1
|
Fullwood RA, Low GM, Chase EP, Grasley M, Beal SS, McCrary IM, Daniels CW, Ingersoll K, Berges BK. The Kaposi's sarcoma-associated herpesvirus viral interleukin 6 gene affects metastasis and expression of B cell markers in a murine xenograft model. PLoS One 2018; 13:e0204947. [PMID: 30265712 PMCID: PMC6161906 DOI: 10.1371/journal.pone.0204947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 09/16/2018] [Indexed: 12/16/2022] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) is a cancer-causing virus in humans, primarily affecting AIDS patients. KSHV causes a range of cancers including Kaposi’s sarcoma, pleural effusion lymphoma and multicentric Castleman’s disease. Current methods available for treating these cancers are relatively ineffective, and new targets for therapy are needed. The KSHV viral homolog of interleukin-6 gene (vIL-6) may play a significant role in tumor development and may serve as a new anti-cancer target, but its role in tumor formation is only partially understood. Here, a novel animal model was used to study how vIL-6 affects tumor development. Highly immune-deficient Rag2-/-γc-/- mice were transplanted with an immortalized human B cell line (BJAB) harboring either wild-type (WT) KSHV or a mutant strain lacking vIL-6 ΔvIL-6). Solid tumors developed and total tumor mass and the number of tumors were characterized. The vIL-6 gene had no significant impact on tumor mass, but significantly more tumors were detected when vIL-6 was present. Significant differences in expression of B cell markers in cells from extracted tumors were detected based upon the presence of vIL-6. B cell markers in tumor cells were also compared to the same cell type in culture, prior to xenotransplantation; B cell markers were mostly downregulated during tumor formation and these changes did not differ based upon the presence of vIL-6. The only marker that significantly increased in expression during tumor development was CD30. Tumor blood vessels were quantified to determine if more angiogenesis occurred with vIL-6-expressing virus, but there was no significant difference. These data indicate that vIL-6 plays a role in KSHV tumor formation in B cells in vivo. Further investigation into how vIL-6 manipulates CD30 expression may shed insight into KSHV oncogenesis, and may identify how vIL-6 can be targeted.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- B-Lymphocytes/virology
- Biomarkers, Tumor/biosynthesis
- Biomarkers, Tumor/genetics
- Gene Expression Regulation, Neoplastic
- Herpesvirus 8, Human/genetics
- Herpesvirus 8, Human/metabolism
- Heterografts
- Humans
- Interleukin-6/biosynthesis
- Interleukin-6/genetics
- Mice
- Mice, Knockout
- Neoplasm Metastasis
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neoplasm Transplantation
- Neoplasms, Plasma Cell/genetics
- Neoplasms, Plasma Cell/metabolism
- Neoplasms, Plasma Cell/pathology
- Neoplasms, Plasma Cell/virology
- Viral Proteins/biosynthesis
- Viral Proteins/genetics
Collapse
Affiliation(s)
- R. Amy Fullwood
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Gregory M. Low
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Emily P. Chase
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Meagan Grasley
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Soren S. Beal
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Ian M. McCrary
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Christian W. Daniels
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Kayleigh Ingersoll
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Bradford K. Berges
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
- * E-mail:
| |
Collapse
|
2
|
Human herpesvirus 8 viral interleukin-6 signaling through gp130 promotes virus replication in primary effusion lymphoma and endothelial cells. J Virol 2014; 88:12167-72. [PMID: 25078695 DOI: 10.1128/jvi.01751-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The contributions of human herpesvirus 8 (HHV-8) viral interleukin-6 (vIL-6) to virus biology remain unclear. Here we examined the role of vIL-6/gp130 signaling in HHV-8 productive replication in primary effusion lymphoma and endothelial cells. Depletion and depletion-complementation experiments revealed that endoplasmic reticulum-localized vIL-6 activity via gp130 and gp130-activated signal transducer and activator of transcription (STAT) signaling, but not extracellular signal-regulated kinase (ERK) activation, was critical for vIL-6 proreplication activity. Our data significantly extend current understanding of vIL-6 function and associated mechanisms in HHV-8 biology.
