1
|
Domingues ACM, de Oliveira SB, Tessarollo NG, Lepique AP, Rodrigues O, Sharova T, Lawless A, Li D, Basnet M, Boland GM, Cohen S, Jenkins RW, Strauss BE. Use of patient-derived organotypic tumor spheroids for testing of viral vector gene therapy in combination with checkpoint blockade. MOLECULAR THERAPY. ONCOLOGY 2025; 33:200942. [PMID: 40034966 PMCID: PMC11874566 DOI: 10.1016/j.omton.2025.200942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/16/2025] [Accepted: 01/24/2025] [Indexed: 03/05/2025]
Abstract
Checkpoint inhibitors have revolutionized cancer treatment, but a significant proportion of patients do not respond to these therapies, underscoring the need for alternative strategies. Although gene therapy has made substantial strides, its application in solid tumors remains underexplored, with limited treatments approved. Here, we further investigated a gene therapy approach with non-replicating adenoviral vectors encoding the alternate reading frame (ARF) and interferon beta (IFNb) and tested it in a clinically relevant setting. We previously showed that this combined gene therapy induces immunogenic cell death in melanoma models, and now, we utilize patient-derived organotypic tumor spheroids (PDOTS), a model that closely recapitulates the immune environment of tumors, to test its effects using patient tumors. Our results demonstrate, for the first time, the effectiveness of using PDOTS to evaluate viral-vector-based gene therapies. While the addition of anti-PD-1 did not enhance therapeutic outcomes, the gene therapy alone suppressed tumor growth and triggered antitumor immune responses across different cancer models, notably those with low immunogenicity and specific genome profiles. These findings suggest that this gene therapy could serve as a valuable alternative for patients not responsive to checkpoint inhibitors and who have solid tumors with limited treatment and impaired p53-ARF-MDM2 pathways, such as liposarcomas.
Collapse
Affiliation(s)
- Ana Carolina M. Domingues
- Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-000, Brazil
- Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Soraia B. de Oliveira
- Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Nayara G. Tessarollo
- Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Ana Paula Lepique
- Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-000, Brazil
- Department of Immunology, Universidade de São Paulo, São Paulo 05508-000, Brazil
| | - Otavio Rodrigues
- Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Tatyana Sharova
- Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Aleigha Lawless
- Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - David Li
- Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Madak Basnet
- Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Genevieve M. Boland
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sonia Cohen
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Russell W. Jenkins
- Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Bryan E. Strauss
- Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-000, Brazil
| |
Collapse
|
2
|
Fonseca-Alves CE, Ferreira Ê, de Oliveira Massoco C, Strauss BE, Fávaro WJ, Durán N, Oyafuso da Cruz N, dos Santos Cunha SC, Castro JLC, Rangel MMM, Brunner CHM, Tellado M, dos Anjos DS, Fernandes SC, Barbosa de Nardi A, Biondi LR, Dagli MLZ. Current Status of Canine Melanoma Diagnosis and Therapy: Report From a Colloquium on Canine Melanoma Organized by ABROVET (Brazilian Association of Veterinary Oncology). Front Vet Sci 2021; 8:707025. [PMID: 34485435 PMCID: PMC8415562 DOI: 10.3389/fvets.2021.707025] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/19/2021] [Indexed: 12/21/2022] Open
Affiliation(s)
| | - Ênio Ferreira
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Cristina de Oliveira Massoco
- Laboratory of Pharmacology and Toxicology, Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Bryan Eric Strauss
- Laboratório de Vetores Virais, Centro de Investigação Translacional em Oncologia/LIM24, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Wagner José Fávaro
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Nelson Durán
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, University of Campinas, Campinas, Brazil
| | | | | | | | | | | | | | - Denner Santos dos Anjos
- Department of Veterinary Clinic and Surgery, São Paulo State University (UNESP), Jaboticabal, Brazil
| | | | - Andrigo Barbosa de Nardi
- Department of Veterinary Clinic and Surgery, Faculty of Agricultural and Veterinary Sciences, São Paulo State University, São Paulo, Brazil
| | | | - Maria Lucia Zaidan Dagli
- Laboratory of Experimental and Comparative Oncology, Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Del Valle PR, Mendonça SA, Antunes F, Hunger A, Tamura RE, Zanatta DB, Strauss BE. Exploration of p53 plus interferon-beta gene transfer for the sensitization of human colorectal cancer cell lines to cell death. Cancer Biol Ther 2021; 22:301-310. [PMID: 33853514 DOI: 10.1080/15384047.2021.1899784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
While treatments for colorectal cancer continue to improve, some 50% of patients succumb within 5 years, pointing to the need for additional therapeutic options. We have developed a modified non-replicating adenoviral vector for gene transfer, called AdRGD-PG, which offers improved levels of transduction and transgene expression. Here, we employ the p53-responsive PG promoter to drive expression of p53 or human interferon-β (hIFNβ) in human colorectal cancer cell lines HCT116wt (wtp53), HCT116-/- (p53 deficient) and HT29 (mutant p53). The HCT116 cell lines were both easily killed with p53 gene transfer, while combined p53 and hIFNβ cooperated for the induction of HT29 cell death and emission of immunogenic cell death (ICD) markers. Elevated annexinV staining and caspase 3/7 activity point to cell death by a mechanism consistent with apoptosis. P53 gene transfer alone or in combination with hIFNβ sensitized all cell lines to chemotherapy, permitting the application of low drug doses while still achieving significant loss of viability. While endogenous p53 status was not sufficient to predict response to treatment, combined p53 and hIFNβ provided an additive effect in HT29 cells. We propose that this approach may prove effective for the treatment of colorectal cancer, permitting the use of limited drug doses.
