1
|
Bondarev AD, Jonsson J, Chubarev VN, Tarasov VV, Lagunas-Rangel FA, Schiöth HB. Recent developments of topoisomerase inhibitors: Clinical trials, emerging indications, novel molecules and global sales. Pharmacol Res 2024; 209:107431. [PMID: 39307213 DOI: 10.1016/j.phrs.2024.107431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/09/2024] [Accepted: 09/19/2024] [Indexed: 11/11/2024]
Abstract
The nucleic acid topoisomerases (TOP) are an evolutionary conserved mechanism to solve topological problems within DNA and RNA that have been historically well-established as a chemotherapeutic target. During investigation of trends within clinical trials, we have identified a very high number of clinical trials involving TOP inhibitors, prompting us to further evaluate the current status of this class of therapeutic agents. In total, we have identified 233 unique molecules with TOP-inhibiting activity. In this review, we provide an overview of the clinical drug development highlighting advances in current clinical uses and discussing novel drugs and indications under development. A wide range of bacterial infections, along with solid and hematologic neoplasms, represent the bulk of clinically approved indications. Negative ADR profile and drug resistance among the antibacterial TOP inhibitors and anthracycline-mediated cardiotoxicity in the antineoplastic TOP inhibitors are major points of concern, subject to continuous research efforts. Ongoing development continues to focus on bacterial infections and cancer; however, there is a degree of diversification in terms of novel drug classes and previously uncovered indications, such as glioblastoma multiforme or Clostridium difficile infections. Preclinical studies show potential in viral, protozoal, parasitic and fungal infections as well and suggest the emergence of a novel target, TOP IIIβ. We predict further growth and diversification of the field thanks to the large number of experimental TOP inhibitors emerging.
Collapse
Affiliation(s)
- Andrey D Bondarev
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Jörgen Jonsson
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Vladimir N Chubarev
- Advanced Molecular Technologies, Limited Liability Company (LLC), Moscow 354340, Russia
| | - Vadim V Tarasov
- Advanced Molecular Technologies, Limited Liability Company (LLC), Moscow 354340, Russia
| | - Francisco Alejandro Lagunas-Rangel
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden; Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia.
| | - Helgi B Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
2
|
Cho JE, Shaltz S, Yakovleva L, Shuman S, Jinks-Robertson S. Deletions initiated by the vaccinia virus TopIB protein in yeast. DNA Repair (Amst) 2024; 137:103664. [PMID: 38484460 PMCID: PMC10994728 DOI: 10.1016/j.dnarep.2024.103664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/14/2024] [Accepted: 03/01/2024] [Indexed: 04/06/2024]
Abstract
The type IB topoisomerase of budding yeast (yTop1) generates small deletions in tandem repeats through a sequential cleavage mechanism and larger deletions with random endpoints through the nonhomologous end-joining (NHEJ) pathway. Vaccinia virus Top1 (vTop1) is a minimized version of the eukaryal TopIB enzymes and uniquely has a strong consensus cleavage sequence: the pentanucleotide (T/C)CCTTp↓. To define the relationship between the position of TopIB cleavage and mutagenic outcomes, we expressed vTop1 in yeast top1Δ strains containing reporter constructs with a single CCCTT site, tandem CCCTT sites, or CCCTT sites separated by 42 bp. vTop1 cleavage at a single CCCTT site was associated with small, NHEJ-dependent deletions. As observed with yTop1, vTop1 generated 5-bp deletions at tandem CCCTT sites. In contrast to yTop1-initiated deletions, however, 5-bp deletions associated with vTop1 expression were not affected by the level of ribonucleotides in genomic DNA. vTop1 expression was associated with a 47-bp deletion when CCCTT sites were separated by 42 bp. Unlike yTop1-initiated large deletions, the vTop1-mediated 47-bp deletion did not require NHEJ, consistent with a model in which re-ligation of enzyme-associated double-strand breaks is catalyzed by vTop1.