Collapse
|
3
|
Blattman NN, Lagunoff M, Blattman JN, Corey L. Nuclear factor kappa B is required for the production of infectious human herpesvirus 8 virions. Front Microbiol 2014; 5:129. [PMID: 24795700 PMCID: PMC4006053 DOI: 10.3389/fmicb.2014.00129] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 03/13/2014] [Indexed: 01/10/2023] Open
Abstract
Human herpesvirus 8 (HHV8) infection leads to potent activation of nuclear factor kappa B (NFκB) in primary and transformed cells. We used recombinant HHV8 (rKSHV.219) expressing green fluorescent protein under the constitutive cellular promoter elongation factor 2α and red fluorescent protein under an early HHV8 lytic gene promoter T1.1 to monitor replication during infection of human foreskin fibroblasts (HF), noting changes in NFκB activity. In primary HF, NFκB levels do not affect the ability of HHV8 to establish infection or maintain latency. Furthermore, there was no effect on the percent of cells undergoing reactivation from latency, and there were similar numbers of released and cell-associated HHV8 viral particles following reactivation in the presence of inhibitors. Reactivation of HHV8 in latently infected HF in the presence of NFκB inhibitors resulted in production of viral particles that did not efficiently establish infection, due to deficiencies in binding and/or entry into normally permissive cells. Exogenous expression of glycoprotein M, an envelope protein involved in viral binding and entry, was able to partially overcome the deficiency induced by NFκB inhibitors. Our data indicate that in primary cells, NFκB is not required for infection, establishment of latency, or entry into the lytic cycle, but is required for the expression of virion associated genes involved in the initial steps of virion infectivity. These studies suggest that strategies to inhibit NFκB may prevent HHV8 spread and should be considered as a potential therapeutic target for preventing HHV8 associated diseases.
Collapse
Affiliation(s)
- Negin N Blattman
- Molecular and Cellular Biology Program, University of Washington School of Medicine Seattle, WA, USA ; Infectious Diseases and Vaccinology, Arizona State University Tempe, AZ, USA
| | - Michael Lagunoff
- Departments of Microbiology, University of Washington School of Medicine Seattle, WA, USA
| | - Joseph N Blattman
- Infectious Diseases and Vaccinology, Arizona State University Tempe, AZ, USA
| | - Lawrence Corey
- Molecular and Cellular Biology Program, University of Washington School of Medicine Seattle, WA, USA ; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center Seattle, WA, USA ; Departments of Medicine, University of Washington School of Medicine Seattle, WA, USA ; Departments of Laboratory Medicine, University of Washington School of Medicine Seattle, WA, USA
| |
Collapse
|
4
|
Human herpesvirus 8 interleukin-6 contributes to primary effusion lymphoma cell viability via suppression of proapoptotic cathepsin D, a cointeraction partner of vitamin K epoxide reductase complex subunit 1 variant 2. J Virol 2013; 88:1025-38. [PMID: 24198402 DOI: 10.1128/jvi.02830-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human herpesvirus 8 (HHV-8) interleukin-6 (vIL-6) promotes cell proliferation and survival and is proangiogenic, implicating it as a contributor to virus-associated Kaposi's sarcoma, primary effusion lymphoma (PEL), and multicentric Castleman's disease. Although predominantly lytically expressed, vIL-6 is also produced at low, functional levels during latency in PEL cells. Unlike other IL-6 cytokines, vIL-6 is secreted very inefficiently and localizes in the endoplasmic reticulum (ER). ER-localized vIL-6 supports PEL cell proliferation and survival, mediated in part through its interaction with the largely uncharacterized ER-resident protein vitamin K epoxide reductase complex subunit 1 variant 2 (VKORC1v2). Here, we report that the ER-transiting and functionally mitogenic secreted proenzyme (pCatD) form of cathepsin D (mature CatD), a proapoptotic lysosomal aspartate protease, is an interaction partner of VKORC1v2 and that vIL-6 promotes this interaction. Depletion of vIL-6 in PEL cells increased levels of the catalytically active, proteolytically cleaved form of CatD, corresponding with decreased PEL cell viability. Ectopic expression of CatD in PEL cells induced apoptosis, suggesting that CatD suppression by vIL-6 is biologically significant. In the context of high-density culture or reactivation of HHV-8 lytic replication in PEL cells, CatD depletion substantially reduced stress-induced apoptosis and increased virus production. In contrast, CatD overexpression, vIL-6 depletion, and peptide-mediated disruption of vIL-6-VKORC1v2 interaction inhibited replication and cell survival. Combined, our data identify pCatD as an interaction partner of VKORC1v2, demonstrate a role of vIL-6 in CatD suppression via VKORC1v2 in PEL cells, and identify a biologically significant mechanism of vIL-6 prosurvival and proreplication activities via VKORC1v2.