Collapse
Affiliation(s)
- Paulo Roberto Del Valle
- Laboratório De Vetores Virais, Centro De Investigação Translacional Em Oncologia/LIM24, Instituto Do Câncer Do Estado De São Paulo, Faculdade De Medicina, Universidade De São Paulo, São Paulo, Brazil
| | - Samir Andrade Mendonça
- Laboratório De Vetores Virais, Centro De Investigação Translacional Em Oncologia/LIM24, Instituto Do Câncer Do Estado De São Paulo, Faculdade De Medicina, Universidade De São Paulo, São Paulo, Brazil.,Department of Radiation Oncology, Washington University School of Medicine in St. Louis, MO, USA
| | - Fernanda Antunes
- Laboratório De Vetores Virais, Centro De Investigação Translacional Em Oncologia/LIM24, Instituto Do Câncer Do Estado De São Paulo, Faculdade De Medicina, Universidade De São Paulo, São Paulo, Brazil
| | - Aline Hunger
- Laboratório De Vetores Virais, Centro De Investigação Translacional Em Oncologia/LIM24, Instituto Do Câncer Do Estado De São Paulo, Faculdade De Medicina, Universidade De São Paulo, São Paulo, Brazil.,Cristalia, Biotecnologia Unidade 1, Itapira, SP, Brasil
| | - Rodrigo E Tamura
- Laboratório De Vetores Virais, Centro De Investigação Translacional Em Oncologia/LIM24, Instituto Do Câncer Do Estado De São Paulo, Faculdade De Medicina, Universidade De São Paulo, São Paulo, Brazil.,Department of Biological Sciences, Federal University of São Paulo, Diadema, SP, Brasil
| | - Daniela Bertolini Zanatta
- Laboratório De Vetores Virais, Centro De Investigação Translacional Em Oncologia/LIM24, Instituto Do Câncer Do Estado De São Paulo, Faculdade De Medicina, Universidade De São Paulo, São Paulo, Brazil
| | - Bryan E Strauss
- Laboratório De Vetores Virais, Centro De Investigação Translacional Em Oncologia/LIM24, Instituto Do Câncer Do Estado De São Paulo, Faculdade De Medicina, Universidade De São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Tessarollo NG, Domingues ACM, Antunes F, da Luz JCDS, Rodrigues OA, Cerqueira OLD, Strauss BE. Nonreplicating Adenoviral Vectors: Improving Tropism and Delivery of Cancer Gene Therapy. Cancers (Basel) 2021; 13:1863. [PMID: 33919679 PMCID: PMC8069790 DOI: 10.3390/cancers13081863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Recent preclinical and clinical studies have used viral vectors in gene therapy research, especially nonreplicating adenovirus encoding strategic therapeutic genes for cancer treatment. Adenoviruses were the first DNA viruses to go into therapeutic development, mainly due to well-known biological features: stability in vivo, ease of manufacture, and efficient gene delivery to dividing and nondividing cells. However, there are some limitations for gene therapy using adenoviral vectors, such as nonspecific transduction of normal cells and liver sequestration and neutralization by antibodies, especially when administered systemically. On the other hand, adenoviral vectors are amenable to strategies for the modification of their biological structures, including genetic manipulation of viral proteins, pseudotyping, and conjugation with polymers or biological membranes. Such modifications provide greater specificity to the target cell and better safety in systemic administration; thus, a reduction of antiviral host responses would favor the use of adenoviral vectors in cancer immunotherapy. In this review, we describe the structural and molecular features of nonreplicating adenoviral vectors, the current limitations to their use, and strategies to modify adenoviral tropism, highlighting the approaches that may allow for the systemic administration of gene therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bryan E. Strauss
- Viral Vector Laboratory, Center for Translational Investigation in Oncology, Cancer Institute of São Paulo/LIM24, University of São Paulo School of Medicine, São Paulo 01246-000, Brazil; (N.G.T.); (A.C.M.D.); (F.A.); (J.C.d.S.d.L.); (O.A.R.); (O.L.D.C.)
| |
Collapse
|
5
|
David TIP, Cerqueira OLD, Lana MG, Medrano RFV, Hunger A, Strauss BE. Response of human melanoma cell lines to interferon-beta gene transfer mediated by a modified adenoviral vector. Sci Rep 2020; 10:17893. [PMID: 33087767 PMCID: PMC7578831 DOI: 10.1038/s41598-020-74826-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 09/25/2020] [Indexed: 01/08/2023] Open
Abstract
Since melanomas often retain wild type p53, we developed an adenoviral vector, AdRGD-PG, which provides robust transduction and transgene expression in response to p53. Previously, this vector was used for interferon-β gene transfer in mouse models of melanoma, resulting in control of tumor progression, but limited cell killing. Here, the AdRGD-PG-hIFNβ vector encoding the human interferon-β cDNA (hIFNβ) was used to transduce human melanoma cell lines SK-MEL-05 and SK-MEL-147 (both wild type p53). In vitro, cell death was induced in more than 80% of the cells and correlated with elevated annexinV staining and caspase 3/7 activity. Treatment with hIFNβ promoted cell killing in neighboring, non-transduced cells, thus revealing a bystander effect. In situ gene therapy resulted in complete inhibition of tumor progression for SK-MEL-147 when using nude mice with no evidence of hepatotoxicity. However, the response in Nod-Scid mice was less robust. For SK-MEL-05, tumor inhibition was similar in nude and Nod-Scid mice and was less efficient than seen for SK-MEL-147, indicating both cell type and host specific responses. The AdRGD-PG-hIFNβ vector provides extensive killing of human melanoma cells in vitro and a potent anti-tumor effect in vivo. This study provides a critical advance in the development of our melanoma gene therapy approach.
