et Pathologie Comparée, 69007 Lyon, France.,Université de Lyon, 69000 Lyon, France.,UMS3444 BioSciences Gerland Lyon Sud, 69007 Lyon, France
| | - Kathy Gallay
- INRA, Université Lyon 1, UMR754, Rétrovirus et Pathologie Comparée, 69007 Lyon, France.,Université de Lyon, 69000 Lyon, France.,UMS3444 BioSciences Gerland Lyon Sud, 69007 Lyon, France
| | - Catherine Luengo
- INRA, Université Lyon 1, UMR754, Rétrovirus et Pathologie Comparée, 69007 Lyon, France.,UMS3444 BioSciences Gerland Lyon Sud, 69007 Lyon, France.,Université de Lyon, 69000 Lyon, France
| | - Véronique Beven
- ANSES, Ploufragan/Plouzané Laboratory, Viral Genetics and Bio-Security Unit, Université Européenne de Bretagne, Ploufragan, France
| | - Aurélie Leroux
- ANSES, Ploufragan/Plouzané Laboratory, Viral Genetics and Bio-Security Unit, Université Européenne de Bretagne, Ploufragan, France
| | - Marie-Pierre Confort
- INRA, Université Lyon 1, UMR754, Rétrovirus et Pathologie Comparée, 69007 Lyon, France.,Université de Lyon, 69000 Lyon, France.,UMS3444 BioSciences Gerland Lyon Sud, 69007 Lyon, France
| | - Elsy Al Andary
- ANSES, Ploufragan/Plouzané Laboratory, Viral Genetics and Bio-Security Unit, Université Européenne de Bretagne, Ploufragan, France.,Université de Lyon, 69000 Lyon, France.,UMS3444 BioSciences Gerland Lyon Sud, 69007 Lyon, France.,INRA, Université Lyon 1, UMR754, Rétrovirus et Pathologie Comparée, 69007 Lyon, France
| | - Patrice Gouet
- Université de Lyon, 69000 Lyon, France.,UMS3444 BioSciences Gerland Lyon Sud, 69007 Lyon, France.,Institut de Biologie et Chimie des Protéines, BMSSI-IBCP, UMR 5086 CNRS Université Lyon 1, 7, passage du Vercors, 69367 Lyon Cedex 07, France
| | - Karen Moreau
- Université de Lyon, 69000 Lyon, France.,INRA, Université Lyon 1, UMR754, Rétrovirus et Pathologie Comparée, 69007 Lyon, France.,UMS3444 BioSciences Gerland Lyon Sud, 69007 Lyon, France
| | - Corinne Ronfort
- UMS3444 BioSciences Gerland Lyon Sud, 69007 Lyon, France.,INRA, Université Lyon 1, UMR754, Rétrovirus et Pathologie Comparée, 69007 Lyon, France.,Université de Lyon, 69000 Lyon, France
| | - Yannick Blanchard
- ANSES, Ploufragan/Plouzané Laboratory, Viral Genetics and Bio-Security Unit, Université Européenne de Bretagne, Ploufragan, France
| |
Collapse
|
4
|
Cellier C, Moreau K, Gallay K, Ballandras A, Gouet P, Ronfort C. In vitro functional analyses of the human immunodeficiency virus type 1 (HIV-1) integrase mutants give new insights into the intasome assembly. Virology 2013; 439:97-104. [DOI: 10.1016/j.virol.2013.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 11/19/2012] [Accepted: 02/02/2013] [Indexed: 01/27/2023]
|
5
|
Charmetant J, Moreau K, Gallay K, Ballandras A, Gouet P, Ronfort C. Functional analyses of mutants of the central core domain of an Avian Sarcoma/Leukemia Virus integrase. Virology 2011; 421:42-50. [DOI: 10.1016/j.virol.2011.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 06/14/2011] [Accepted: 09/08/2011] [Indexed: 01/25/2023]
|
6
|
Ballandras A, Moreau K, Robert X, Confort MP, Merceron R, Haser R, Ronfort C, Gouet P. A crystal structure of the catalytic core domain of an avian sarcoma and leukemia virus integrase suggests an alternate dimeric assembly. PLoS One 2011; 6:e23032. [PMID: 21857987 PMCID: PMC3153463 DOI: 10.1371/journal.pone.0023032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 07/07/2011] [Indexed: 01/30/2023] Open
Abstract
Integrase (IN) is an important therapeutic target in the search for anti-Human Immunodeficiency Virus (HIV) inhibitors. This enzyme is composed of three domains and is hard to crystallize in its full form. First structural results on IN were obtained on the catalytic core domain (CCD) of the avian Rous and Sarcoma Virus strain Schmidt-Ruppin A (RSV-A) and on the CCD of HIV-1 IN. A ribonuclease-H like motif was revealed as well as a dimeric interface stabilized by two pairs of α-helices (α1/α5, α5/α1). These structural features have been validated in other structures of IN CCDs. We have determined the crystal structure of the Rous-associated virus type-1 (RAV-1) IN CCD to 1.8 Å resolution. RAV-1 IN shows a standard activity for integration and its CCD differs in sequence from that of RSV-A by a single accessible residue in position 182 (substitution A182T). Surprisingly, the CCD of RAV-1 IN associates itself with an unexpected dimeric interface characterized by three pairs of α-helices (α3/α5, α1/α1, α5/α3). A182 is not involved in this novel interface, which results from a rigid body rearrangement of the protein at its α1, α3, α5 surface. A new basic groove that is suitable for single-stranded nucleic acid binding is observed at the surface of the dimer. We have subsequently determined the structure of the mutant A182T of RAV-1 IN CCD and obtained a RSV-A IN CCD-like structure with two pairs of buried α-helices at the interface. Our results suggest that the CCD of avian INs can dimerize in more than one state. Such flexibility can further explain the multifunctionality of retroviral INs, which beside integration of dsDNA are implicated in different steps of the retroviral cycle in presence of viral ssRNA.