Collapse
|
5
|
Fifty percent tissue culture infective dose assay for determining the titer of infectious human herpesvirus 8. J Clin Microbiol 2013; 51:1931-4. [PMID: 23554189 DOI: 10.1128/jcm.00761-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have developed a human herpesvirus 8 (HHV-8) 50% tissue culture infective dose (TCID50) assay using the T1H6-DC-SIGN cell line. Infection of T1H6-DC-SIGN cells with HHV-8 induces expression of β-galactosidase, which was used to determine TCID50 levels. Validation of TCID50 values was performed by immunofluorescence assay of HHV-8 infection of immature dendritic cells at various TCID50 doses.
Collapse
|
6
|
Morris VA, Punjabi AS, Wells RC, Wittkopp CJ, Vart R, Lagunoff M. The KSHV viral IL-6 homolog is sufficient to induce blood to lymphatic endothelial cell differentiation. Virology 2012; 428:112-20. [PMID: 22521915 DOI: 10.1016/j.virol.2012.03.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Revised: 12/11/2011] [Accepted: 03/13/2012] [Indexed: 10/28/2022]
Abstract
The predominant tumor cell of Kaposi's Sarcoma (KS) is the spindle cell, a cell of endothelial origin that expresses markers of lymphatic endothelium. In culture, Kaposi's Sarcoma-associated herpesvirus (KSHV) infection of blood endothelial cells drives expression of lymphatic endothelial cell specific markers, in a process that requires activation of the gp130 receptor and the JAK2/STAT3 and PI3K/AKT signaling pathways. While expression of each of the KSHV major latent genes in endothelial cells failed to increase expression of lymphatic markers, the viral homolog of human IL-6 (vIL-6) was sufficient for induction and requires the JAK2/STAT3 and PI3K/AKT pathways. Therefore, activation of gp130 and downstream signaling by vIL-6 is sufficient to drive blood to lymphatic endothelial cell differentiation. While sufficient, vIL-6 is not necessary for lymphatic reprogramming in the context of viral infection. This indicates that multiple viral genes are involved and suggests a central importance of this pathway to KSHV pathogenesis.
Collapse
Affiliation(s)
- Valerie A Morris
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | | | | | | | | | | |
Collapse
|
7
|
Abstract
Gammaherpesviruses such as Epstein-Barr virus (EBV, human herpesvirus 4) and Kaposi sarcoma-associated herpesvirus (KSHV, human herpesvirus 8) establish lifelong infection in the host. To further this lifestyle, they encode homologs of cellular cytokines and cytokine receptors with the overarching goal to escape from or to blunt host antiviral defenses. EBV encodes mimics of human interleukin (hIL)-10 and a G protein-coupled receptor protein with sequence similarity to CXCR, whereas KSHV encodes homologs of hIL-6, 3 CC chemokine ligands, and a G protein-coupled receptor with sequence similarity to IL8 receptor alpha. This review focuses on the EBV IL-10 homolog and the KSHV IL-6 homolog with respect to virus biology and pathogenesis of the virus-associated diseases.
Collapse
Affiliation(s)
- Sang-Hoon Sin
- Department of Microbiology and Immunology and Lineberger Comprehensive Cancer Center, Center for AIDS Research, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7290, USA
| | | |
Collapse
|
8
|
Infection of lymphoblastoid cell lines by Kaposi's sarcoma-associated herpesvirus: critical role of cell-associated virus. J Virol 2011; 85:9767-77. [PMID: 21795352 DOI: 10.1128/jvi.05136-11] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) displays strong lymphotropism in vivo, but paradoxically, established B cell lines have largely been refractory to infection by soluble KSHV virions. Here we show that this block can be overcome by exposure to cell-associated virus. Doxycycline-inducible recombinant KSHV.219 (rKSHV.219)-harboring SLK (iSLK.219) cells were employed as KSHV donors. Cocultivation of lymphoid cell lines with reactivated iSLK.219 cells resulted in readily demonstrable viral entry into each cell line; similar observations were made in primary tonsillar B cell cultures. Moreover, infected lymphoid cells were able to outgrow upon puromycin selection, indicating development of persistent infection. Infected BJAB cells display signatures of latent infection, including classical latency-associated transcripts, a punctate pattern of LANA expression, and episomal maintenance of the KSHV genome. However, when lytically activated by various chemical stimuli, infected BJAB cells were able to produce only low levels of infectious virions. These data demonstrate that (i) cell-associated viruses can bypass viral entry blocks in most lymphoid cell lines, (ii) the determinants of cell-associated virus entry differ from those of soluble virion infection, and (iii) immortalized lymphoblastoid lines have partial postentry blocks to efficient lytic reactivation.
