1
|
Sunthornthummas S, Doi K, Fujino Y, Rangsiruji A, Sarawaneeyaruk S, Insian K, Pringsulaka O. Genomic characterisation of Lacticaseibacillus paracasei phage ΦT25 and preliminary analysis of its derived endolysin. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2020.104968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
2
|
Jarocki P, Komoń-Janczara E, Podleśny M, Kholiavskyi O, Pytka M, Kordowska-Wiater M. Genomic and Proteomic Characterization of Bacteriophage BH1 Spontaneously Released from Probiotic Lactobacillus rhamnosus Pen. Viruses 2019; 11:E1163. [PMID: 31888239 PMCID: PMC6950654 DOI: 10.3390/v11121163] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 02/06/2023] Open
Abstract
Lactobacillus rhamnosus Pen is a human endogenous strain used for the production of probiotic formula, which is effective in the prevention of antibiotic-associated diarrhoea. Our study showed that this probiotic strain releases bacteriophage BH1 without the addition of any inducing agent. Our research revealed that phage BH1 has a circular genome with a length of 40721 nt and a GC content of 44.8%. The genome of phage BH1 possesses 57 open reading frames which could be divided into functional modules associated with DNA packaging, morphogenesis, lysis, integration, genetic switch, and replication. In spite of similarity in morphology and genomic organization, comparative analysis revealed substantial genetic diversity and mosaic genomic architecture among phages described for the Lactobacillus casei group. Additionally, qPCR and ddPCR analysis confirmed earlier microscopic observations indicating that L. rhamnosus Pen liberates bacteriophage particles during growth. This occurs spontaneously, and is not a result of external inducing factors. For samples collected after 4 and 24 h of L. rhamnosus Pen culture, the number of attB and attP copies increased 2.5 and 12 times, respectively. This phenomenon, by introducing resistance to other phages or enhancing the biofilm-forming capabilities, may increase the survivability of microorganisms in their natural ecological niche. Conversely, spontaneous phage induction may be an important virulence factor for bacteria, posing a potential threat for the human host.
Collapse
Affiliation(s)
- Piotr Jarocki
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, 8 Skromna St., 20-704 Lublin, Poland
| | - Elwira Komoń-Janczara
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, 8 Skromna St., 20-704 Lublin, Poland
| | - Marcin Podleśny
- Process and Development Department, Al. Tysiąclecia Państwa Polskiego 13, Grupa Azoty Zakłady Azotowe “Puławy” S.A, 24-110 Puławy, Poland
| | - Oleksandr Kholiavskyi
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, 8 Skromna St., 20-704 Lublin, Poland
| | - Monika Pytka
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, 8 Skromna St., 20-704 Lublin, Poland
| | - Monika Kordowska-Wiater
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, 8 Skromna St., 20-704 Lublin, Poland
| |
Collapse
|
3
|
Zaburlin D, Mercanti DJ, Quiberoni A. A fast PCR-based method for the characterization of prophage profiles in strains of the Lactobacillus casei group. J Virol Methods 2017; 248:226-233. [PMID: 28757387 DOI: 10.1016/j.jviromet.2017.07.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 07/07/2017] [Accepted: 07/26/2017] [Indexed: 11/18/2022]
Abstract
Lysogeny is widespread among Lactobacillus strains of the casei group (L. casei, L. paracasei and L. rhamnosus), and prophages account for most strain-specific DNA. Numerous PCR based methods have been developed to detect free phages of lactic acid bacteria, but they do not take in consideration prophages. In this study, a new PCR method for the detection of lysogeny was developed using genome sequences of L. casei group strains (including BL23) and bacteriophages. Nine pairs of primers were designed to selectively amplify the highly conserved prophage iA2 (pairs #1-#3) and fragments of two groups phages of temperate origin: CL1/CL2/iLp1308/iLp84 (pairs #4 and #5) and Lrm1/J-1/PL-1/A2/AT3/Lc-Nu (pairs #6 to #9). Forty-nine strains of the casei group were subjected to PCR. Strains containing remnants of lytic phages outnumbered those containing iA2-related prophages. The combination of pair #2, annealing on the terminase large subunit (TLS), and pair #3, annealing on the helicase (forward) and a non-coding region (reverse), showed the best diagnostic performance for iA2-like prophages. For the assessment of remnants of phages CL1/CL2/iLp1308/iLp84, pair #4 (annealing on the TLS) was preferred over pair #5 (portal protein). Detection of phages Lrm1/J-1/PL-1/A2/AT3/Lc-Nu was optimal with primers of pair #6, designed on non-coding regions of phage genomes; pair #6 also evidenced a high conservation of certain prophage remnants. Overall, our PCR-based method successfully detected and discriminated groups of prophages or remnants in L. casei group strains.