Collapse
Affiliation(s)
- Jang Eun Cho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Samantha Shaltz
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Lyudmila Yakovleva
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Stewart Shuman
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sue Jinks-Robertson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
3
|
Anderson BG, Stivers JT. Variola type IB DNA topoisomerase: DNA binding and supercoil unwinding using engineered DNA minicircles. Biochemistry 2014; 53:4302-15. [PMID: 24945825 PMCID: PMC4089885 DOI: 10.1021/bi500571q] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Type
IB topoisomerases unwind positive and negative DNA supercoils
and play a key role in removing supercoils that would otherwise accumulate
at replication and transcription forks. An interesting question is
whether topoisomerase activity is regulated by the topological state
of the DNA, thereby providing a mechanism for targeting the enzyme
to highly supercoiled DNA domains in genomes. The type IB enzyme from
variola virus (vTopo) has proven to be useful in addressing mechanistic
questions about topoisomerase function because it forms a reversible
3′-phosphotyrosyl adduct with the DNA backbone at a specific
target sequence (5′-CCCTT-3′) from which DNA unwinding
can proceed. We have synthesized supercoiled DNA minicircles (MCs)
containing a single vTopo target site that provides highly defined
substrates for exploring the effects of supercoil density on DNA binding,
strand cleavage and ligation, and unwinding. We observed no topological
dependence for binding of vTopo to these supercoiled MC DNAs, indicating
that affinity-based targeting to supercoiled DNA regions by vTopo
is unlikely. Similarly, the cleavage and religation rates of the MCs
were not topologically dependent, but topoisomers with low superhelical
densities were found to unwind more slowly than highly supercoiled
topoisomers, suggesting that reduced torque at low superhelical densities
leads to an increased number of cycles of cleavage and ligation before
a successful unwinding event. The K271E charge reversal mutant has
an impaired interaction with the rotating DNA segment that leads to
an increase in the number of supercoils that were unwound per cleavage
event. This result provides evidence that interactions of the enzyme
with the rotating DNA segment can restrict the number of supercoils
that are unwound. We infer that both superhelical density and transient
contacts between vTopo and the rotating DNA determine the efficiency
of supercoil unwinding. Such determinants are likely to be important
in regulating the steady-state superhelical density of DNA domains
in the cell.
Collapse
Affiliation(s)
- Breeana G Anderson
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine , 725 North Wolfe Street, Baltimore, Maryland 21205-2185, United States
| | | |
Collapse
|
4
|
Yakovleva L, Shuman S. Chemical mutagenesis of vaccinia DNA topoisomerase lysine 167 provides insights to the catalysis of DNA transesterification. Biochemistry 2013; 52:984-91. [PMID: 23317114 DOI: 10.1021/bi301643h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Vaccinia DNA topoisomerase IB (TopIB) relaxes supercoils by forming and resealing a covalent DNA-(3'-phosphotyrosyl(274))-enzyme intermediate. Conserved active site side chains promote the attack of Tyr274 on the scissile phosphodiester via transition state stabilization and general acid catalysis. Two essential side chains, Lys167 and Arg130, act in concert to protonate and expel the 5'-O leaving group. Here we gained new insights to catalysis through chemical mutagenesis of Lys167. Changing Lys167 to cysteine crippled the DNA cleavage and religation transesterification steps (k(cl) = 4.3 × 10(-4) s(-1); k(rel) = 9 × 10(-4) s(-1)). The transesterification activities of the K167C enzyme were revived by in vitro alkylation with 2-bromoethylamine (k(cl) = 0.031 s(-1); k(rel) ≥ 0.4 s(-1)) and 3-bromopropylamine (k(cl) = 0.013 s(-1); k(rel) = 0.22 s(-1)), which convert the cysteines to γ-thialysine and γ-thiahomolysine, respectively. These chemically installed lysine analogues were more effective than a genetically programmed arginine 167 substitution characterized previously. The modest differences in the transesterification rates of the 2-bromoethylamine- and 3-bromopropylamine-treated enzymes highlight that TopIB is tolerant of a longer homolysine side chain for assembly of the active site and formation of the transition state.
Collapse
Affiliation(s)
- Lyudmila Yakovleva
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, United States
| | | |
Collapse
|
5
|
Jun H, Stivers JT. Diverse energetic effects of charge reversal mutations of poxvirus topoisomerase IB. Biochemistry 2012; 51:2940-9. [PMID: 22417571 DOI: 10.1021/bi3001903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A key aspect of the reaction mechanism of type IB topoisomerases is the controlled unwinding of DNA supercoils while the enzyme is transiently bound to one strand of the DNA duplex via a phosphotyrosyl linkage. In this complex, the mobile segment of the bound DNA downstream from the site of cleavage must rotate around the helical axis, requiring that interactions with the enzyme must break and re-form multiple times during the course of removing supercoils. A crystal structure of variola virus type IB topoisomerase (vTopo) bound to DNA shows several positively charged side chains that interact with the downstream mobile and upstream rigid segments, suggesting that these groups may play a role in catalysis, including the processive unwinding of supercoils. We have mutated three such residues, R67, K35, and K271, to Ala and Glu and determined the energetic effects of these mutations at each point along the reaction coordinate of vTopo. R67 interacts with a phosphate group in the rigid DNA segment across from the site of DNA strand cleavage. The ~30-fold damaging effects of the R67A and R67E mutations were primarily on the phosphoryl transfer step, with little effect on enzyme-DNA binding, or the processivity of supercoil unwinding. Removal of the K35 interaction shows mutational effects similar to those of R67, even though this residue interacts with the mobile segment 3 bp from the cleavage site. The two mutations of K271, which interacts with the mobile region even further from the site of covalent linkage, show significant effects not only on phosphoryl transfer but also on downstream DNA strand positioning. Moreover, supercoil unwinding measurements indicate that the K271A and K271E mutations increase the average number of supercoils that are removed during the lifetime of the covalent complex, enhancing the processivity of supercoil unwinding. These measurements support the proposal that the processivity of supercoil unwinding can be regulated by electrostatic interactions between the enzyme and the mobile DNA phosphate backbone.