Collapse
|
9
|
Sakakibara S, Tosato G. Viral interleukin-6: role in Kaposi's sarcoma-associated herpesvirus: associated malignancies. J Interferon Cytokine Res 2011; 31:791-801. [PMID: 21767154 DOI: 10.1089/jir.2011.0043] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Viral interleukin-6 (vIL-6) is a product of Kaposi's sarcoma-associated herpesvirus (KSHV) expressed in latently infected cells and to a higher degree during viral replication. A distinctive feature of vIL-6 is the ability to directly bind and activate gp130 signaling in the absence of other receptor subunits. Secretion of vIL-6 is generally poor, but vIL-6 can activate gp130 from inside the cell. Due to the wide cell distribution of gp130, vIL-6 has the potential to induce a wide range of biological effects. Expression of vIL-6 is variable in KSHV-associated Kaposi's sarcoma (KS), primary effusion lymphoma (PEL), multicentric Castleman's disease (MCD), and in a newly described MCD-like systemic inflammatory syndrome observed in human immunodeficiency virus-positive patients. PEL effusions usually contain vIL-6 at high concentrations; since vIL-6 induces vascular endothelial growth factor, vIL-6 likely contributes to vascular permeability and formation of PEL effusions. Lymph nodes affected with MCD contain vIL-6-positive cells, and vIL-6 levels rise in conjunction with flares of the disease and likely contribute to symptoms of inflammation. The development of vIL-6 inhibitors is a potentially important advance in the treatment of KSHV-associated malignancies where vIL-6 is expressed.
Collapse
Affiliation(s)
- Shuhei Sakakibara
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
10
|
Abstract
Human herpesvirus (HHV)-8, also called Kaposi's sarcoma-associated herpesvirus, was discovered in 1994 and was rapidly sequenced, revealing several unique and surprising features of its genetic makeup. Among these discoveries was the identification of the first viral homolog of IL-6 and three CC/beta-chemokine ligands (viral CCL-1, -2 and -3), not previously found in gamma-herpesviruses. Viral IL-6 was immediately recognized as a potential contributor to HHV-8 pathogenesis, specifically endothelial-derived Kaposi's sarcoma and the B-cell malignancy multicentric Castleman's disease with which IL-6, a proangiogenic and B-cell growth factor, had previously been implicated. The roles of the viral chemokines were speculated to involve immune evasion; however, like viral IL-6, the viral chemokines have the potential to contribute to pathogenesis through their shared angiogenic activities, known to be important for Kaposi's sarcoma and HHV-8-associated primary effusion lymphoma, and also via direct prosurvival activities. This article will discuss the molecular properties, activities and functions of viral IL-6 and the viral CCLs, proteins that could provide appropriate targets for antiviral and therapeutic strategies.
Collapse
Affiliation(s)
- John Nicholas
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Johns Hopkins School of Medicine, 1650 Orleans Street, Room 309, Baltimore, MD 21287, USA, Tel.: +1 410 502 6801, ,
| |
Collapse
|
11
|
Chen L, Park MS. Identification and characterization of the promoter region of Kaposi's sarcoma-associated herpesvirus ORF11. Virus Res 2009; 142:160-8. [PMID: 19428749 DOI: 10.1016/j.virusres.2009.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 02/10/2009] [Accepted: 02/11/2009] [Indexed: 11/19/2022]
Abstract
Open reading frame 11 (ORF11) of Kaposi's sarcoma-associated herpesvirus belongs to a herpesviral homologous protein family that is conserved among members of the gamma-herpesvirus subfamily. Little is known about the function of ORF11 and how this viral gene is regulated in KSHV life cycle. In this study, we have characterized the major transcript of the ORF11 gene, which is located adjacent and in the opposite orientation to a well-characterized viral IL-6 gene. Northern blot analysis revealed that the ORF11 gene is lytic viral gene with delayed-early expression kinetics. We have determined the 5' and 3' untranslated region of the unspliced ORF11 transcript and identified both the transcription start site and the transcription termination site. Core promoter region, representing ORF11 promoter activity, was mapped to a 160nt fragment 5' most proximal to the transcription start site. A functional TATA box was identified in the core promoter region. We also found that the characterized ORF11 gene promoter region is not responsive to Rta, the KSHV lytic switch protein. Our data help to elucidate transcription regulation of the KSHV ORF11 gene and to understand the biology of ORF11 in KSHV life cycle.