Collapse
Affiliation(s)
- Delfina Zaburlin
- Instituto de Lactología Industrial (Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas), Facultad de Ingeniería Química, Santiago del Estero 2829, 3000 Santa Fe, Argentina.
| | - Diego J Mercanti
- Instituto de Lactología Industrial (Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas), Facultad de Ingeniería Química, Santiago del Estero 2829, 3000 Santa Fe, Argentina.
| | - Andrea Quiberoni
- Instituto de Lactología Industrial (Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas), Facultad de Ingeniería Química, Santiago del Estero 2829, 3000 Santa Fe, Argentina.
| |
Collapse
|
4
|
Characterization of prophages containing "evolved" Dit/Tal modules in the genome of Lactobacillus casei BL23. Appl Microbiol Biotechnol 2016; 100:9201-9215. [PMID: 27448399 DOI: 10.1007/s00253-016-7727-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/26/2016] [Accepted: 07/02/2016] [Indexed: 12/21/2022]
Abstract
Lactic acid bacteria (LAB) have many applications in food and industrial fermentations. Prophage induction and generation of new virulent phages is a risk for the dairy industry. We identified three complete prophages (PLE1, PLE2, and PLE3) in the genome of the well-studied probiotic strain Lactobacillus casei BL23. All of them have mosaic architectures with homologous sequences to Streptococcus, Lactococcus, Lactobacillus, and Listeria phages or strains. Using a combination of quantitative real-time PCR, genomics, and proteomics, we showed that PLE2 and PLE3 can be induced-but with different kinetics-in the presence of mitomycin C, although PLE1 remains as a prophage. A structural analysis of the distal tail (Dit) and tail associated lysin (Tal) baseplate proteins of these prophages and other L. casei/paracasei phages and prophages provides evidence that carbohydrate-binding modules (CBM) located within these "evolved" proteins may replace receptor binding proteins (RBPs) present in other well-studied LAB phages. The detailed study of prophage induction in this prototype strain in combination with characterization of the proteins involved in host recognition will facilitate the design of new strategies for avoiding phage propagation in the dairy industry.
Collapse
|
5
|
Ceapa C, Davids M, Ritari J, Lambert J, Wels M, Douillard FP, Smokvina T, de Vos WM, Knol J, Kleerebezem M. The Variable Regions of Lactobacillus rhamnosus Genomes Reveal the Dynamic Evolution of Metabolic and Host-Adaptation Repertoires. Genome Biol Evol 2016; 8:1889-905. [PMID: 27358423 PMCID: PMC4943194 DOI: 10.1093/gbe/evw123] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Lactobacillus rhamnosus is a diverse Gram-positive species with strains isolated from different ecological niches. Here, we report the genome sequence analysis of 40 diverse strains of L. rhamnosus and their genomic comparison, with a focus on the variable genome. Genomic comparison of 40 L. rhamnosus strains discriminated the conserved genes (core genome) and regions of plasticity involving frequent rearrangements and horizontal transfer (variome). The L. rhamnosus core genome encompasses 2,164 genes, out of 4,711 genes in total (the pan-genome). The accessory genome is dominated by genes encoding carbohydrate transport and metabolism, extracellular polysaccharides (EPS) biosynthesis, bacteriocin production, pili production, the cas system, and the associated clustered regularly interspaced short palindromic repeat (CRISPR) loci, and more than 100 transporter functions and mobile genetic elements like phages, plasmid genes, and transposons. A clade distribution based on amino acid differences between core (shared) proteins matched with the clade distribution obtained from the presence–absence of variable genes. The phylogenetic and variome tree overlap indicated that frequent events of gene acquisition and loss dominated the evolutionary segregation of the strains within this species, which is paralleled by evolutionary diversification of core gene functions. The CRISPR-Cas system could have contributed to this evolutionary segregation. Lactobacillus rhamnosus strains contain the genetic and metabolic machinery with strain-specific gene functions required to adapt to a large range of environments. A remarkable congruency of the evolutionary relatedness of the strains’ core and variome functions, possibly favoring interspecies genetic exchanges, underlines the importance of gene-acquisition and loss within the L. rhamnosus strain diversification.