Collapse
Affiliation(s)
- Allison Ballandras
- Biocristallographie et Biologie Structurale des Cibles Thérapeutiques, Institut de Biologie et Chimie des Protéines, UMR 5086 BMSSI-Centre National de la Recherche Scientifique/Université de Lyon, Lyon, France
| | - Karen Moreau
- Laboratoire “Rétrovirus et Pathologie Comparée”, UMR 754-Institut National de la Recherche Agronomique/Université de Lyon, École Nationale Vétérinaire de Lyon, Lyon, France
| | - Xavier Robert
- Biocristallographie et Biologie Structurale des Cibles Thérapeutiques, Institut de Biologie et Chimie des Protéines, UMR 5086 BMSSI-Centre National de la Recherche Scientifique/Université de Lyon, Lyon, France
| | - Marie-Pierre Confort
- Laboratoire “Rétrovirus et Pathologie Comparée”, UMR 754-Institut National de la Recherche Agronomique/Université de Lyon, École Nationale Vétérinaire de Lyon, Lyon, France
| | - Romain Merceron
- Biocristallographie et Biologie Structurale des Cibles Thérapeutiques, Institut de Biologie et Chimie des Protéines, UMR 5086 BMSSI-Centre National de la Recherche Scientifique/Université de Lyon, Lyon, France
| | - Richard Haser
- Biocristallographie et Biologie Structurale des Cibles Thérapeutiques, Institut de Biologie et Chimie des Protéines, UMR 5086 BMSSI-Centre National de la Recherche Scientifique/Université de Lyon, Lyon, France
| | - Corinne Ronfort
- Laboratoire “Rétrovirus et Pathologie Comparée”, UMR 754-Institut National de la Recherche Agronomique/Université de Lyon, École Nationale Vétérinaire de Lyon, Lyon, France
- * E-mail: (CR); (PG)
| | - Patrice Gouet
- Biocristallographie et Biologie Structurale des Cibles Thérapeutiques, Institut de Biologie et Chimie des Protéines, UMR 5086 BMSSI-Centre National de la Recherche Scientifique/Université de Lyon, Lyon, France
- * E-mail: (CR); (PG)
| |
Collapse
|
7
|
Kim S, Rusmevichientong A, Dong B, Remenyi R, Silverman RH, Chow SA. Fidelity of target site duplication and sequence preference during integration of xenotropic murine leukemia virus-related virus. PLoS One 2010; 5:e10255. [PMID: 20421928 PMCID: PMC2857682 DOI: 10.1371/journal.pone.0010255] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2010] [Accepted: 03/28/2010] [Indexed: 11/18/2022] Open
Abstract
Xenotropic murine leukemia virus (MLV)-related virus (XMRV) is a new human retrovirus associated with prostate cancer and chronic fatigue syndrome. The causal relationship of XMRV infection to human disease and the mechanism of pathogenicity have not been established. During retrovirus replication, integration of the cDNA copy of the viral RNA genome into the host cell chromosome is an essential step and involves coordinated joining of the two ends of the linear viral DNA into staggered sites on target DNA. Correct integration produces proviruses that are flanked by a short direct repeat, which varies from 4 to 6 bp among the retroviruses but is invariant for each particular retrovirus. Uncoordinated joining of the two viral DNA ends into target DNA can cause insertions, deletions, or other genomic alterations at the integration site. To determine the fidelity of XMRV integration, cells infected with XMRV were clonally expanded and DNA sequences at the viral-host DNA junctions were determined and analyzed. We found that a majority of the provirus ends were correctly processed and flanked by a 4-bp direct repeat of host DNA. A weak consensus sequence was also detected at the XMRV integration sites. We conclude that integration of XMRV DNA involves a coordinated joining of two viral DNA ends that are spaced 4 bp apart on the target DNA and proceeds with high fidelity.