Collapse
Affiliation(s)
- Taynah I P David
- Laboratório de Vetores Virais, Centro de Investigação Translacional em Oncologia, Instituto Do Câncer Do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, Av. Dr. Arnaldo, 251, 8th floor, São Paulo, SP, Brazil
| | - Otto L D Cerqueira
- Laboratório de Vetores Virais, Centro de Investigação Translacional em Oncologia, Instituto Do Câncer Do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, Av. Dr. Arnaldo, 251, 8th floor, São Paulo, SP, Brazil
| | - Marlous G Lana
- Laboratório de Vetores Virais, Centro de Investigação Translacional em Oncologia, Instituto Do Câncer Do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, Av. Dr. Arnaldo, 251, 8th floor, São Paulo, SP, Brazil
| | - Ruan F V Medrano
- Laboratório de Vetores Virais, Centro de Investigação Translacional em Oncologia, Instituto Do Câncer Do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, Av. Dr. Arnaldo, 251, 8th floor, São Paulo, SP, Brazil
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Aline Hunger
- Laboratório de Vetores Virais, Centro de Investigação Translacional em Oncologia, Instituto Do Câncer Do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, Av. Dr. Arnaldo, 251, 8th floor, São Paulo, SP, Brazil
- Cristalia, Biotecnologia Unidade 1, Rodoviária SP 147, Itapira, SP, Brazil
| | - Bryan E Strauss
- Laboratório de Vetores Virais, Centro de Investigação Translacional em Oncologia, Instituto Do Câncer Do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, Av. Dr. Arnaldo, 251, 8th floor, São Paulo, SP, Brazil.
| |
Collapse
|
6
|
Combination of cabazitaxel and p53 gene therapy abolishes prostate carcinoma tumor growth. Gene Ther 2019; 27:15-26. [PMID: 30926960 DOI: 10.1038/s41434-019-0071-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/22/2019] [Accepted: 03/08/2019] [Indexed: 01/19/2023]
Abstract
For patients with metastatic prostate cancer, the 5-year survival rate of 31% points to a need for novel therapies and improvement of existing modalities. We propose that p53 gene therapy and chemotherapy, when combined, will provide superior tumor cell killing for the treatment of prostate carcinoma. To this end, we have developed the AdRGD-PGp53 vector which offers autoregulated expression of p53, resulting in enhanced tumor cell killing in vitro and in vivo. Here, we combined AdRGD-PGp53 along with the chemotherapy drugs used in the clinical treatment of prostate carcinoma, mitoxantrone, docetaxel, or cabazitaxel. Our results indicate that all drugs increase phosphorylation of p53, leading to improved induction of p53 targets. In vitro experiments reveal that AdRGD-PGp53 sensitizes prostate cancer cells to each of the drugs tested, conferring increased levels of cell death. In a xenograft mouse model of in situ gene therapy, AdRGD-PGp53 treatment, when combined with cabazitaxel, drastically reduced tumor progression and increased survival rates to 100%. Strikingly, we used a sub-therapeutic dose of cabazitaxel thus avoiding leukopenia, yet still showed potent anti-tumor effects when combined with AdRGD-PGp53 in this mouse model. The AdRGD-PGp53 approach warrants further development for its application in gene therapy of prostate carcinoma.
Collapse
|
7
|
Vieira IDL, Tamura RE, Hunger A, Strauss BE. Distinct Roles of Direct Transduction Versus Exposure to the Tumor Secretome on Murine Endothelial Cells After Melanoma Gene Therapy with Interferon-β and p19Arf. J Interferon Cytokine Res 2019; 39:246-258. [PMID: 30848981 DOI: 10.1089/jir.2018.0124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tumor vasculature plays a central role in tumor progression, making it an attractive therapeutic target. In this study, we explore the antiangiogenic potential of our melanoma gene therapy approach combining interferon β (IFNβ) and p19Arf gene transfer. Since these proteins are modulators of tumor vasculature, we explore the impact of IFNβ and p19Arf gene transfer on murine endothelial cells (tEnd). Adenovirus-mediated gene transfer of p19Arf to tEnd cells inhibited proliferation, tube formation, migration, and led to increased expression of genes related to the p53 cell death pathway, yet IFNβ gene transfer had no significant impact on tEnd viability. Alternatively, tEnd cells were exposed to the factors generated by transduced B16 (mouse melanoma) cells using either coculture or conditioned medium. In either case, transduction of B16 cells with the IFNβ vector, whether alone or in combination with p19Arf, resulted in endothelial cell death. Strikingly, treatment of tEnd cells with recombinant IFNβ did not induce death, demonstrating that additional factors produced by B16 cells contributed to the demise of tEnd cells. In this work, we have shown that our melanoma gene therapy strategy produces desirable negative effects on endothelial cells, possibly correlating with antiangiogenic activity.