Collapse
Affiliation(s)
- Helen Jun
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | | |
Collapse
|
6
|
Park JE, Kim HI, Park JW, Park JK, Lee JS. Cloning and biochemical characterization of Staphylococcus aureus type IA DNA topoisomerase comprised of distinct five domains. Arch Biochem Biophys 2011; 508:78-86. [PMID: 21281597 DOI: 10.1016/j.abb.2011.01.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 01/20/2011] [Accepted: 01/24/2011] [Indexed: 11/30/2022]
Abstract
DNA topoisomerases play critical roles in regulating DNA topology and are essential enzymes for cell survival. In this study, a gene encoding type IA DNA topoisomerase was cloned from Staphylococcus aureus (S. aureus) sp. strain C-66, and the biochemical properties of recombinant enzyme was characterized. The nucleotide sequence analysis showed that the cloned gene contained an open reading frame (2070 bp) that could encode a polypeptide of 689 amino acids. The cloned gene actually produced 79.1 kDa functional enzyme (named Sau-TopoI) in Escherichia coli (E. coli). Sau-TopoI enzyme purified from E. coli showed ATP-independent and Mg(2+)-dependent manners for relaxing negatively supercoiled DNA. The relaxation activity of Sau-TopoI was inhibited by camptothecin, but not by nalidixic acid and etoposide. Cleavage site mapping showed that the enzyme could preferentially bind to and cleave the sequence GGNN↓CAT (N and ↓ represent any nucleotide and cleavage site, respectively). All these results suggest that the purified enzyme is type IA DNA topoisomerase. In addition, domain mapping analysis showed that the enzyme was composed of conserved four domains (I through IV), together with a variable C-terminal region containing a unique domain V.
Collapse
Affiliation(s)
- Jung Eun Park
- Department of Biotechnology, Chosun University, Gwangju 501-759, Republic of Korea
| | | | | | | | | |
Collapse
|
7
|
Abstract
The processes of DNA topoisomerization and site-specific recombination are fundamentally similar: DNA cleavage by forming a phospho-protein covalent linkage, DNA topological rearrangement, and DNA ligation coupled with protein regeneration. Type IB DNA topoisomerases are structurally and mechanistically homologous to tyrosine recombinases. Both enzymes nick DNA double helices independent of metal ions, form 3'-phosphotyrosine intermediates, and rearrange the free 5' ends relative to the uncut strands by swiveling. In contrast, serine recombinases generate 5'-phospho-serine intermediates. A 180° relative rotation of the two halves of a 100 kDa terameric serine recombinase and DNA complex has been proposed as the mechanism of strand exchange. Here I propose an alternative mechanism. Interestingly, the catalytic domain of serine recombinases has structural similarity to the TOPRIM domain, conserved among all Type IA and Type II topoisomerases and responsible for metal binding and DNA cleavage. TOPRIM topoisomerases also cleave DNA to generate 5'-phosphate and 3'-OH groups. Based on the existing biochemical data and crystal structures of topoisomerase II and serine recombinases bound to pre- and post-cleavage DNA, I suggest a strand passage mechanism for DNA recombination by serine recombinases. This mechanism is reminiscent of DNA topoisomerization and does not require subunit rotation.
