1
|
Comes JDG, Poniman M, van Oosten L, Doets K, de Cloe S, Geertsema C, Pijlman GP. Infectious clone of a contemporary Tembusu virus and replicons expressing reporter genes or heterologous antigens from poultry viruses. Biotechnol J 2024; 19:e2300254. [PMID: 37750498 DOI: 10.1002/biot.202300254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/30/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
The novel mosquito-borne Tembusu virus (TMUV, family Flaviviridae) was discovered as the cause of a severe outbreak of egg-drop syndrome affecting ducks in Southeast Asia in 2010. TMUV infection can also lead to high mortality in various additional avian species such as geese, pigeons, and chickens. This study describes the construction of an infectious cDNA clone of a contemporary duck-isolate (TMUV WU2016). The virus recovered after transfection of BHK-21 cells shows enhanced virus replication compared to the mosquito-derived MM1775 strain. Next, the WU2016 cDNA clone was modified to create a SP6 promoter-driven, self-amplifying mRNA (replicon) capable of expressing a range of different reporter genes (Renilla luciferase, mScarlet, mCherry, and GFP) and viral (glyco)proteins of avian influenza virus (AIV; family Orthomyxoviridae), infectious bursal disease virus (IDBV; family Bunyaviridae) and infectious bronchitis virus (IBV; family Coronaviridae). The current study demonstrates the flexibility of the TMUV replicon system, to produce different heterologous proteins over an extended period of time and its potential use as a platform technology for novel poultry vaccines.
Collapse
Affiliation(s)
- Jerome D G Comes
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | - Meliawati Poniman
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | - Linda van Oosten
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | - Kristel Doets
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | - Sjoerd de Cloe
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | - Corinne Geertsema
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | - Gorben P Pijlman
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
2
|
Linking pig-tailed macaque major histocompatibility complex class I haplotypes and cytotoxic T lymphocyte escape mutations in simian immunodeficiency virus infection. J Virol 2014; 88:14310-25. [PMID: 25275134 DOI: 10.1128/jvi.02428-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
UNLABELLED The influence of major histocompatibility complex class I (MHC-I) alleles on human immunodeficiency virus (HIV) diversity in humans has been well characterized at the population level. MHC-I alleles likely affect viral diversity in the simian immunodeficiency virus (SIV)-infected pig-tailed macaque (Macaca nemestrina) model, but this is poorly characterized. We studied the evolution of SIV in pig-tailed macaques with a range of MHC-I haplotypes. SIV(mac251) genomes were amplified from the plasma of 44 pig-tailed macaques infected with SIV(mac251) at 4 to 10 months after infection and characterized by Illumina deep sequencing. MHC-I typing was performed on cellular RNA using Roche/454 pyrosequencing. MHC-I haplotypes and viral sequence polymorphisms at both individual mutations and groups of mutations spanning 10-amino-acid segments were linked using in-house bioinformatics pipelines, since cytotoxic T lymphocyte (CTL) escape can occur at different amino acids within the same epitope in different animals. The approach successfully identified 6 known CTL escape mutations within 3 Mane-A1*084-restricted epitopes. The approach also identified over 70 new SIV polymorphisms linked to a variety of MHC-I haplotypes. Using functional CD8 T cell assays, we confirmed that one of these associations, a Mane-B028 haplotype-linked mutation in Nef, corresponded to a CTL epitope. We also identified mutations associated with the Mane-B017 haplotype that were previously described to be CTL epitopes restricted by Mamu-B*017:01 in rhesus macaques. This detailed study of pig-tailed macaque MHC-I genetics and SIV polymorphisms will enable a refined level of analysis for future vaccine design and strategies for treatment of HIV infection. IMPORTANCE Cytotoxic T lymphocytes select for virus escape mutants of HIV and SIV, and this limits the effectiveness of vaccines and immunotherapies against these viruses. Patterns of immune escape variants are similar in HIV type 1-infected human subjects that share the same MHC-I genes, but this has not been studied for SIV infection of macaques. By studying SIV sequence diversity in 44 MHC-typed SIV-infected pigtail macaques, we defined over 70 sites within SIV where mutations were common in macaques sharing particular MHC-I genes. Further, pigtail macaques sharing nearly identical MHC-I genes with rhesus macaques responded to the same CTL epitope and forced immune escape. This allows many reagents developed to study rhesus macaques to also be used to study pigtail macaques. Overall, our study defines sites of immune escape in SIV in pigtailed macaques, and this enables a more refined level of analysis of future vaccine design and strategies for treatment of HIV infection.