Collapse
Affiliation(s)
- Igor de Luna Vieira
- Viral Vector Laboratory, Centro de Investigação Translacional em Oncologia/LIM24, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Rodrigo Esaki Tamura
- Viral Vector Laboratory, Centro de Investigação Translacional em Oncologia/LIM24, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Aline Hunger
- Viral Vector Laboratory, Centro de Investigação Translacional em Oncologia/LIM24, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Bryan E Strauss
- Viral Vector Laboratory, Centro de Investigação Translacional em Oncologia/LIM24, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
8
|
Strauss BE, Silva GRO, de Luna Vieira I, Cerqueira OLD, Del Valle PR, Medrano RFV, Mendonça SA. Perspectives for cancer immunotherapy mediated by p19Arf plus interferon-beta gene transfer. Clinics (Sao Paulo) 2018; 73:e479s. [PMID: 30208166 PMCID: PMC6113850 DOI: 10.6061/clinics/2018/e479s] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/22/2018] [Indexed: 12/13/2022] Open
Abstract
While cancer immunotherapy has gained much deserved attention in recent years, many areas regarding the optimization of such modalities remain unexplored, including the development of novel approaches and the strategic combination of therapies that target multiple aspects of the cancer-immunity cycle. Our own work involves the use of gene transfer technology to promote cell death and immune stimulation. Such immunogenic cell death, mediated by the combined transfer of the alternate reading frame (p14ARF in humans and p19Arf in mice) and the interferon-β cDNA in our case, was shown to promote an antitumor immune response in mouse models of melanoma and lung carcinoma. With these encouraging results, we are now setting out on the road toward translational and preclinical development of our novel immunotherapeutic approach. Here, we outline the perspectives and challenges that we face, including the use of human tumor and immune cells to verify the response seen in mouse models and the incorporation of clinically relevant models, such as patient-derived xenografts and spontaneous tumors in animals. In addition, we seek to combine our immunotherapeutic approach with other treatments, such as chemotherapy or checkpoint blockade, with the goal of reducing dosage and increasing efficacy. The success of any translational research requires the cooperation of a multidisciplinary team of professionals involved in laboratory and clinical research, a relationship that is fostered at the Cancer Institute of Sao Paulo.
Collapse
Affiliation(s)
- Bryan E Strauss
- Laboratório de Vetores Virais, Centro de Investigação Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
- *Corresponding author. E-mail: /
| | - Gissele Rolemberg Oliveira Silva
- Laboratório de Vetores Virais, Centro de Investigação Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Igor de Luna Vieira
- Laboratório de Vetores Virais, Centro de Investigação Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Otto Luiz Dutra Cerqueira
- Laboratório de Vetores Virais, Centro de Investigação Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Paulo Roberto Del Valle
- Laboratório de Vetores Virais, Centro de Investigação Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Ruan Felipe Vieira Medrano
- Laboratório de Vetores Virais, Centro de Investigação Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Samir Andrade Mendonça
- Laboratório de Vetores Virais, Centro de Investigação Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| |
Collapse
|
9
|
Tamura RE, de Luna IV, Lana MG, Strauss BE. Improving adenoviral vectors and strategies for prostate cancer gene therapy. Clinics (Sao Paulo) 2018; 73:e476s. [PMID: 30133562 PMCID: PMC6097088 DOI: 10.6061/clinics/2018/e476s] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/09/2018] [Indexed: 01/07/2023] Open
Abstract
Gene therapy has been evaluated for the treatment of prostate cancer and includes the application of adenoviral vectors encoding a suicide gene or oncolytic adenoviruses that may be armed with a functional transgene. In parallel, versions of adenoviral vector expressing the p53 gene (Ad-p53) have been tested as treatments for head and neck squamous cell carcinoma and non-small cell lung cancer. Although Ad-p53 gene therapy has yielded some interesting results when applied to prostate cancer, it has not been widely explored, perhaps due to current limitations of the approach. To achieve better functionality, improvements in the gene transfer system and the therapeutic regimen may be required. We have developed adenoviral vectors whose transgene expression is controlled by a p53-responsive promoter, which creates a positive feedback mechanism when used to drive the expression of p53. Together with improvements that permit efficient transduction, this new approach was more effective than the use of traditional versions of Ad-p53 in killing prostate cancer cell lines and inhibiting tumor progression. Even so, gene therapy is not expected to replace traditional chemotherapy but should complement the standard of care. In fact, chemotherapy has been shown to assist in viral transduction and transgene expression. The cooperation between gene therapy and chemotherapy is expected to effectively kill tumor cells while permitting the use of reduced chemotherapy drug concentrations and, thus, lowering side effects. Therefore, the combination of gene therapy and chemotherapy may prove essential for the success of both approaches.
Collapse
Affiliation(s)
- Rodrigo Esaki Tamura
- Laboratório de Vetores Virais, Centro de Investigação Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Igor Vieira de Luna
- Laboratório de Vetores Virais, Centro de Investigação Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Marlous Gomes Lana
- Laboratório de Vetores Virais, Centro de Investigação Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Bryan E Strauss
- Laboratório de Vetores Virais, Centro de Investigação Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
- *Corresponding author. E-mail: ,
| |
Collapse
|
10
|
Medrano RF, Hunger A, Mendonça SA, Barbuto JAM, Strauss BE. Immunomodulatory and antitumor effects of type I interferons and their application in cancer therapy. Oncotarget 2017; 8:71249-71284. [PMID: 29050360 PMCID: PMC5642635 DOI: 10.18632/oncotarget.19531] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/12/2017] [Indexed: 02/07/2023] Open
Abstract
During the last decades, the pleiotropic antitumor functions exerted by type I interferons (IFNs) have become universally acknowledged, especially their role in mediating interactions between the tumor and the immune system. Indeed, type I IFNs are now appreciated as a critical component of dendritic cell (DC) driven T cell responses to cancer. Here we focus on IFN-α and IFN-β, and their antitumor effects, impact on immune responses and their use as therapeutic agents. IFN-α/β share many properties, including activation of the JAK-STAT signaling pathway and induction of a variety of cellular phenotypes. For example, type I IFNs drive not only the high maturation status of DCs, but also have a direct impact in cytotoxic T lymphocytes, NK cell activation, induction of tumor cell death and inhibition of angiogenesis. A variety of stimuli, including some standard cancer treatments, promote the expression of endogenous IFN-α/β, which then participates as a fundamental component of immunogenic cell death. Systemic treatment with recombinant protein has been used for the treatment of melanoma. The induction of endogenous IFN-α/β has been tested, including stimulation through pattern recognition receptors. Gene therapies involving IFN-α/β have also been described. Thus, harnessing type I IFNs as an effective tool for cancer therapy continues to be studied.