Collapse
Affiliation(s)
- Corina Ceapa
- Gut Biology & Microbiology Platform, Nutricia Research Centre, Utrecht, the Netherlands Laboratory of Microbiology, Wageningen University, the Netherlands
| | - Mark Davids
- Laboratory of Systems and Synthetic Biology, Wageningen University, the Netherlands
| | - Jarmo Ritari
- RPU Immunobiology, Department of Bacteriology and Immunology, University of Helsinki, Finland
| | - Jolanda Lambert
- Gut Biology & Microbiology Platform, Nutricia Research Centre, Utrecht, the Netherlands
| | | | | | | | - Willem M de Vos
- Laboratory of Microbiology, Wageningen University, the Netherlands RPU Immunobiology, Department of Bacteriology and Immunology, University of Helsinki, Finland Department of Veterinary Biosciences, University of Helsinki, Finland
| | - Jan Knol
- Gut Biology & Microbiology Platform, Nutricia Research Centre, Utrecht, the Netherlands Laboratory of Microbiology, Wageningen University, the Netherlands
| | - Michiel Kleerebezem
- Host-Microbe Interactomics Group, Department of Animal Sciences, Wageningen University and Research Centre, Wageningen, the Netherlands
| |
Collapse
|
6
|
Zhang X, Lan Y, Jiao W, Li Y, Tang L, Jiang Y, Cui W, Qiao X. Isolation and Characterization of a Novel Virulent Phage of Lactobacillus casei ATCC 393. FOOD AND ENVIRONMENTAL VIROLOGY 2015; 7:333-341. [PMID: 26123178 DOI: 10.1007/s12560-015-9206-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 06/22/2015] [Indexed: 06/04/2023]
Abstract
A new virulent phage (Lcb) of Lactobacillus casei ATCC 393 was isolated from Chinese sauerkraut. It was specific to L. casei ATCC 393. Electron micrograph revealed that it had an icosahedral head (60.2 ± 0.8 nm in diameter) and a long tail (251 ± 2.6 nm). It belonged to the Siphoviridae family. The genome of phage Lcb was estimated to be approximately 40 kb and did not contain cohesive ends. One-step growth kinetics of its lytic development revealed latent and burst periods of 75 and 45 min, respectively, with a burst size of 16 PFU per infected cell. The phage was able to survive in a pH range between 4 and 11. However, a treatment of 70 °C for 30 min and 75% ethanol or isopropanol for 20 min was observed to inactivate phage Lcb thoroughly. The presence of both Ca(2+) and Mg(2+) showed a little influence on phage adsorption, but they were indispensable to gain complete lysis and improve plaque formation. The adsorption kinetics were similar on viable or nonviable cells, and high adsorption rates maintained between 10 and 37 °C. The highest adsorption rate was at 30 °C. This study increased the knowledge on phages of L. casei. The characterization of phage Lcb is helpful to establish a basis for adopting effective strategies to control phage attack in industry.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Preventive Veterinary, College of Veterinary, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Yu Lan
- Department of Preventive Veterinary, College of Veterinary, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Wenchao Jiao
- Department of Preventive Veterinary, College of Veterinary, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Yijing Li
- Department of Preventive Veterinary, College of Veterinary, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Lijie Tang
- Department of Preventive Veterinary, College of Veterinary, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Yanping Jiang
- Department of Preventive Veterinary, College of Veterinary, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Wen Cui
- Department of Preventive Veterinary, College of Veterinary, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Xinyuan Qiao
- Department of Preventive Veterinary, College of Veterinary, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China.
| |
Collapse
|
7
|
Genomic Diversity of Phages Infecting Probiotic Strains of Lactobacillus paracasei. Appl Environ Microbiol 2015; 82:95-105. [PMID: 26475105 DOI: 10.1128/aem.02723-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/11/2015] [Indexed: 01/21/2023] Open
Abstract
Strains of the Lactobacillus casei group have been extensively studied because some are used as probiotics in foods. Conversely, their phages have received much less attention. We analyzed the complete genome sequences of five L. paracasei temperate phages: CL1, CL2, iLp84, iLp1308, and iA2. Only phage iA2 could not replicate in an indicator strain. The genome lengths ranged from 34,155 bp (iA2) to 39,474 bp (CL1). Phages iA2 and iLp1308 (34,176 bp) possess the smallest genomes reported, thus far, for phages of the L. casei group. The GC contents of the five phage genomes ranged from 44.8 to 45.6%. As observed with many other phages, their genomes were organized as follows: genes coding for DNA packaging, morphogenesis, lysis, lysogeny, and replication. Phages CL1, CL2, and iLp1308 are highly related to each other. Phage iLp84 was also related to these three phages, but the similarities were limited to gene products involved in DNA packaging and structural proteins. Genomic fragments of phages CL1, CL2, iLp1308, and iLp84 were found in several genomes of L. casei strains. Prophage iA2 is unrelated to these four phages, but almost all of its genome was found in at least four L. casei strains. Overall, these phages are distinct from previously characterized Lactobacillus phages. Our results highlight the diversity of L. casei phages and indicate frequent DNA exchanges between phages and their hosts.