Collapse
|
3
|
Aghasadeghi MR, Zabihollahi R, Sadat SM, Esfahani AF, Ashtiani SH, Namazi R, Kashanizadeh N, Azadmanesh K. Production and evaluation of immunologic characteristics of mzNL4-3, a non-infectious HIV-1 clone with a large deletion in the pol-Sequence. Mol Biol 2013. [DOI: 10.1134/s0026893313020027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Major LD, Partridge TS, Gardner J, Kent SJ, de Rose R, Suhrbier A, Schroder WA. Induction of SerpinB2 and Th1/Th2 modulation by SerpinB2 during lentiviral infections in vivo. PLoS One 2013; 8:e57343. [PMID: 23460840 PMCID: PMC3583835 DOI: 10.1371/journal.pone.0057343] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 01/21/2013] [Indexed: 11/25/2022] Open
Abstract
SerpinB2, also known as plasminogen activator inhibitor type 2, is a major product of activated monocytes/macrophages and is often strongly induced during infection and inflammation; however, its physiological function remains somewhat elusive. Herein we show that SerpinB2 is induced in peripheral blood mononuclear cells following infection of pigtail macaques with CCR5-utilizing (macrophage-tropic) SIVmac239, but not the rapidly pathogenic CXCR4-utilizing (T cell-tropic) SHIVmn229. To investigate the role of SerpinB2 in lentiviral infections, SerpinB2(-/-) mice were infected with EcoHIV, a chimeric HIV in which HIV gp120 has been replaced with gp80 from ecotropic murine leukemia virus. EcoHIV infected SerpinB2(-/-) mice produced significantly lower anti-gag IgG1 antibody titres than infected SerpinB2(+/+) mice, and showed slightly delayed clearance of EcoHIV. Analyses of published microarray studies showed significantly higher levels of SerpinB2 mRNA in monocytes from HIV-1 infected patients when compared with uninfected controls, as well as a significant negative correlation between SerpinB2 and T-bet mRNA levels in peripheral blood mononuclear cells. These data illustrate that SerpinB2 can be induced by lentiviral infection in vivo and support the emerging notion that a physiological role of SerpinB2 is modulation of Th1/Th2 responses.
Collapse
Affiliation(s)
- Lee D. Major
- Department of Immunology, Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | - Thomas S. Partridge
- Department of Immunology, Queensland Institute of Medical Research, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Joy Gardner
- Department of Immunology, Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | - Stephen J. Kent
- Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia
| | - Robert de Rose
- Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia
| | - Andreas Suhrbier
- Department of Immunology, Queensland Institute of Medical Research, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
- School of Biomolecular and Physical Sciences, Griffith University, Nathan, Queensland, Australia
| | - Wayne A. Schroder
- Department of Immunology, Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| |
Collapse
|
5
|
Trivalent live attenuated influenza-simian immunodeficiency virus vaccines: efficacy and evolution of cytotoxic T lymphocyte escape in macaques. J Virol 2013; 87:4146-60. [PMID: 23345519 DOI: 10.1128/jvi.02645-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There is an urgent need for a human immunodeficiency virus (HIV) vaccine that induces robust mucosal immunity. CD8(+) cytotoxic T lymphocytes (CTLs) apply substantial antiviral pressure, but CTLs to individual epitopes select for immune escape variants in both HIV in humans and SIV in macaques. Inducing multiple simian immunodeficiency virus (SIV)-specific CTLs may assist in controlling viremia. We vaccinated 10 Mane-A1*08401(+) female pigtail macaques with recombinant influenza viruses expressing three Mane-A1*08401-restricted SIV-specific CTL epitopes and subsequently challenged the animals, along with five controls, intravaginally with SIV(mac251). Seroconversion to the influenza virus vector resulted and small, but detectable, SIV-specific CTL responses were induced. There was a boost in CTL responses after challenge but no protection from high-level viremia or CD4 depletion was observed. All three CTL epitopes underwent a coordinated pattern of immune escape during early SIV infection. CTL escape was more rapid in the vaccinees than in the controls at the more dominant CTL epitopes. Although CTL escape can incur a "fitness" cost to the virus, a putative compensatory mutation 20 amino acids upstream from an immunodominant Gag CTL epitope also evolved soon after the primary CTL escape mutation. We conclude that vaccines based only on CTL epitopes will likely be undermined by rapid evolution of both CTL escape and compensatory mutations. More potent and possibly broader immune responses may be required to protect pigtail macaques from SIV.