Collapse
Affiliation(s)
- Ruan F.V. Medrano
- Viral Vector Laboratory, Center for Translational Investigation in Oncology, Cancer Institute of São Paulo/LIM 24, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Aline Hunger
- Viral Vector Laboratory, Center for Translational Investigation in Oncology, Cancer Institute of São Paulo/LIM 24, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Samir Andrade Mendonça
- Viral Vector Laboratory, Center for Translational Investigation in Oncology, Cancer Institute of São Paulo/LIM 24, University of São Paulo School of Medicine, São Paulo, Brazil
| | - José Alexandre M. Barbuto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Cell and Molecular Therapy Center, NUCEL-NETCEM, University of São Paulo, São Paulo, Brazil
| | - Bryan E. Strauss
- Viral Vector Laboratory, Center for Translational Investigation in Oncology, Cancer Institute of São Paulo/LIM 24, University of São Paulo School of Medicine, São Paulo, Brazil
| |
Collapse
|
11
|
Medrano RFV, Hunger A, Catani JPP, Strauss BE. Uncovering the immunotherapeutic cycle initiated by p19Arf and interferon-β gene transfer to cancer cells: An inducer of immunogenic cell death. Oncoimmunology 2017; 6:e1329072. [PMID: 28811972 DOI: 10.1080/2162402x.2017.1329072] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 05/08/2017] [Indexed: 01/06/2023] Open
Abstract
Simultaneous reestablishment of p53/p19Arf and interferon-β pathways in melanoma cells culminates in a cell death process that displays features of necroptosis along with the release of immunogenic cell death molecules and unleashes an antitumor immune response mediated by natural killer cells, neutrophils as well as CD4+ and CD8+ T lymphocytes.
Collapse
Affiliation(s)
- Ruan F V Medrano
- Viral Vector Laboratory, Center for Translational Investigation in Oncology, Cancer Institute of Sao Paulo/LIM 24, University of Sao Paulo School of Medicine, Sao Paulo, Brazil
| | - Aline Hunger
- Viral Vector Laboratory, Center for Translational Investigation in Oncology, Cancer Institute of Sao Paulo/LIM 24, University of Sao Paulo School of Medicine, Sao Paulo, Brazil
| | - João P P Catani
- Viral Vector Laboratory, Center for Translational Investigation in Oncology, Cancer Institute of Sao Paulo/LIM 24, University of Sao Paulo School of Medicine, Sao Paulo, Brazil
| | - Bryan E Strauss
- Viral Vector Laboratory, Center for Translational Investigation in Oncology, Cancer Institute of Sao Paulo/LIM 24, University of Sao Paulo School of Medicine, Sao Paulo, Brazil
| |
Collapse
|
12
|
Hunger A, Medrano RFV, Strauss BE. Harnessing combined p19Arf and interferon-beta gene transfer as an inducer of immunogenic cell death and mediator of cancer immunotherapy. Cell Death Dis 2017; 8:e2784. [PMID: 28492558 PMCID: PMC5520721 DOI: 10.1038/cddis.2017.201] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Aline Hunger
- Viral Vector Laboratory, Center for Translational Investigation in Oncology, Cancer Institute of Sao Paulo/LIM 24, University of Sao Paulo School of Medicine, Sao Paulo, Brazil
| | - Ruan FV Medrano
- Viral Vector Laboratory, Center for Translational Investigation in Oncology, Cancer Institute of Sao Paulo/LIM 24, University of Sao Paulo School of Medicine, Sao Paulo, Brazil
| | - Bryan E Strauss
- Viral Vector Laboratory, Center for Translational Investigation in Oncology, Cancer Institute of Sao Paulo/LIM 24, University of Sao Paulo School of Medicine, Sao Paulo, Brazil
| |
Collapse
|
13
|
Reestablishment of p53/Arf and interferon- β pathways mediated by a novel adenoviral vector potentiates antiviral response and immunogenic cell death. Cell Death Discov 2017; 3:17017. [PMID: 28386458 PMCID: PMC5357668 DOI: 10.1038/cddiscovery.2017.17] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 02/06/2017] [Accepted: 02/08/2017] [Indexed: 02/07/2023] Open
|
14
|
Tamura RE, Hunger A, Fernandes DC, Laurindo FR, Costanzi-Strauss E, Strauss BE. Induction of Oxidants Distinguishes Susceptibility of Prostate Carcinoma Cell Lines to p53 Gene Transfer Mediated by an Improved Adenoviral Vector. Hum Gene Ther 2017; 28:639-653. [PMID: 28181816 DOI: 10.1089/hum.2016.139] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Previously, the authors developed an adenoviral vector, Ad-PG, where transgene expression is regulated by a p53-responsive promoter. When used to transfer the p53 cDNA, a positive feedback mechanism is established. In the present study, a critical comparison is performed between Ad-PGp53 and AdRGD-PGp53, where the RGD motif was incorporated in the adenoviral fiber protein. AdRGD-PGp53 provided superior transgene expression levels and resulted in the killing of prostate carcinoma cell lines DU145 and PC3. In vitro, this effect was associated with increased production of cytoplasmic and mitochondrial oxidants, DNA damage as revealed by detection of phosphorylated H2AX, as well as cell death consistent with apoptosis. Differential gene expression of key mediators of reactive oxygen species pathways was also observed. Specifically, it was noted that induction of known p53-target genes Sestrin2 and PIG3, as well as a novel target, NOX1, occurred in PC3 cells only when transduced with the improved vector, AdRGD-PGp53. The participation of NOX1 was confirmed upon its inhibition using a specific peptide, resulting in reduced cell death. In situ gene therapy also resulted in significantly improved inhibition of tumor progression consistent with oxidant-induced DNA damage only when treated with the novel AdRGD-PGp53 vector. The study shows that the improved adenovirus overcomes limitations associated with other p53-expressing vectors and induces oxidant-mediating killing, thus supporting its further development for cancer gene therapy.