Collapse
|
8
|
Exposing the secrets of two well-known Lactobacillus casei phages, J-1 and PL-1, by genomic and structural analysis. Appl Environ Microbiol 2014; 80:7107-21. [PMID: 25217012 DOI: 10.1128/aem.02771-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteriophage J-1 was isolated in 1965 from an abnormal fermentation of Yakult using Lactobacillus casei strain Shirota, and a related phage, PL-1, was subsequently recovered from a strain resistant to J-1. Complete genome sequencing shows that J-1 and PL-1 are almost identical, but PL-1 has a deletion of 1.9 kbp relative to J-1, resulting in the loss of four predicted gene products involved in immunity regulation. The structural proteins were identified by mass spectrometry analysis. Similarly to phage A2, two capsid proteins are generated by a translational frameshift and undergo proteolytic processing. The structure of gene product 16 (gp16), a putative tail protein, was modeled based on the crystal structure of baseplate distal tail proteins (Dit) that form the baseplate hub in other Siphoviridae. However, two regions of the C terminus of gp16 could not be modeled using this template. The first region accounts for the differences between J-1 and PL-1 gp16 and showed sequence similarity to carbohydrate-binding modules (CBMs). J-1 and PL-1 GFP-gp16 fusions bind specifically to Lactobacillus casei/paracasei cells, and the addition of l-rhamnose inhibits binding. J-1 gp16 exhibited a higher affinity than PL-1 gp16 for cell walls of L. casei ATCC 27139 in phage adsorption inhibition assays, in agreement with differential adsorption kinetics observed for both phages in this strain. The data presented here provide insights into how Lactobacillus phages interact with their hosts at the first steps of infection.
Collapse
|
9
|
Stable integration and expression of heterologous genes in several lactobacilli using an integration vector constructed from the integrase and attP sequences of phage ΦAT3 isolated from Lactobacillus casei ATCC 393. Appl Microbiol Biotechnol 2012; 97:3499-507. [PMID: 23064454 DOI: 10.1007/s00253-012-4393-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 08/23/2012] [Accepted: 08/26/2012] [Indexed: 10/27/2022]
Abstract
An integration vector capable of stably integrating and maintaining in the chromosomes of several lactobacilli over hundreds of generations has been constructed. The major integration machinery used is based on the ΦAT3 integrase (int) and attP sequences determined previously. A novel core sequence located at the 3' end of the tRNA(leu) gene is identified in Lactobacillus fermentum ATCC 14931 as the integration target by the integration vector though most of such sequences found in other lactobacilli are similar to that determined previously. Due to the lack of an appropriate attB site in Lactococcus lactis MG1363, the integration vector is found to be unable to integrate into the chromosome of the strain. However, such integration can be successfully restored by cotransforming the integration vector with a replicative one harboring both attB and erythromycin resistance sequences into the strain. Furthermore, the integration vector constructed carries a promoter region of placT from the chromosome of Lactobacillus rhamnosus TCELL-1 which is used to express green fluorescence and luminance protein genes in the lactobacilli studied.