Collapse
|
6
|
Simian immunodeficiency virus infects follicular helper CD4 T cells in lymphoid tissues during pathogenic infection of pigtail macaques. J Virol 2013; 87:3760-73. [PMID: 23325697 DOI: 10.1128/jvi.02497-12] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
T follicular helper (Tfh) cells are a specialized subset of memory CD4(+) T cells that are found exclusively within the germinal centers of secondary lymphoid tissues and are important for adaptive antibody responses and B cell memory. Tfh cells do not express CCR5, the primary entry coreceptor for both human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV), and therefore, we hypothesized that these cells would avoid infection. We studied lymph nodes and spleens from pigtail macaques infected with pathogenic strain SIVmac239 or SIVmac251, to investigate the susceptibility of Tfh cells to SIV infection. Pigtail macaque PD-1(high) CD127(low) memory CD4(+) T cells have a phenotype comparable to that of human Tfh cells, expressing high levels of CXCR5, interleukin-21 (IL-21), Bcl-6, and inducible T cell costimulator (ICOS). As judged by either proviral DNA or cell-associated viral RNA measurements, macaque Tfh cells were infected with SIV at levels comparable to those in other CD4(+) memory T cells. Infection of macaque Tfh cells was evident within weeks of inoculation, yet we confirmed that Tfh cells do not express CCR5 or either of the well-known alternative SIV coreceptors, CXCR6 and GPR15. Mutations in the SIV envelope gp120 region occurred in chronically infected macaques but were uniform across each T cell subset investigated, indicating that the viruses used the same coreceptors to enter different cell subsets. Early infection of Tfh cells represents an unexpected focus of viral infection. Infection of Tfh cells does not interrupt antibody production but may be a factor that limits the quality of antibody responses and has implications for assessing the size of the viral reservoir.
Collapse
|
7
|
Nitayaphan S, Ngauy V, O'Connell R, Excler JL. HIV epidemic in Asia: optimizing and expanding vaccine development. Expert Rev Vaccines 2012; 11:805-19. [PMID: 22913258 DOI: 10.1586/erv.12.49] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The recent evidence in Thailand for protection from acquisition of HIV through vaccination in a mostly heterosexual population has generated considerable hope. Building upon these results and the analysis of the correlates of risk remains among the highest priorities. Improved vaccine concepts including heterologous prime-boost regimens, improved proteins with potent adjuvants and new vectors expressing mosaic antigens may soon enter clinical development to assess vaccine efficacy in men who have sex with men. Identifying heterosexual populations with sufficient HIV incidence for the conduct of efficacy trials represents perhaps the main challenge in Asia. Fostering translational research efforts in Asian countries may benefit from the development of master strategic plans and program management processes.
