1
|
Abstract
Alphaviruses cause severe human illnesses including persistent arthritis and fatal encephalitis. As alphavirus entry into target cells is the first step in infection, intensive research efforts have focused on elucidating aspects of this pathway, including attachment, internalization, and fusion. Herein, we review recent developments in the molecular understanding of alphavirus entry both in vitro and in vivo and how these advances might enable the design of therapeutics targeting this critical step in the alphavirus life cycle.
Collapse
|
2
|
Yang H, Wei X, Wang R, Zeng L, Yang Y, Huang G, Shafique L, Ma H, Ruan Z, Naz H, Lin Y, Huang L, Chen T. Transcriptomics of Cherax quadricarinatus hepatopancreas during infection with Decapod iridescent virus 1 (DIV1). FISH & SHELLFISH IMMUNOLOGY 2020; 98:832-842. [PMID: 31759080 DOI: 10.1016/j.fsi.2019.11.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/15/2019] [Accepted: 11/17/2019] [Indexed: 06/10/2023]
Abstract
Cherax quadricarinatus is a large-sized, highly fecund, and fast-growing species of freshwater crayfish, and has become one of the world's most intensely studied crustaceans. Decapod iridescent virus 1 (DIV1), a newly described species in the family Iridoviridae, is known to infect various crustaceans, including C. quadricarinatus, and may pose a new threat in the shrimp-farming industry. The present study performed de novo transcriptome sequencing of C. quadricarinatus hepatopancreas during DIV1 infection. A total of 114,784 transcripts and 56,418 genes were obtained; 1070 genes were upregulated and 775 genes were downregulated when compared with the uninfected samples (controls). Three pattern recognition receptor genes (fibrinogen-related protein, C-type lectin, and beta-1,3-glucan-binding protein) were upregulated during DIV1 infection. Among the top-30 upregulated unigenes, 9 unigenes were identified as vitellogenin (Vg) genes, and the top-3 upregulated unigenes were identified as involved in Vg lipid transport, lipid localization, and lipid transporter activity, which were all significantly over-representative GO terms in the GO enrichment analysis of total and upregulated differentially expressed genes (DEGs). Many genes associated with Jak-STAT signaling pathway, Endocytosis, Phagosome, MAPK signaling pathway, Apoptosis and Lysosome were positively modified after DIV1 infection. The predicted protein-protein interaction (PPI) analysis showed NF1 and TUBA, CRM1 and TUBB were involved in protein interactions. This research showed that DIV1 infection has a significant impact on the transcriptome profile of C. quadricarinatus hepatopancreas, and the results enhance our understanding of virus-host interactions. Furthermore, the high number of transcripts generated in the present study will provide information for identifying novel genes in the absence of a full C. quadricarinatus genome sequence.
Collapse
Affiliation(s)
- Huizan Yang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Xinxian Wei
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Rui Wang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China.
| | - Lan Zeng
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Yanhao Yang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Guanghua Huang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Laiba Shafique
- Nanning University, Nanning, 530200, Guangxi, China; A State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530005, China
| | - Huawei Ma
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Zhide Ruan
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Huma Naz
- Department of Zoology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan; A State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530005, China
| | - Yong Lin
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Liming Huang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Tao Chen
- Nanning University, Nanning, 530200, Guangxi, China.
| |
Collapse
|
3
|
Reichert E, Clase A, Bacetty A, Larsen J. Alphavirus antiviral drug development: scientific gap analysis and prospective research areas. Biosecur Bioterror 2010; 7:413-27. [PMID: 20028250 DOI: 10.1089/bsp.2009.0032] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The New World alphaviruses Venezuelan equine encephalitis virus (VEEV), eastern equine encephalitis virus (EEEV), and western equine encephalitis virus (WEEV) pose a significant threat to human health as the etiological agents of serious viral encephalitis through natural infection as well as through their potential use as a biological weapon. At present, there is no FDA-approved medical treatment for infection with these viruses. The Defense Threat Reduction Agency, Joint Science and Technology Office for Chemical and Biological Defense (DTRA/JSTO), is currently funding research aimed at developing antiviral drugs and vaccines against VEEV, EEEV, and WEEV. A review of antiviral drug discovery efforts for these viruses revealed significant gaps in the data, assays, and models required for successful drug development. This review provides a description of these gaps and highlights specific critical research areas for the development of a target-based drug discovery program for the VEEV, EEEV, and WEEV nonstructural proteins. These efforts will increase the probability of the successful development of a pharmaceutical intervention against these viral threat agents.
Collapse
Affiliation(s)
- Erin Reichert
- Biological Therapeutics, Defense Threat Reduction Agency, Fort Belvoir, Virginia 22060-6201, USA
| | | | | | | |
Collapse
|