Collapse
Affiliation(s)
- Rodrigo Esaki Tamura
- 1 Viral Vector Laboratory, Center for Translational Investigation in Oncology/LIM24, Cancer Institute of São Paulo, School of Medicine, University of São Paulo , São Paulo, Brazil
| | - Aline Hunger
- 1 Viral Vector Laboratory, Center for Translational Investigation in Oncology/LIM24, Cancer Institute of São Paulo, School of Medicine, University of São Paulo , São Paulo, Brazil
| | - Denise C Fernandes
- 2 Vascular Biology Laboratory, Heart Institute, School of Medicine, University of São Paulo , São Paulo, Brazil
| | - Francisco R Laurindo
- 2 Vascular Biology Laboratory, Heart Institute, School of Medicine, University of São Paulo , São Paulo, Brazil
| | - Eugenia Costanzi-Strauss
- 3 Gene Therapy Laboratory, Department of Cell and Developmental Biology, Biomedical Sciences Institute, University of São Paulo , São Paulo, Brazil
| | - Bryan E Strauss
- 1 Viral Vector Laboratory, Center for Translational Investigation in Oncology/LIM24, Cancer Institute of São Paulo, School of Medicine, University of São Paulo , São Paulo, Brazil
| |
Collapse
|
15
|
Catani JPP, Medrano RFV, Hunger A, Del Valle P, Adjemian S, Zanatta DB, Kroemer G, Costanzi-Strauss E, Strauss BE. Intratumoral Immunization by p19Arf and Interferon-β Gene Transfer in a Heterotopic Mouse Model of Lung Carcinoma. Transl Oncol 2016; 9:565-574. [PMID: 27916291 PMCID: PMC5143354 DOI: 10.1016/j.tranon.2016.09.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/29/2016] [Accepted: 09/29/2016] [Indexed: 02/06/2023] Open
Abstract
Therapeutic strategies that act by eliciting and enhancing antitumor immunity have been clinically validated as an effective treatment modality but may benefit from the induction of both cell death and immune activation as primary stimuli. Using our AdRGD-PG adenovector platform, we show here for the first time that in situ gene transfer of p19Arf and interferon-β (IFNβ) in the LLC1 mouse model of lung carcinoma acts as an immunotherapy. Although p19Arf is sufficient to induce cell death, only its pairing with IFNβ significantly induced markers of immunogenic cell death. In situ gene therapy with IFNβ, either alone or in combination with p19Arf, could retard tumor progression, but only the combined treatment was associated with a protective immune response. Specifically in the case of combined intratumoral gene transfer, we identified 167 differentially expressed genes when using microarray to evaluate tumors that were treated in vivo and confirmed the activation of CCL3, CXCL3, IL1α, IL1β, CD274, and OSM, involved in immune response and chemotaxis. Histologic evaluation revealed significant tumor infiltration by neutrophils, whereas functional depletion of granulocytes ablated the antitumor effect of our approach. The association of in situ gene therapy with cisplatin resulted in synergistic elimination of tumor progression. In all, in situ gene transfer with p19Arf and IFNβ acts as an immunotherapy involving recruitment of neutrophils, a desirable but previously untested outcome, and this approach may be allied with chemotherapy, thus providing significant antitumor activity and warranting further development for the treatment of lung carcinoma.
Collapse
Affiliation(s)
- João Paulo Portela Catani
- Viral Vector Laboratory, Center for Translational Investigation in Oncology, Cancer Institute of Sao Paulo/LIM 24, University of São Paulo School of Medicine, Brazil
| | - Ruan F V Medrano
- Viral Vector Laboratory, Center for Translational Investigation in Oncology, Cancer Institute of Sao Paulo/LIM 24, University of São Paulo School of Medicine, Brazil
| | - Aline Hunger
- Viral Vector Laboratory, Center for Translational Investigation in Oncology, Cancer Institute of Sao Paulo/LIM 24, University of São Paulo School of Medicine, Brazil
| | - Paulo Del Valle
- Viral Vector Laboratory, Center for Translational Investigation in Oncology, Cancer Institute of Sao Paulo/LIM 24, University of São Paulo School of Medicine, Brazil
| | - Sandy Adjemian
- Laboratory of Cell and Molecular Biology, Department of Immunology, Biomedical Sciences Institute, University of São Paulo, Brazil
| | - Daniela Bertolini Zanatta
- Viral Vector Laboratory, Center for Translational Investigation in Oncology, Cancer Institute of Sao Paulo/LIM 24, University of São Paulo School of Medicine, Brazil
| | - Guido Kroemer
- Equipe 11 Labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; U1138, INSERM, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Eugenia Costanzi-Strauss
- Gene Therapy Laboratory, Department of Cell and Developmental Biology, Biomedical Sciences Institute, University of São Paulo, Brazil
| | - Bryan E Strauss
- Viral Vector Laboratory, Center for Translational Investigation in Oncology, Cancer Institute of Sao Paulo/LIM 24, University of São Paulo School of Medicine, Brazil.