Collapse
Affiliation(s)
- Sorachai Nitayaphan
- Royal Thai Army Component, Armed Forces Research Institute of Medical Sciences, 315/6 Rajvithi Road, Bangkok 10400, Thailand
| | | | | | | |
Collapse
|
8
|
Zabihollahi R, Sadat SM, Vahabpour R, Salehi M, Azadmanesh K, Siadat SD, Azizi Saraji AR, Pouriavali MH, Momen SB, Aghasadeghi MR. Introducing a frameshift mutation to the Pol sequence of HIV-1 provirus and evaluation of the immunogenic characteristics of the mutated virions (RINNL4-3). Mol Biol 2012. [DOI: 10.1134/s0026893312030107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Reynard O, Mokhonov V, Mokhonova E, Leung J, Page A, Mateo M, Pyankova O, Georges-Courbot MC, Raoul H, Khromykh AA, Volchkov VE. Kunjin virus replicon-based vaccines expressing Ebola virus glycoprotein GP protect the guinea pig against lethal Ebola virus infection. J Infect Dis 2011; 204 Suppl 3:S1060-5. [PMID: 21987742 DOI: 10.1093/infdis/jir347] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pre- or postexposure treatments against the filoviral hemorrhagic fevers are currently not available for human use. We evaluated, in a guinea pig model, the immunogenic potential of Kunjin virus (KUN)-derived replicons as a vaccine candidate against Ebola virus (EBOV). Virus like particles (VLPs) containing KUN replicons expressing EBOV wild-type glycoprotein GP, membrane anchor-truncated GP (GP/Ctr), and mutated GP (D637L) with enhanced shedding capacity were generated and assayed for their protective efficacy. Immunization with KUN VLPs expressing full-length wild-type and D637L-mutated GPs but not membrane anchor-truncated GP induced dose-dependent protection against a challenge of a lethal dose of recombinant guinea pig-adapted EBOV. The surviving animals showed complete clearance of the virus. Our results demonstrate the potential for KUN replicon vectors as vaccine candidates against EBOV infection.
Collapse
Affiliation(s)
- O Reynard
- Filovirus Laboratory, INSERM U758, Human Virology Department, Claude Bernard University Lyon-1, Université de Lyon, Ecole Normale Supérieure de Lyon, Lyon, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Reece JC, Loh L, Alcantara S, Fernandez CS, Stambas J, Sexton A, De Rose R, Petravic J, Davenport MP, Kent SJ. Timing of immune escape linked to success or failure of vaccination. PLoS One 2010; 5. [PMID: 20862289 PMCID: PMC2940906 DOI: 10.1371/journal.pone.0012774] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 08/24/2010] [Indexed: 11/23/2022] Open
Abstract
Successful vaccination against HIV should limit viral replication sufficiently to prevent the emergence of viral immune escape mutations. Broadly directed immunity is likely to be required to limit opportunities for immune escape variants to flourish. We studied the emergence of an SIV Gag cytotoxic T cell immune escape variant in pigtail macaques expressing the Mane-A*10 MHC I allele using a quantitative RT-PCR to measure viral loads of escape and wild type variants. Animals receiving whole Gag expressing vaccines completely controlled an SIVmac251 challenge, had broader CTL responses and exhibited minimal CTL escape. In contrast, animals vaccinated with only a single CTL epitope and challenged with the same SIVmac251 stock had high levels of viral replication and rapid CTL escape. Unvaccinated naïve animals exhibited a slower emergence of immune escape variants. Thus narrowly directed vaccination against a single epitope resulted in rapid immune escape and viral levels equivalent to that of naïve unvaccinated animals. These results emphasize the importance of inducing broadly directed HIV-specific immunity that effectively quashes early viral replication and limits the generation of immune escape variants. This has important implications for the selection of HIV vaccines for expanded human trials.