Collapse
|
10
|
Kelly D, O'Sullivan O, Mills S, McAuliffe O, Ross RP, Neve H, Coffey A. Genome sequence of the phage clP1, which infects the beer spoilage bacterium Pediococcus damnosus. Gene 2012; 504:53-63. [PMID: 22564705 DOI: 10.1016/j.gene.2012.04.085] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 02/29/2012] [Accepted: 04/27/2012] [Indexed: 11/25/2022]
Abstract
Pediococcus damnosus (P. damnosus) bacteriophage (phage) clP1 is a novel virulent phage isolated from a municipal sewage sample collected in Southern Ireland. This phage infects the beer spoilage strain P. damnosus P82 which was isolated from German breweries. Sequencing of the phage has revealed a linear double stranded DNA genome of 38,013 base pairs (bp) with an overall GC content of 47.6%. Fifty seven open reading frames (ORFs) were identified of which 30 showed homology to previously sequenced proteins, and as a consequence 20 of these were assigned predicted functions. The majority of genes displayed homology with genes from the Lactobacillus plantarum phage phiJL-1. All genes were located on the same coding strand and in the same orientation. Morphological characterisation placed phage clP1 as a member of the Siphoviridae family with an isometric head (59 nm diameter) and non-contractile tail (length 175 nm; diameter 10nm. Interestingly, the phage clP1 genome was found to share very limited identity with other phage genome sequences in the database, and was hence considered unique. This was highlighted by the genome organisation which differed slightly to the consensus pattern of genomic organisation usually found in Siphoviridae phages. With the genetic machinery present for a lytic lifecycle and the absence of potential endotoxin factors, this phage may have applications in the biocontrol of beer spoilage bacteria. To our knowledge, this study represents the first reported P. damnosus phage genome sequence.
Collapse
Affiliation(s)
- David Kelly
- Department of Biological Sciences, Cork Institute of Technology, Co. Cork, Ireland
| | | | | | | | | | | | | |
Collapse
|
11
|
Yoon BH, Jang SH, Chang HI. Sequence analysis of the Lactobacillus temperate phage Sha1. Arch Virol 2011; 156:1681-4. [PMID: 21701917 DOI: 10.1007/s00705-011-1048-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 05/10/2011] [Indexed: 10/18/2022]
Abstract
Bacteriophage Sha1, a newly isolated temperate phage from a mitomycin-C-induced lysate of Lactobacillus plantarum isolated from Kimchi, has an isometric head (58 nm × 60 nm) and a long tail (259 nm × 11 nm). The double-strand DNA genome of the phage Sha1 was 41,726 base pairs (bp) long, with a G+C content of 40.61%. Bioinformatic analysis of Sha1 shows that this phage contains 58 putative open reading frames (ORFs). Sha1 can be classified as a member of the large family Siphoviridae by genomic structure and morphology. To our knowledge, this is the first report of genomic sequencing and characterization of temperate phage Sha1 from wild-type L. plantarum isolated from kimchi in Korea.
Collapse
Affiliation(s)
- Bo Hyun Yoon
- College of Life Sciences and Biotechnology, Korea University, 5-1 Anam-Dong, Sungbuk-Gu, Seoul, Korea
| | | | | |
Collapse
|
12
|
Capra M, Mercanti D, Rossetti L, Reinheimer J, Quiberoni A. Isolation and phenotypic characterization of Lactobacillus casei and Lactobacillus paracasei bacteriophage-resistant mutants. J Appl Microbiol 2011; 111:371-81. [DOI: 10.1111/j.1365-2672.2011.05056.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
13
|
Widely distributed lysogeny in probiotic lactobacilli represents a potentially high risk for the fermentative dairy industry. Int J Food Microbiol 2011; 144:503-10. [DOI: 10.1016/j.ijfoodmicro.2010.11.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 10/13/2010] [Accepted: 11/07/2010] [Indexed: 11/24/2022]
|
14
|
Genome analysis of the Clostridium difficile phage PhiCD6356, a temperate phage of the Siphoviridae family. Gene 2010; 462:34-43. [PMID: 20438817 DOI: 10.1016/j.gene.2010.04.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 04/21/2010] [Accepted: 04/21/2010] [Indexed: 11/23/2022]
Abstract
The temperate phages PhiCD6356 and PhiCD6365 were isolated and characterised following mitomycin C induction of 43 Clostridium difficile strains. Both phages belong to the Siphoviridae family and have genome sizes of 37,664 bp for PhiCD6356 based on sequence data and approximately 50 kb for PhiCD6365 based on restriction analysis. Protein analysis revealed similar protein profiles and indicated posttranslational processing of the PhiCD6356 major capsid protein. The genome sequence of PhiCD6356 is substantially different from other previously reported phage sequences and a putative function could be assigned to only 21 out of 59 predicted open reading frames. However, the genome organisation closely resembles that of other members of the Siphoviridae family which infect low GC-content Gram-positive bacteria. The modular organisation, genome synteny, presence of cohesive ends and posttranslational processing of the capsid protein suggest PhiCD6356 is a member of the proposed Sfi21-like genera. To our knowledge, this report represents the first C. difficile phage of the Siphoviridae family to be sequenced.