Collapse
Affiliation(s)
- Sanggu Kim
- Biomedical Engineering Interdepartmental Program, University of California Los Angeles, Los Angeles, California, United States of America
| | - Alice Rusmevichientong
- Department of Molecular and Medical Pharmacology, Molecular Biology Institute, and University of California Los Angeles AIDS Institute, University of California Los Angeles School of Medicine, Los Angeles, California, United States of America
| | - Beihua Dong
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Roland Remenyi
- Department of Molecular and Medical Pharmacology, Molecular Biology Institute, and University of California Los Angeles AIDS Institute, University of California Los Angeles School of Medicine, Los Angeles, California, United States of America
| | - Robert H. Silverman
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Samson A. Chow
- Biomedical Engineering Interdepartmental Program, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Molecular and Medical Pharmacology, Molecular Biology Institute, and University of California Los Angeles AIDS Institute, University of California Los Angeles School of Medicine, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
8
|
Moreau K, Charmetant J, Gallay K, Faure C, Verdier G, Ronfort C. Avian sarcoma and leukemia virus (ASLV) integration in vitro: mutation or deletion of integrase (IN) recognition sequences does not prevent but only reduces the efficiency and accuracy of DNA integration. Virology 2009; 392:94-102. [PMID: 19638332 DOI: 10.1016/j.virol.2009.06.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 05/21/2009] [Accepted: 06/18/2009] [Indexed: 11/15/2022]
Abstract
Integrase (IN) is the enzyme responsible for provirus integration of retroviruses into the host cell genome. We used an Avian Sarcoma and Leukemia Viruses (ASLV) integration assay to investigate the way in which IN integrates substrates mutated or devoid of one or both IN recognition sequences. We found that replacing U5 by non-viral sequences (U5del) or U3 by a mutated sequence (pseudoU3) resulted in two and three fold reduction of two-ended integration (integration of the two ends from a donor DNA) respectively, but had a slight effect on concerted integration (integration of both ends at the same site of target DNA). Further, IN was still able to integrate the viral ends of the double mutant (pseudoU3/U5del) in a two-ended and concerted integration reaction. However, efficiency and accuracy (i.e. fidelity of size duplication and of end cleavage) of integration were reduced.
Collapse
Affiliation(s)
- Karen Moreau
- Institut National de la Recherche Agronomique, UMR754, Lyon, F-69007, France
| | | | | | | | | | | |
Collapse
|
9
|
Oh J, Chang KW, Hughes SH. Mutations in the U5 sequences adjacent to the primer binding site do not affect tRNA cleavage by rous sarcoma virus RNase H but do cause aberrant integrations in vivo. J Virol 2007; 80:451-9. [PMID: 16352569 PMCID: PMC1317513 DOI: 10.1128/jvi.80.1.451-459.2006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In most retroviruses, the first nucleotide added to the tRNA primer becomes the right end of the U5 region in the right long terminal repeat (LTR); the removal of this tRNA primer by RNase H defines the right end of the linear double-stranded DNA. Most retroviruses have two nucleotides between the 5' end of the primer binding site (PBS) and the CA dinucleotide that will become the end of the integrated provirus. However, human immunodeficiency virus type 1 (HIV-1) has only one nucleotide at this position, and HIV-2 has three nucleotides. We changed the two nucleotides (TT) between the PBS and the CA dinucleotide of the Rous sarcoma virus (RSV)-derived vector RSVP(A)Z to match the HIV-1 sequence (G) and the HIV-2 sequence (GGT), and we changed the CA dinucleotide to TC. In all three mutants, RNase H removes the entire tRNA primer. Sequence analysis of RSVP(HIV2) proviruses suggests that RSV integrase can remove three nucleotides from the U5 LTR terminus of the linear viral DNA during integration, although this mutation significantly reduced virus titer, suggesting that removing three nucleotides is inefficient. However, the results obtained with RSVP(HIV1) and RSVP(CATC) show that RSV integrase can process and integrate the normal U3 LTR terminus of a linear DNA independently of an aberrant U5 LTR terminus. The aberrant end can then be joined to the host DNA by unusual processes that do not involve the conserved CA dinucleotide. These unusual events generate either large duplications or, less frequently, deletions in the host genomic DNA instead of the normal 5- to 6-base duplications.