Collapse
Affiliation(s)
- Wei Yang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
8
|
Wang Q, Wang H, Xie M. Antibacterial mechanism of soybean isoflavone on Staphylococcus aureus. Arch Microbiol 2010; 192:893-8. [PMID: 20734190 DOI: 10.1007/s00203-010-0617-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 06/23/2010] [Accepted: 08/04/2010] [Indexed: 11/29/2022]
Abstract
Effects of different flavonoids on various bacterial strains have been extensively reported; however, the mechanism(s) of their action on bacterial cells remain largely elusive. In this study, the antibacterial mechanism of soybean isoflavone (SI) on Staphylococcus aureus is systematically investigated using 4'6-diamidino-2-phenylindole (DAPI) staining, pBR322DNA decatenation experiment mediated by topoisomerase and agarose gel electrophoresis for direct decatenation. The results of fluorescence microscopy and fluorescence spectrophotometer indicated that DAPI was integrated in Staphylococcus aureus. Additionally, the quantity of both DNA and RNA reduced to 66.47 and 60.18%, respectively, after treated with SI for 28 h. Effects of SI on topoisomerase I and II were also investigated. SI completely inhibited the pBR322DNA unwinding mediated by topoisomerase I and topoisomerase II at the concentration of 6.4 mg/ml and could denature the plasmid DNA at the concentration of 12.8 mg/ml. These results indicate that topoisomerase I and II are the most important targets by SI to restrain bacterial cell division.
Collapse
Affiliation(s)
- Qian Wang
- College of Life Science, Liaoning Normal University, 116029, Dalian, People's Republic of China
| | | | | |
Collapse
|
9
|
Stahley MR, Stivers JT. Mechanism and specificity of DNA strand exchange catalyzed by vaccinia DNA topoisomerase type I. Biochemistry 2010; 49:2786-95. [PMID: 20187656 DOI: 10.1021/bi902204v] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The type I DNA topoisomerase from vaccinia virus (vTopo) forms a reversible covalent 3'-phosphotyrosyl linkage with a single strand of duplex DNA at the preferred sequence 5'-(C/T)CCTTp downward arrowN(-1)N(-2)N(-3)-3'. The enzyme-DNA covalent adduct is recombinogenic in cells, because the nicked strand downstream of the cleavage site can dissociate and be replaced by another DNA strand, potentially resulting in genome rearrangements if the enzyme executes strand ligation. Topo I could play an active role in strand exchange, either by altering the kinetics or thermodynamics of DNA strand binding or by serving as a proofreading gate to prevent ligation of incoming DNA strands containing mismatches. To address these questions, we have measured the kinetic and thermodynamic parameters for strand annealing to a purified vaccinia Topo I-DNA (vTopo-DNA) covalent complex containing a single-strand overhang and then compared them with the same overhang duplex in the absence of vTopo. We found that vTopo accelerates the strand association rate by 2-fold but has no effect on the rate of strand dissociation. vTopo has a similar small effect on the annealing parameters of a series of DNA strands containing single mismatches. In contrast, single base mismatches at the -1, -2, or -3 positions decreased the forward rate and equilibrium constant for reversible strand ligation by 10-fold. These data establish that while vTopo is a bystander during the annealing step of strand exchange, the enzyme strongly discriminates against mismatches close to the cleavage site during the subsequent events leading to strand ligation. A mechanism emerges where vTopo oscillates between an open state where the downstream DNA segment does not interact with the enzyme and a closed state where catalytically important contacts are formed with this region. This oscillation between an open and closed state of the covalently bound enzyme is likely important for regulating the number of DNA superhelical turns that are removed during the lifetime of the covalent complex with supercoiled substrates.
Collapse
Affiliation(s)
- Mary R Stahley
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205-2185, USA
| | | |
Collapse
|
10
|
Perry K, Hwang Y, Bushman FD, Van Duyne GD. Insights from the structure of a smallpox virus topoisomerase-DNA transition state mimic. Structure 2010; 18:127-37. [PMID: 20152159 PMCID: PMC2822398 DOI: 10.1016/j.str.2009.10.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 09/30/2009] [Accepted: 10/30/2009] [Indexed: 11/24/2022]
Abstract
Poxviruses encode their own type IB topoisomerases (TopIBs), which release superhelical tension generated by replication and transcription of their genomes. To investigate the reaction catalyzed by viral TopIBs, we have determined the structure of a variola virus topoisomerase-DNA complex trapped as a vanadate transition state mimic. The structure reveals how the viral TopIB enzymes are likely to position the DNA duplex for ligation following relaxation of supercoils and identifies the sources of friction observed in single-molecule experiments that argue against free rotation. The structure also identifies a conformational change in the leaving group sugar that must occur prior to cleavage and reveals a mechanism for promoting ligation following relaxation of supercoils that involves an Asp-minor groove interaction. Overall, the new structural data support a common catalytic mechanism for the TopIB superfamily but indicate distinct methods for controlling duplex rotation in the small versus large enzyme subfamilies.