Collapse
|
15
|
CAPRA MARIAL, MERCANTI DIEGOJ, REINHEIMER JORGEA, QUIBERONI ANDREAL. Characterisation of three temperate phages released from the same Lactobacillus paracasei commercial strain. INT J DAIRY TECHNOL 2010. [DOI: 10.1111/j.1471-0307.2010.00600.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Hatfull GF, Jacobs-Sera D, Lawrence JG, Pope WH, Russell DA, Ko CC, Weber RJ, Patel MC, Germane KL, Edgar RH, Hoyte NN, Bowman CA, Tantoco AT, Paladin EC, Myers MS, Smith AL, Grace MS, Pham TT, O'Brien MB, Vogelsberger AM, Hryckowian AJ, Wynalek JL, Donis-Keller H, Bogel MW, Peebles CL, Cresawn SG, Hendrix RW. Comparative genomic analysis of 60 Mycobacteriophage genomes: genome clustering, gene acquisition, and gene size. J Mol Biol 2010; 397:119-43. [PMID: 20064525 DOI: 10.1016/j.jmb.2010.01.011] [Citation(s) in RCA: 234] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 12/08/2009] [Accepted: 01/05/2010] [Indexed: 10/20/2022]
Abstract
Mycobacteriophages are viruses that infect mycobacterial hosts. Expansion of a collection of sequenced phage genomes to a total of 60-all infecting a common bacterial host-provides further insight into their diversity and evolution. Of the 60 phage genomes, 55 can be grouped into nine clusters according to their nucleotide sequence similarities, 5 of which can be further divided into subclusters; 5 genomes do not cluster with other phages. The sequence diversity between genomes within a cluster varies greatly; for example, the 6 genomes in Cluster D share more than 97.5% average nucleotide similarity with one another. In contrast, similarity between the 2 genomes in Cluster I is barely detectable by diagonal plot analysis. In total, 6858 predicted open-reading frames have been grouped into 1523 phamilies (phams) of related sequences, 46% of which possess only a single member. Only 18.8% of the phams have sequence similarity to non-mycobacteriophage database entries, and fewer than 10% of all phams can be assigned functions based on database searching or synteny. Genome clustering facilitates the identification of genes that are in greatest genetic flux and are more likely to have been exchanged horizontally in relatively recent evolutionary time. Although mycobacteriophage genes exhibit a smaller average size than genes of their host (205 residues compared with 315), phage genes in higher flux average only 100 amino acids, suggesting that the primary units of genetic exchange correspond to single protein domains.
Collapse
Affiliation(s)
- Graham F Hatfull
- Department of Biological Sciences, Pittsburgh Bacteriophage Institute, Pittsburgh, PA 15260, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Alemayehu D, Ross RP, O'Sullivan O, Coffey A, Stanton C, Fitzgerald GF, McAuliffe O. Genome of a virulent bacteriophage Lb338-1 that lyses the probiotic Lactobacillus paracasei cheese strain. Gene 2009; 448:29-39. [PMID: 19712732 DOI: 10.1016/j.gene.2009.08.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 08/11/2009] [Accepted: 08/12/2009] [Indexed: 01/30/2023]
Abstract
There is a lack of fundamental knowledge about the influence of bacteriophage on probiotic bacteria and other commensals in the gut. Here, we present the isolation and morphological and genetic characterization of a virulent narrow-host-range bacteriophage, phiLb338-1. This phage was isolated from fresh sewage and was shown to infect the probiotic cheese strain Lactobacillus paracasei NFBC 338. Electron microscopy studies revealed that phiLb338-1 is a member of the Myoviridae family, with an isometric head, a medium-sized contractile tail, and a complex base plate. Genome sequencing revealed a 142-kb genome with 199 open reading frames. Putative functions could be assigned to 22% of the open reading frames; these had significant homology to genes found in the broad-host-range SPO1-like group of phages which includes the Enterococcus faecalis phage phiEF24C, Listeria phage A511, and Lactobacillus plantarum phage LP65. Interestingly, no significant genomic similarity was observed between the phage and the probiotic host strain. Future studies will determine if the presence of bacteriophage phiLb338-1 or others in the human or animal gut plays an antagonistic role against the probiotic effect of beneficial bacteria.