Collapse
Affiliation(s)
- Jangsuk Oh
- HIV Drug Resistance Program, NCI at Frederick, P.O. Box B, Bldg. 539, Rm. 130A, Frederick, MD 21702-1201, USA
| | | | | |
Collapse
|
10
|
Sinha S, Grandgenett DP. Recombinant human immunodeficiency virus type 1 integrase exhibits a capacity for full-site integration in vitro that is comparable to that of purified preintegration complexes from virus-infected cells. J Virol 2005; 79:8208-16. [PMID: 15956566 PMCID: PMC1143728 DOI: 10.1128/jvi.79.13.8208-8216.2005] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Retrovirus preintegration complexes (PIC) in virus-infected cells contain the linear viral DNA genome (approximately 10 kbp), viral proteins including integrase (IN), and cellular proteins. After transport of the PIC into the nucleus, IN catalyzes the concerted insertion of the two viral DNA ends into the host chromosome. This successful insertion process is termed "full-site integration." Reconstitution of nucleoprotein complexes using recombinant human immunodeficiency virus type 1 (HIV-1) IN and model viral DNA donor substrates (approximately 0.30 to 0.48 kbp in length) that are capable of catalyzing efficient full-site integration has proven difficult. Many of the products are half-site integration reactions where either IN inserts only one end of the viral donor substrate into a circular DNA target or into other donors. In this report, we have purified recombinant HIV-1 IN at pH 6.8 in the presence of MgSO4 that performed full-site integration nearly as efficiently as HIV-1 PIC. The size of the viral DNA substrate was significantly increased to 4.1 kbp, thus allowing for the number of viral DNA ends and the concentrations of IN in the reaction mixtures to be decreased by a factor of approximately 10. In a typical reaction at 37 degrees C, recombinant HIV-1 IN at 5 to 10 nM incorporated 30 to 40% of the input DNA donor into full-site integration products. The synthesis of full-site products continued up to approximately 2 h, comparable to incubation times used with HIV-1 PIC. Approximately 5% of the input donor was incorporated into the circular target producing half-site products with no significant quantities of other integration products produced. DNA sequence analysis of the viral DNA-target junctions derived from wild-type U3 and U5 coupled reactions showed an approximately 70% fidelity for the HIV-1 5-bp host site duplications. Recombinant HIV-1 IN successfully utilized a mutant U5 end containing additional nucleotide extensions for full-site integration demonstrating that IN worked properly under nonideal active substrate conditions. The fidelity of the 5-bp host site duplications was also high with these coupled mutant U5 and wild-type U3 donor ends. These studies suggest that recombinant HIV-1 IN is at least as capable as native IN in virus particles and approaching that observed with HIV-1 PIC for catalyzing full-site integration.
Collapse
Affiliation(s)
- Sapna Sinha
- St. Louis University Health Sciences Center, Institute for Molecular Virology, 3681 Park Ave., St. Louis, Missouri 63110, USA
| | | |
Collapse
|
11
|
Maertens G, Vercammen J, Debyser Z, Engelborghs Y. Measuring protein‐protein interactions inside living cells using single color fluorescence correlation spectroscopy. Application to human immunodeficiency virus type 1 integrase and LEDGF/p75. FASEB J 2005; 19:1039-41. [PMID: 15788449 DOI: 10.1096/fj.04-3373fje] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Recently we described the interaction of human immunodeficiency virus type 1 (HIV-1)1 integrase (IN) with a cellular protein, lens epithelium-derived growth factor/transcription co-activator p75 (LEDGF/p75). We now present the study of the diffusion behavior of the three independent domains of IN and LEDGF/p75 using fluorescence correlation microscopy (FCM). We show that diffusion in the cell of the different enhanced green fluorescent protein (EGFP) fusion proteins is described by two components with different fractions and that the average parameters in the nucleus are comparable with those in the cytoplasm. In addition, we demonstrate that specific interaction between EGFP-fused HIV-1 IN and LEDGF/p75 results in a shift in diffusion coefficient (D). The opposite shift was observed in an IN-deletion mutant that does not exhibit LEDGF/p75 binding or in a LEDGF/p75 knock-down experiment using siRNA. We thus demonstrate that protein-protein interactions can be studied in living cells, using single-color FCM (scFCM).
Collapse
Affiliation(s)
- Goedele Maertens
- Laboratory of Biomolecular Dynamics, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | |
Collapse
|