Collapse
Affiliation(s)
- Jeanette C. Reece
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - Liyen Loh
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - Sheilajen Alcantara
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - Caroline S. Fernandez
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - John Stambas
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - Amy Sexton
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - Robert De Rose
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - Janka Petravic
- Centre for Vascular Research, University of New South Wales, Sydney, Australia
| | - Miles P. Davenport
- Centre for Vascular Research, University of New South Wales, Sydney, Australia
| | - Stephen J. Kent
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
- * E-mail:
| |
Collapse
|
11
|
Brown SA, Surman SL, Sealy R, Jones BG, Slobod KS, Branum K, Lockey TD, Howlett N, Freiden P, Flynn P, Hurwitz JL. Heterologous Prime-Boost HIV-1 Vaccination Regimens in Pre-Clinical and Clinical Trials. Viruses 2010; 2:435-467. [PMID: 20407589 PMCID: PMC2855973 DOI: 10.3390/v2020435] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 01/12/2010] [Accepted: 01/22/2010] [Indexed: 12/21/2022] Open
Abstract
Currently, there are more than 30 million people infected with HIV-1 and thousands more are infected each day. Vaccination is the single most effective mechanism for prevention of viral disease, and after more than 25 years of research, one vaccine has shown somewhat encouraging results in an advanced clinical efficacy trial. A modified intent-to-treat analysis of trial results showed that infection was approximately 30% lower in the vaccine group compared to the placebo group. The vaccine was administered using a heterologous prime-boost regimen in which both target antigens and delivery vehicles were changed during the course of inoculations. Here we examine the complexity of heterologous prime-boost immunizations. We show that the use of different delivery vehicles in prime and boost inoculations can help to avert the inhibitory effects caused by vector-specific immune responses. We also show that the introduction of new antigens into boost inoculations can be advantageous, demonstrating that the effect of `original antigenic sin' is not absolute. Pre-clinical and clinical studies are reviewed, including our own work with a three-vector vaccination regimen using recombinant DNA, virus (Sendai virus or vaccinia virus) and protein. Promising preliminary results suggest that the heterologous prime-boost strategy may possibly provide a foundation for the future prevention of HIV-1 infections in humans.
Collapse
Affiliation(s)
- Scott A. Brown
- Department of Immunology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mail: (S.A.B.)
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mails: (S.L.S.); (R.S.); (B.G.J.); (K.B.); (N.H.); (P.F.); (P.F.)
| | - Sherri L. Surman
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mails: (S.L.S.); (R.S.); (B.G.J.); (K.B.); (N.H.); (P.F.); (P.F.)
| | - Robert Sealy
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mails: (S.L.S.); (R.S.); (B.G.J.); (K.B.); (N.H.); (P.F.); (P.F.)
| | - Bart G. Jones
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mails: (S.L.S.); (R.S.); (B.G.J.); (K.B.); (N.H.); (P.F.); (P.F.)
| | - Karen S. Slobod
- Early Development, Novartis Vaccines and Diagnostics, 350 Mass Ave. Cambridge, MA 02139, USA; E-Mail: (K.S.S.)
| | - Kristen Branum
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mails: (S.L.S.); (R.S.); (B.G.J.); (K.B.); (N.H.); (P.F.); (P.F.)
| | - Timothy D. Lockey
- Department of Therapeutics, Production and Quality, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mail: (T.D.L.)
| | - Nanna Howlett
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mails: (S.L.S.); (R.S.); (B.G.J.); (K.B.); (N.H.); (P.F.); (P.F.)
| | - Pamela Freiden
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mails: (S.L.S.); (R.S.); (B.G.J.); (K.B.); (N.H.); (P.F.); (P.F.)
| | - Patricia Flynn
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mails: (S.L.S.); (R.S.); (B.G.J.); (K.B.); (N.H.); (P.F.); (P.F.)
- Department of Pediatrics, University of Tennessee, Memphis, TN 38163, USA
| | - Julia L. Hurwitz
- Department of Immunology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mail: (S.A.B.)
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mails: (S.L.S.); (R.S.); (B.G.J.); (K.B.); (N.H.); (P.F.); (P.F.)