| |
Collapse
|
16
|
Tamura RE, da Silva Soares RB, Costanzi-Strauss E, Strauss BE. Autoregulated expression of p53 from an adenoviral vector confers superior tumor inhibition in a model of prostate carcinoma gene therapy. Cancer Biol Ther 2016; 17:1221-1230. [PMID: 27646031 DOI: 10.1080/15384047.2016.1235655] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Alternative treatments for cancer using gene therapy approaches have shown promising results and some have even reached the marketplace. Even so, additional improvements are needed, such as employing a strategically chosen promoter to drive expression of the transgene in the target cell. Previously, we described viral vectors where high-level transgene expression was achieved using a p53-responsive promoter. Here we present an adenoviral vector (AdPGp53) where p53 is employed to regulate its own expression and which outperforms a traditional vector when tested in a model of gene therapy for prostate cancer. The functionality of AdPGp53 and AdCMVp53 were compared in human prostate carcinoma cell lines. AdPGp53 conferred greatly enhanced levels of p53 protein and induction of the p53 target gene, p21, as well as superior cell killing by a mechanism consistent with apoptosis. DU145 cells were susceptible to induction of death with AdPGp53, yet PC3 cells were quite resistant. Though AdCMVp53 was shown to be reliable, extremely high-level expression of p53 offered by AdPGp53 was necessary for tumor suppressor activity in PC3 and DU145. In situ gene therapy experiments revealed tumor inhibition and increased overall survival in response to AdPGp53, but not AdCMVp53. Upon histologic examination, only AdPGp53 treatment was correlated with the detection of both p53 and TUNEL-positive cells. This study points to the importance of improved vector performance for gene therapy of prostate cancer.
Collapse
Affiliation(s)
- Rodrigo Esaki Tamura
- a Viral Vector Laboratory, Center for Translational Investigation in Oncology/LIM24 , Cancer Institute of São Paulo, School of Medicine, University of São Paulo , Brazil
| | - Rafael Bento da Silva Soares
- b Viral Vector Group, Laboratory of Genetics and Molecular Cardiology/LIM13 , Heart Institute, School of Medicine, University of São Paulo , Brazil
| | - Eugenia Costanzi-Strauss
- c Gene Therapy Laboratory, Department of Cell and Developmental Biology , Biomedical Sciences Institute, University of São Paulo , Brazil
| | - Bryan E Strauss
- a Viral Vector Laboratory, Center for Translational Investigation in Oncology/LIM24 , Cancer Institute of São Paulo, School of Medicine, University of São Paulo , Brazil
| |
Collapse
|
17
|
Medrano RFV, Catani JPP, Ribeiro AH, Tomaz SL, Merkel CA, Costanzi-Strauss E, Strauss BE. Vaccination using melanoma cells treated with p19arf and interferon beta gene transfer in a mouse model: a novel combination for cancer immunotherapy. Cancer Immunol Immunother 2016; 65:371-82. [PMID: 26887933 PMCID: PMC11029472 DOI: 10.1007/s00262-016-1807-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 01/31/2016] [Indexed: 01/08/2023]
Abstract
Previously, we combined p19(Arf) (Cdkn2a, tumor suppressor protein) and interferon beta (IFN-β, immunomodulatory cytokine) gene transfer in order to enhance cell death in a murine model of melanoma. Here, we present evidence of the immune response induced when B16 cells succumbing to death due to treatment with p19(Arf) and IFN-β are applied in vaccine models. Use of dying cells for prophylactic vaccination was investigated, identifying conditions for tumor-free survival. After combined p19(Arf) and IFN-β treatment, we observed immune rejection at the vaccine site in immune competent and nude mice with normal NK activity, but not in NOD-SCID and dexamethasone immunosuppressed mice (NK deficient). Combined treatment induced IL-15, ULBP1, FAS/APO1 and KILLER/DR5 expression, providing a mechanism for NK activation. Prophylactic vaccination protected against tumor challenge, where markedly delayed progression and leukocyte infiltration were observed. Analysis of primed lymphocytes revealed secretion of TH1-related cytokines and depletion protocols showed that both CD4(+) and CD8(+) T lymphocytes are necessary for immune protection. However, application of this prophylactic vaccine where cells were treated either with IFN-β alone or combined with p19(Arf) conferred similar immune protection and cytokine activation, yet only the combination was associated with increased overall survival. In a therapeutic vaccine protocol, only the combination was associated with reduced tumor progression. Our results indicate that by harnessing cell death in an immunogenic context, our p19(Arf) and IFN-β combination offers a clear advantage when both genes are included in the vaccine and warrants further development as a novel immunotherapy for melanoma.
Collapse
MESH Headings
- Animals
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Line, Tumor
- Cyclin-Dependent Kinase Inhibitor p16/genetics
- Cyclin-Dependent Kinase Inhibitor p16/immunology
- Female
- Genetic Therapy/methods
- Immunotherapy/methods
- Interferon-beta/genetics
- Interferon-beta/immunology
- Interleukin-15/immunology
- Interleukin-15/metabolism
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Melanoma, Experimental/genetics
- Melanoma, Experimental/immunology
- Melanoma, Experimental/therapy
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Nude
- Mice, SCID
- Receptors, TNF-Related Apoptosis-Inducing Ligand/immunology
- Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism
- Th1 Cells/immunology
- Th1 Cells/metabolism
- Tumor Burden/genetics
- Tumor Burden/immunology
- Vaccination/methods
Collapse
Affiliation(s)
- Ruan Felipe Vieira Medrano
- Viral Vector Laboratory, Centro de Investigação Translacional em Oncologia/LIM24, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo, 251, 8th Floor, São Paulo, SP, 01246-000, Brazil
| | - João Paulo Portela Catani
- Viral Vector Laboratory, Centro de Investigação Translacional em Oncologia/LIM24, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo, 251, 8th Floor, São Paulo, SP, 01246-000, Brazil
| | - Aline Hunger Ribeiro
- Viral Vector Laboratory, Centro de Investigação Translacional em Oncologia/LIM24, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo, 251, 8th Floor, São Paulo, SP, 01246-000, Brazil
| | - Samanta Lopes Tomaz
- Escola Paulista de Medicina-Universidade Federal de São Paulo, São Paulo, Brazil
| | - Christian A Merkel
- Animal Care Facility, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Eugenia Costanzi-Strauss
- Gene Therapy Laboratory, Instituto de Ciências Biomédicas-I, Universidade de São Paulo, São Paulo, Brazil
| | - Bryan E Strauss
- Viral Vector Laboratory, Centro de Investigação Translacional em Oncologia/LIM24, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo, 251, 8th Floor, São Paulo, SP, 01246-000, Brazil.