Collapse
Affiliation(s)
- Debebe Alemayehu
- Biotechnology Department, Moorepark Food Research Centre, Teagasc-Moorepark, Cork, Ireland
| | | | | | | | | | | | | |
Collapse
|
18
|
Capra M, Binetti A, Mercanti D, Quiberoni A, Reinheimer J. Diversity among Lactobacillus paracasei phages isolated from a probiotic dairy product plant. J Appl Microbiol 2009; 107:1350-7. [DOI: 10.1111/j.1365-2672.2009.04313.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Nomoto K, Kiwaki M, Tsuji H. Genetic Modification of Probiotic Microorganisms. HANDBOOK OF PROBIOTICS AND PREBIOTICS 2008:189-255. [DOI: 10.1002/9780470432624.ch3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
20
|
Genome sequence and characteristics of Lrm1, a prophage from industrial Lactobacillus rhamnosus strain M1. Appl Environ Microbiol 2008; 74:4601-9. [PMID: 18539811 DOI: 10.1128/aem.00010-08] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prophage Lrm1 was induced with mitomycin C from an industrial Lactobacillus rhamnosus starter culture, M1. Electron microscopy of the lysate revealed relatively few intact bacteriophage particles among empty heads and disassociated tails. The defective Siphoviridae phage had an isometric head of approximately 55 nm and noncontractile tail of about 275 nm with a small baseplate. In repeated attempts, the prophage could not be cured from L. rhamnosus M1, nor could a sensitive host be identified. Sequencing of the phage Lrm1 DNA revealed a genome of 39,989 bp and a G+C content of 45.5%. A similar genomic organization and mosaic pattern of identities align Lrm1 among the closely related Lactobacillus casei temperate phages A2, PhiAT3, and LcaI and with L. rhamnosus virulent phage Lu-Nu. Of the 54 open reading frames (ORFs) identified, all but 8 shared homology with other phages of this group. Five unknown ORFs were identified that had no homologies in the databases nor predicted functions. Notably, Lrm1 encodes a putative endonuclease and a putative DNA methylase with homology to a methylase in Lactococcus lactis phage Tuc2009. Possibly, the DNA methylase, endonuclease, or other Lrm1 genes provide a function crucial to L. rhamnosus M1 survival, resulting in the stability of the defective prophage in its lysogenic state. The presence of a defective prophage in an industrial strain could provide superinfection immunity to the host but could also contribute DNA in recombination events to produce new phages potentially infective for the host strain in a large-scale fermentation environment.
Collapse
|
21
|
Lo TC, Chen HW, Tsai YK, Kuo YC, Lin CF, Kuo SY, Lin TH. Formation of an inverted repeat junction in the transposition of insertion sequence ISLC3 isolated from Lactobacillus casei. MICROBIOLOGY-SGM 2008; 154:1047-1058. [PMID: 18375798 DOI: 10.1099/mic.0.2007/013227-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
An insertion sequence, ISLC3, of 1351 bp has been isolated from Lactobacillus casei. Formation of IS circles containing a 3 bp spacer (complete junction) or deletion of 25 bp at the left inverted repeat (IRL) between the abutted IS ends of the ISLC3 junction region (deleted junction) was also discovered in the lactobacilli and Escherichia coli system studied. We found that the promoter formed by the complete junction P(jun) was more active than that formed by the 25 bp deleted junction P(djun) or the indigenous promoter P(IRL). The corresponding transcription start sites for both promoter P(jun) and P(IRL) as well as P(djun) were subsequently determined using a primer extension assay. The activity of transposase OrfAB of ISLC3 was also assayed using an in vitro system. It was found that this transposase preferred to cleave a single DNA strand at the IRR over the IRL end in the transposition process, suggesting that attack of one end by the other was oriented from IRR to IRL.
Collapse
Affiliation(s)
- Ta-Chun Lo
- Institute of Molecular Medicine and Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Hung-Wen Chen
- Institute of Molecular Medicine and Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Yu-Kuo Tsai
- Institute of Molecular Medicine and Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Yang-Cheng Kuo
- Institute of Molecular Medicine and Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Chao-Fen Lin
- Institute of Molecular Medicine and Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Ssu-Ying Kuo
- Institute of Molecular Medicine and Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Thy-Hou Lin
- Institute of Molecular Medicine and Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, ROC
| |
Collapse
|
22
|
Ackermann HW, Kropinski AM. Curated list of prokaryote viruses with fully sequenced genomes. Res Microbiol 2007; 158:555-66. [PMID: 17889511 DOI: 10.1016/j.resmic.2007.07.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2007] [Revised: 07/18/2007] [Accepted: 07/18/2007] [Indexed: 11/19/2022]
Abstract
Genome sequencing is of enormous importance for classification of prokaryote viruses and for understanding the evolution of these viruses. This survey covers 284 sequenced viruses for which a full description has been published and for which the morphology is known. This corresponds to 219 (4%) of tailed and 75 (36%) of tailless viruses of prokaryotes. The number of sequenced tailless viruses almost doubles if viruses of unknown morphology are counted. The sequences are from representatives of 15 virus families and three groups without family status, including eight taxa of archaeal viruses. Tailed phages, especially those with large genomes and hosts other than enterobacteria or lactococci, mycobacteria and pseudomonads, are vastly under investigated.