Collapse
Affiliation(s)
- Lei Chen
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, United States.
| | | |
Collapse
|
12
|
Activation of Akt through gp130 receptor signaling is required for Kaposi's sarcoma-associated herpesvirus-induced lymphatic reprogramming of endothelial cells. J Virol 2008; 82:8771-9. [PMID: 18579585 DOI: 10.1128/jvi.00766-08] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Kaposi's sarcoma (KS) is the most common tumor of AIDS patients worldwide. KS-associated herpesvirus (KSHV) is the infectious cause of this highly vascularized skin tumor. The main cell type found within a KS lesion, the spindle cell, is latently infected with KSHV and has markers of both blood and lymphatic endothelial cells. During development, lymphatic endothelial cells differentiate from preexisting blood endothelial cells. Interestingly, KSHV infection of blood endothelial cells induces lymphatic endothelial cell differentiation. Here, we show that KSHV gene expression is necessary to maintain the expression of the lymphatic markers vascular endothelial growth factor receptor 3 (VEGFR-3) and podoplanin. KSHV infection activates many cell signaling pathways in endothelial cells and persistently activates STAT3 through the gp130 receptor, the common receptor of the interleukin 6 family of cytokines. We find that KSHV infection also activates the phosphatidylinositol 3-OH-kinase (PI3K)/Akt cell signaling pathway in latently infected endothelial cells and that gp130 receptor signaling is necessary for Akt activation. Using both pharmacological inhibitors and small interfering RNA knockdown, we show that the gp130 receptor-mediated activation of both the JAK2/STAT3 and PI3K/Akt cell signaling pathways is necessary for KSHV-induced lymphatic reprogramming of endothelial cells. The induction of the lymphatic endothelial cell-specific transcription factor Prox1 is also involved in KSHV-induced lymphatic reprogramming. The activation of gp130 receptor signaling is a novel mechanism for the differentiation of blood endothelial cells into lymphatic endothelial cells and may be relevant to the developmental or pathological differentiation of lymphatic endothelial cells as well as to KSHV pathogenesis.
Collapse
|
13
|
Punjabi AS, Carroll PA, Chen L, Lagunoff M. Persistent activation of STAT3 by latent Kaposi's sarcoma-associated herpesvirus infection of endothelial cells. J Virol 2006; 81:2449-58. [PMID: 17151100 PMCID: PMC1865938 DOI: 10.1128/jvi.01769-06] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the infectious cause of Kaposi's sarcoma, primary effusion lymphoma, and plasmablastic multicentric Castleman's disease. STAT3 has been shown to be important for the maintenance of primary effusion lymphoma cells in culture and is chronically activated in many tumor cell lines. However, little is known about the role of KSHV in the activation of STAT3 or the role of STAT3 in KS tumors. We demonstrate that STAT3 is activated by KSHV infection of endothelial cells, the KS tumor cell type, in a biphasic fashion. Viral binding and entry activate STAT3 in the first 2 h after infection, but this activation dissipates by 4 h postinfection. By 12 h after KSHV infection, concomitant with the expression of latent genes, STAT3 is once again activated, and this activation persists for as long as latent infection is maintained. Activated STAT3 translocates to the nucleus, where it can bind to STAT3-specific DNA elements and can activate STAT3-dependent promoter activity. Conditioned medium from KSHV-infected endothelial cells is able to transiently activate STAT3, indicating the involvement of a secreted factor and that a latency-associated factor in KSHV-infected cells is necessary for sustained activation. KSHV upregulates gp130 receptor expression, and both gp130 and JAK2 are required for the activation of STAT3. However, neither human nor viral interleukin-6 is required for STAT3 activation. Persistent activation of the oncogenic signal transducer, STAT3, by KSHV may play a critical role in the viral pathogenesis of Kaposi's sarcoma, as well as in primary effusion lymphomas.
Collapse
Affiliation(s)
- Almira S Punjabi
- Department of Microbiology, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|