Collapse
Affiliation(s)
- Kay Perry
- Department of Biochemistry and Biophysics and Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
11
|
Jain T, Roper BJ, Grove A. A functional type I topoisomerase from Pseudomonas aeruginosa. BMC Mol Biol 2009; 10:23. [PMID: 19317906 PMCID: PMC2666729 DOI: 10.1186/1471-2199-10-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 03/24/2009] [Indexed: 01/27/2023] Open
Abstract
Background Pseudomonas aeruginosa encodes a putative topoisomerase with sequence similarity to the eukaryotic type IB topoisomerase from Vaccinia virus. Residues in the active site are conserved, notably Tyr292 which would be predicted to form the transient covalent bond to DNA. Results The gene encoding the P. aeruginosa topoisomerase I was cloned and expressed in E. coli. The enzyme relaxes supercoiled DNA, while a mutant containing a Tyr292 to Phe substitution at the active site was found to be catalytically inert. This is consistent with the role of Tyr in forming the covalent intermediate. Like Vaccinia topoisomerase, the P. aeruginosa topoisomerase relaxes DNA in the absence of ATP, but unlike Vaccinia topoisomerase, P. aeruginosa topoisomerase does not relax supercoiled DNA without MgCl2 present. In addition, high concentration of NaCl is not able to substitute for MgCl2 as seen for Vaccinia topoisomerase. A truncated derivative of the topoisomerase lacking residues 1–98 relaxes DNA, with both full length and truncated enzyme exhibiting equivalent requirements for divalent cations and the ability to relax DNA to completion, suggesting a shared domain organization. DNA-binding assays suggest an only modest preference for the CCCTT pentameric sequence required for transesterification by Vaccinia topoisomerase IB. Conclusion P. aeruginosa encodes a functional topoisomerase with significant similarity to the type IB enzyme encoded by poxviruses. In contrast to the Vaccinia-encoded homolog, the P. aeruginosa-encoded enzyme requires divalent cations for catalytic activity, relaxes DNA to completion, and does not exhibit a strong preference for the pentameric sequence stringently required by the Vaccinia-encoded homolog. A comparison with the structure of poxviral topoisomerase in complex with DNA suggests that bacterial homologs of the eukaryotic type IB topoisomerase may exhibit a relaxed sequence preference due to the lack of conservation of certain residues involved in sequence-specific DNA contacts, and that interaction with an only modestly preferred sequence may result in suboptimal positioning of catalytic residues.
Collapse
Affiliation(s)
- Teesta Jain
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| | | | | |
Collapse
|
12
|
Yakovleva L, Chen S, Hecht SM, Shuman S. Chemical and traditional mutagenesis of vaccinia DNA topoisomerase provides insights to cleavage site recognition and transesterification chemistry. J Biol Chem 2008; 283:16093-103. [PMID: 18367446 DOI: 10.1074/jbc.m801595200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Vaccinia DNA topoisomerase IB (TopIB) relaxes supercoils by forming and resealing a covalent DNA-(3'-phosphotyrosyl)-enzyme intermediate. Here we gained new insights to the TopIB mechanism through "chemical mutagenesis." Meta-substituted analogs of Tyr(274) were introduced by in vitro translation in the presence of a chemically misacylated tRNA. We report that a meta-OH reduced the rate of DNA cleavage 130-fold without affecting the rate of religation. By contrast, meta-OCH(3) and NO(2) groups elicited only a 6-fold decrement in cleavage rate. We propose that the meta-OH uniquely suppresses deprotonation of the para-OH nucleophile during the cleavage step. Assembly of the vaccinia TopIB active site is triggered by protein contacts with a specific DNA sequence 5'-C(+5)C(+4)C(+3)T(+2)T(+1)p downward arrowN (where downward arrow denotes the cleavage site). A signature alpha-helix of the poxvirus TopIB ((132)GKMKYLKENETVG(144)) engages the target site in the major groove and thereby recruits catalytic residue Arg(130) to the active site. The effects of 11 missense mutations at Tyr(136) highlight the importance of van der Waals interactions with the 3'-G(+4)pG(+3)p dinucleotide of the nonscissile strand for DNA cleavage and supercoil relaxation. Asn(140) and Thr(142) donate hydrogen bonds to the pro-(S(p))-oxygen of the G(+3)pA(+2) phosphodiester of the nonscissile strand. Lys(133) and Lys(135) interact with purine nucleobases in the major groove. Whereas none of these side chains is essential per se, an N140A/T142A double mutation reduces the rate of supercoil relaxation and DNA cleavage by 120- and 30-fold, respectively, and a K133A/K135A double mutation slows relaxation and cleavage by 120- and 35-fold, respectively. These results underscore functional redundancy at the TopIB-DNA interface.
Collapse
Affiliation(s)
- Lyudmila Yakovleva
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| | | | | | | |
Collapse
|