Collapse
Affiliation(s)
- Hans-W Ackermann
- Felix d'Herelle Reference Center for Bacterial Viruses, Department of Medical Biology, Faculty of Medicine, Laval University, Québec, QC G1K 7P4, Canada.
| | | |
Collapse
|
23
|
Capra ML, Del L Quiberoni A, Ackermann HW, Moineau S, Reinheimer JA. Characterization of a new virulent phage (MLC-A) of Lactobacillus paracasei. J Dairy Sci 2006; 89:2414-23. [PMID: 16772557 DOI: 10.3168/jds.s0022-0302(06)72314-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A new virulent bacteriophage (MLC-A) was recently isolated in Argentina from a probiotic dairy product containing a strain of Lactobacillus paracasei. Observation of the lysate with an electron microscope revealed bacteriophage particles with an icosahedral capsid of 57 +/- 2 nm; with a collar and a noncontractile tail of 156 +/- 3 nm terminating with a baseplate to which a tail fiber was attached. Therefore, phage MLC-A belongs to the Siphoviridae family. This phage was able to survive the pasteurization process and was resistant to alcohols and sodium hypochlorite (400 mg/kg). Only peracetic acid could inactivate high-titer suspensions of phages in a short time. The maximum rates of phage adsorption to its host cells were obtained at 30 degrees C with a pH between 5 and 7, and in the presence of calcium or magnesium ions. The host range of phage MLC-A encompassed L. paracasei and Lactobacillus casei strains, but it was not able to infect Lactobacillus rhamnosus or Lactobacillus gasseri strains. One-step growth kinetics of its lytic development revealed latent and burst periods of 30 and 135 min, respectively, with a burst size of about 69 +/- 4 plaque-forming units per infected cell. Phage MLC-A had a distinctive restriction profile when compared with the 2 well-studied Lactobacillus phages, PL-1 and J-1. The genome size of the MLC-A phage was estimated to be approximately 37 kb. This study presents the description of the first phage specific for L. paracasei isolated in Argentina. The isolation of phage MLC-A indicates that, beside lactic acid bacteria starters, probiotic cultures can also be sensitive to virulent phages in industrial processes.
Collapse
Affiliation(s)
- M L Capra
- Instituto de Lactología Industrial (INLAIN), Facultad de Ingeniería Química (Universidad Nacional del Litoral), Santiago del Estero 2829, 3000 Santa Fe, Argentina.
| | | | | | | | | |
Collapse
|
24
|
Tuohimaa A, Riipinen KA, Brandt K, Alatossava T. The genome of the virulent phage Lc-Nu of probiotic Lactobacillus rhamnosus, and comparative genomics with Lactobacillus casei phages. Arch Virol 2005; 151:947-65. [PMID: 16328134 DOI: 10.1007/s00705-005-0672-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Accepted: 09/28/2005] [Indexed: 12/01/2022]
Abstract
The complete 36,466-bp genome sequence of the virulent phage Lc-Nu of probiotic Lactobacillus rhamnosus was determined. The linear dsDNA with a GC-content of 44.2% contained 3' single-stranded cohesive ends of 12 nucleotides. A total of 51 putative open reading frames (orfs) were predicted. Lc-Nu showed to be evolutionary closely related to the temperate Lactobacillus casei phages phi AT3 and A2. High DNA homology with phi AT3 was shared over the late transcribed genes, and the highest homology with A2 was within the genetic switch region. The truncated cI-like repressor was the only lysogeny related gene left, which strongly suggested Lc-Nu to be recently evolved from a temperate origin. Three putative methylases and endonucleases were detected from the region of early-transcribed genes. The putative origin of replication within the putative gene orf34 homologous to replisome organizers resembled to that of lambdoid phages. The present study suggested Lc-Nu to be a new candidate for the proposed Sfi21-like species.
Collapse
Affiliation(s)
- A Tuohimaa
- Department of Biology, University of Oulu, Oulu, Finland
| | | | | | | |
Collapse
|