| |
Collapse
|
18
|
Bajgelman MC, Dos Santos L, Silva GJJ, Nakamuta J, Sirvente RA, Chaves M, Krieger JE, Strauss BE. Preservation of cardiac function in left ventricle cardiac hypertrophy using an AAV vector which provides VEGF-A expression in response to p53. Virology 2014; 476:106-114. [PMID: 25543961 DOI: 10.1016/j.virol.2014.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 11/18/2014] [Accepted: 12/04/2014] [Indexed: 01/19/2023]
Abstract
Here we present the application of our adeno-associated virus (AAV2) vector where transgene expression is driven by a synthetic, p53-responsive promoter, termed PG, used to supply human vascular endothelial growth factor-A165 (VEGF-A). Thus, p53 is harnessed to promote the beneficial expression of VEGF-A encoded by the AAVPG vector, bypassing the negative effect of p53 on HIF-1α which occurs during cardiac hypertrophy. Wistar rats were submitted to pressure overload induced by thoracic aorta coarctation (TAC) with or without concomitant gene therapy (intramuscular delivery in the left ventricle). After 12 weeks, rats receiving AAVPG-VEGF gene therapy were compared to those that did not, revealing significantly improved cardiac function under hemodynamic stress, lack of fibrosis and reversal of capillary rarefaction. With these functional assays, we have demonstrated that application of the AAVPG-VEGF vector under physiologic conditions known to stimulate p53 resulted in the preservation of cardiac performance.
Collapse
Affiliation(s)
- Marcio C Bajgelman
- Viral Vector Laboratory, Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil; Laboratory of Genetics and Molecular Cardiology/LIM13, Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Leonardo Dos Santos
- Laboratory of Genetics and Molecular Cardiology/LIM13, Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Gustavo J J Silva
- Laboratory of Genetics and Molecular Cardiology/LIM13, Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Juliana Nakamuta
- Laboratory of Genetics and Molecular Cardiology/LIM13, Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Raquel A Sirvente
- Hypertension Unit, Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Marcio Chaves
- Laboratory of Genetics and Molecular Cardiology/LIM13, Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil
| | - José Eduardo Krieger
- Laboratory of Genetics and Molecular Cardiology/LIM13, Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Bryan E Strauss
- Viral Vector Laboratory, Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil; Laboratory of Genetics and Molecular Cardiology/LIM13, Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil.
| |
Collapse
|
19
|
Bajgelman MC, Medrano RF, Carvalho ACP, Strauss BE. AAVPG: A vigilant vector where transgene expression is induced by p53. Virology 2013; 447:166-71. [DOI: 10.1016/j.virol.2013.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 06/14/2013] [Accepted: 09/05/2013] [Indexed: 10/26/2022]
|
20
|
Merkel CA, Medrano RFV, Barauna VG, Strauss BE. Combined p19Arf and interferon-beta gene transfer enhances cell death of B16 melanoma in vitro and in vivo. Cancer Gene Ther 2013; 20:317-25. [PMID: 23618951 DOI: 10.1038/cgt.2013.23] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Approximately 90% of melanomas retain wild-type p53, a characteristic that may help shape the development of novel treatment strategies. Here, we employed an adenoviral vector where transgene expression is controlled by p53 to deliver the p19 alternate reading frame (Arf) and interferon-β (IFNβ) complementary DNAs in the B16 mouse model of melanoma. In vitro, cell death was enhanced by combined gene transfer (63.82±15.30% sub-G0 cells); yet introduction of a single gene resulted in significantly fewer hypoploid cells (37.73±7.3% or 36.96±11.58%, p19Arf or IFNβ, respectively, P<0.05). Annexin V staining and caspase-3 cleavage indicate a cell death mechanism consistent with apoptosis. Using reverse transcriptase quantitative PCR, we show that key transcriptional targets of p53 were upregulated in the presence of p19Arf, although treatment with IFNβ did not alter expression of the genes studied. In situ gene therapy revealed significant inhibition of subcutaneous tumors by IFNβ (571±25 mm3) or the combination of p19Arf and IFNβ (489±124 mm3) as compared with the LacZ control (1875±33 mm3, P<0.001), whereas p19Arf yielded an intermediate result (1053±169 mm3, P<0.01 vs control). However, only the combination was associated with increased cell death and prolonged survival (P<0.01). As shown here, the combined transfer of p19Arf and IFNβ using p53-responsive vectors enhanced cell death both in vitro and in vivo.
Collapse
Affiliation(s)
- C A Merkel
- Viral Vector Laboratory, Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil
| | | | | | | |
Collapse
|
21
|
Danoviz ME, Bassaneze V, Nakamuta JS, dos Santos-Junior GR, Saint-Clair D, Bajgelman MC, Faé KC, Kalil J, Miyakawa AA, Krieger JE. Adipose Tissue–Derived Stem Cells from Humans and Mice Differ in Proliferative Capacity and Genome Stability in Long-Term Cultures. Stem Cells Dev 2011; 20:661-70. [DOI: 10.1089/scd.2010.0231] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Maria Elena Danoviz
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Vinícius Bassaneze
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Juliana Sanajotti Nakamuta
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | | | - Danilo Saint-Clair
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Márcio Chaim Bajgelman
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Kellen Cristhina Faé
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Jorge Kalil
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Ayumi Aurea Miyakawa
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - José Eduardo Krieger
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| |
Collapse
|