- Department of Pathology, University of Tennessee, Memphis, TN 38163, USA
| |
Collapse
|
12
|
Evaluation of recombinant influenza virus-simian immunodeficiency virus vaccines in macaques. J Virol 2009; 83:7619-28. [PMID: 19439474 DOI: 10.1128/jvi.00470-09] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There is an urgent need for human immunodeficiency virus (HIV) vaccines that induce robust mucosal immunity. Influenza A viruses (both H1N1 and H3N2) were engineered to express simian immunodeficiency virus (SIV) CD8 T-cell epitopes and evaluated following administration to the respiratory tracts of 11 pigtail macaques. Influenza virus was readily detected from respiratory tract secretions, although the infections were asymptomatic. Animals seroconverted to influenza virus and generated CD8 and CD4 T-cell responses to influenza virus proteins. SIV-specific CD8 T-cell responses bearing the mucosal homing marker beta7 integrin were induced by vaccination of naïve animals. Further, SIV-specific CD8 T-cell responses could be boosted by recombinant influenza virus-SIV vaccination of animals with already-established SIV infection. Sequential vaccination with influenza virus-SIV recombinants of different subtypes (H1N1 followed by H3N2 or vice versa) produced only a limited boost in immunity, probably reflecting T-cell immunity to conserved internal proteins of influenza A virus. SIV challenge of macaques vaccinated with an influenza virus expressing a single SIV CD8 T cell resulted in a large anamnestic recall CD8 T-cell response, but immune escape rapidly ensued and there was no impact on chronic SIV viremia. Although our results suggest that influenza virus-HIV vaccines hold promise for the induction of mucosal immunity to HIV, broader antigen cover will be needed to limit cytotoxic T-lymphocyte escape.
Collapse
|
13
|
Abstract
NKT cells are a specialized population of T lymphocytes that have an increasingly recognized role in immunoregulation, including controlling the response to viral infections. The characteristics of NKT cells in the peripheral blood of macaques during simian immunodeficiency virus (SIV) or chimeric simian/human immunodeficiency virus (HIV) (SHIV) infection were assessed. NKT cells comprised a mean of 0.19% of peripheral blood lymphocytes across the 64 uninfected macaques studied. Although the range in the percentages of NKT cells was large (0 to 2.2%), levels were stable over time within individual macaques without SIV/SHIV infection. The majority of NKT cells in macaques were CD4(+) (on average 67%) with smaller populations being CD8(+) (21%) and CD4/CD8 double positive (13%). A precipitous decline in CD4(+) NKT cells occurred in all six macaques infected with CXCR4-tropic SHIV(mn229) early after infection, with a concomitant rise in CD8(+) NKT cells in some animals. The depletion of CD4(+) NKT cells was tightly correlated with the depletion of total CD4(+) T cells. R5-tropic SIV(mac251) infection of macaques resulted in a slower and more variable decline in CD4(+) NKT cells, with animals that were able to control SIV virus levels maintaining higher levels of CD4(+) NKT cells. An inverse correlation between the depletion of total and CD4(+) NKT cells and SIV viral load during chronic infection was observed. Our results demonstrate the infection-driven depletion of peripheral CD4(+) NKT cells during both SHIV and SIV infection of macaques. Further studies of the implications of the loss of NKT cell subsets in the pathogenesis of HIV disease are needed.
Collapse
|
14
|
Inactivated simian immunodeficiency virus-pulsed autologous fresh blood cells as an immunotherapy strategy. J Virol 2008; 83:1501-10. [PMID: 19019966 DOI: 10.1128/jvi.02119-08] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Practical immunotherapies for human immunodeficiency virus infection are needed. We evaluated inactivated simian immunodeficiency virus (SIV) pulsed onto fresh peripheral blood mononuclear cells in 12 pigtail macaques with chronic SIV(mac251) infection for T-cell immunogenicity in a randomized cross-over design study. The immunotherapy was safe and convincingly induced high levels of SIV-specific CD4(+) T-cell responses (mean, 5.9% +/- 1.3% of all CD4(+) T cells) and to a lesser extent SIV-specific CD8(+) T-cell responses (mean, 0.7% +/- 0.4%). Responses were primarily directed toward Gag and less frequently toward Env but not Pol or regulatory/accessory SIV proteins. T-cell responses against Gag were generally broad and polyfunctional, with a mean of 2.7 CD4(+) T-cell epitopes mapped per animal and more than half of the SIV Gag-specific CD4(+) T cells expressing three or more effector molecules. The immunogenicity was comparable to that found in previous studies of peptide-pulsed blood cells. Despite the high-level immunogenicity, no reduction in viral load was observed in the chronically viremic macaques. This contrasts with our studies of immunization with peptide-pulsed blood cells during early SIV infection in macaques. Future studies of inactivated virus-pulsed blood cell immunotherapy during early infection of patients receiving antiretroviral therapy are warranted.
Collapse
|
15
|
Mason RD, Rose RD, Seddiki N, Kelleher AD, Kent SJ. Low pre-infection levels and loss of central memory CD4+ T cells may predict rapid progression in SIV-infected pigtail macaques. Virology 2008; 381:11-5. [PMID: 18835006 DOI: 10.1016/j.virol.2008.08.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 08/15/2008] [Accepted: 08/30/2008] [Indexed: 11/25/2022]
Abstract
CD4+ T lymphocyte subsets are targeted to different degrees by SIV infection. We studied central memory, effector memory, naïve, and regulatory T cell levels longitudinally in 11 SIV(mac251)-infected pigtail macaques. Depletion of CD28+CD95+ central memory CD4+ T cells, but not other populations, correlated with both SIV viral load and disease progression. A low pre-infection level of central memory CD4+ T cells was also predictive of rapid disease progression. If confirmed in larger studies, our results suggest stratifying macaques for baseline central memory CD4+ T cells would be useful in defining both the pathogenesis of SIV disease and SIV vaccine efficacy.
Collapse
Affiliation(s)
- Rosemarie D Mason
- Department of Microbiology and Immunology, University of Melbourne, 3010 Australia
| | | | | | | | | |
Collapse
|
16
|
Smith MZ, Asher TE, Venturi V, Davenport MP, Douek DC, Price DA, Kent SJ. Limited maintenance of vaccine-induced simian immunodeficiency virus-specific CD8 T-cell receptor clonotypes after virus challenge. J Virol 2008; 82:7357-68. [PMID: 18508897 PMCID: PMC2493343 DOI: 10.1128/jvi.00607-08] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Accepted: 05/16/2008] [Indexed: 11/20/2022] Open
Abstract
T-cell receptors (TCRs) govern the specificity, efficacy, and cross-reactivity of CD8 T cells. Here, we studied CD8 T-cell clonotypes from Mane-A*10(+) pigtail macaques responding to the simian immunodeficiency virus (SIV) Gag KP9 epitope in a setting of vaccination and subsequent viral challenge. We observed a diverse TCR repertoire after DNA, recombinant poxvirus, and live attenuated virus vaccination, with none of 59 vaccine-induced KP9-specific TCRs being identical between macaques. The KP9-specific TCR repertoires remained diverse after SIV or simian-human immunodeficiency virus challenge but, remarkably, exhibited substantially different clonotypic compositions compared to the corresponding populations prechallenge. Within serial samples from individual pigtail macaques, only a small subset (33.9%) of TCRs induced by vaccination were maintained or expanded after challenge. Most (66.1%) of the TCRs induced by vaccination were not detectable after challenge. Our results suggest that some CD8 T cells induced by vaccination are more efficient than others at responding to a viral challenge. These findings have implications for future AIDS virus vaccine studies, which should consider the "fitness" of vaccine-induced T cells in order to generate robust responses in the face of virus exposure.
Collapse
Affiliation(s)
- Miranda Z Smith
- Department of Microbiology and Immunology, University of Melbourne, Melbourne 3010, Australia
| | | | | | | | | | | | | |
Collapse
|