1
|
Freeman ME, Goe A, Ferguson SH, Lee JK, Struthers JD, Buczek J, Black A, Childress AL, Armién AG, West G, Wellehan JFX. NOVEL SIMPLEXVIRUS (SIMPLEXVIRUS DOLICHOTINEALPHA1) ASSOCIATED WITH FATALITY IN FOUR PATAGONIAN MARA ( DOLICHOTIS PATAGONUM). J Zoo Wildl Med 2024; 55:490-501. [PMID: 38875207 DOI: 10.1638/2022-0154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2024] [Indexed: 06/16/2024] Open
Abstract
Four of seven Patagonian maras (Dolichotis patagonum) at a zoological institution developed acute neurologic signs that progressed to tetraparesis and death. All affected were young adult females (10 mon-5 yr old) that presented over 11 d. Clinical signs were rapidly progressive and unresponsive to supportive therapies. Two of the four individuals were found deceased 4 d after hospitalization. Two individuals were euthanized due to poor prognosis and decline after 6 and 8 d, respectively. Simultaneously, an additional mara developed mild and self-resolving clinical signs, including a kyphotic gait and paraparesis. On gross examination, there were widespread petechiae and ecchymoses of the skeletal muscle, myocardium, skin, pericardium, urinary bladder mucosa, and spinal cord. On histopathology, all animals had necrotizing myelitis and rhombencephalitis, with intranuclear viral inclusions in three individuals. Electron microscopy confirmed herpesviral replication and assembly complexes in neurons and oligodendrocytes. Consensus PCR performed on spinal cord, brainstem, or cerebellum revealed a novel Simplexvirus most closely related to Simplexvirus leporidalpha 4. The virus was amplified and sequenced and is referred to as Simplexvirus dolichotinealpha1. It is unknown whether this virus is endemic in Patagonian mara or whether it represents an aberrant host species. Clinicians should be aware of this virus and its potential to cause severe, rapidly progressive, life-threatening disease in this species.
Collapse
Affiliation(s)
| | - Alexandra Goe
- Department of Pathology, College of Veterinary Medicine, Midwestern University, Glendale, AZ 84308, USA
| | - Sylvia H Ferguson
- Department of Pathology, College of Veterinary Medicine, Midwestern University, Glendale, AZ 84308, USA
| | - Jung Keun Lee
- Department of Pathology, College of Veterinary Medicine, Midwestern University, Glendale, AZ 84308, USA
| | - Jason D Struthers
- Department of Pathology, College of Veterinary Medicine, Midwestern University, Glendale, AZ 84308, USA
| | - Jennifer Buczek
- Department of Pathology, College of Veterinary Medicine, Midwestern University, Glendale, AZ 84308, USA
| | - Annalise Black
- Department of Pathology, College of Veterinary Medicine, Midwestern University, Glendale, AZ 84308, USA
| | - April L Childress
- Department of Comparative, Diagnostic & Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Anibal G Armién
- Davis Branch, California Animal Health and Food Safety Laboratory System, University of California, Davis, CA 95617, USA
| | | | - James F X Wellehan
- Department of Comparative, Diagnostic & Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| |
Collapse
|
2
|
Jin L, Black W, Sawyer T. Application of Environment-Friendly Rhamnolipids against Transmission of Enveloped Viruses Like SARS-CoV2. Viruses 2021; 13:v13020322. [PMID: 33672561 PMCID: PMC7924030 DOI: 10.3390/v13020322] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/11/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
In the face of new emerging respiratory viruses, such as SARS-CoV2, vaccines and drug therapies are not immediately available to curb the spread of infection. Non-pharmaceutical interventions, such as mask-wearing and social distance, can slow the transmission. However, both mask and social distance have not prevented the spread of respiratory viruses SARS-CoV2 within the US. There is an urgent need to develop an intervention that could reduce the spread of respiratory viruses. The key to preventing transmission is to eliminate the emission of SARS-CoV2 from an infected person and stop the virus from propagating in the human population. Rhamnolipids are environmentally friendly surfactants that are less toxic than the synthetic surfactants. In this study, rhamnolipid products, 222B, were investigated as disinfectants against enveloped viruses, such as bovine coronavirus and herpes simplex virus 1 (HSV-1). The 222B at 0.009% and 0.0045% completely inactivated 6 and 4 log PFU/mL of HSV-1 in 5–10 min, respectively. 222B at or below 0.005% is also biologically safe. Moreover, 50 μL of 222B at 0.005% on ~1 cm2 mask fabrics or plastic surface can inactivate ~103 PFU HSV-1 in 3–5 min. These results suggest that 222B coated on masks or plastic surface can reduce the emission of SARS-CoV2 from an infected person and stop the spread of SARS-CoV2.
Collapse
Affiliation(s)
- Ling Jin
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA;
- Department of Microbiology, College of Science, Oregon State University, Corvallis, OR 97331, USA
- Correspondence: ; Tel.: +1-541-737-9893
| | - Wendy Black
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA;
| | - Teresa Sawyer
- Electron Microscopy Facility, 145 Linus Pauling Science Center, Oregon State University, Corvallis, OR 97331, USA;
| |
Collapse
|
3
|
Abade dos Santos FA, Monteiro M, Pinto A, Carvalho CL, Peleteiro MC, Carvalho P, Mendonça P, Carvalho T, Duarte MD. First description of a herpesvirus infection in genus Lepus. PLoS One 2020; 15:e0231795. [PMID: 32302375 PMCID: PMC7164596 DOI: 10.1371/journal.pone.0231795] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/31/2020] [Indexed: 11/23/2022] Open
Abstract
During the necropsies of Iberian hares obtained in 2018/2019, along with signs of the nodular form of myxomatosis, other unexpected external lesions were also observed. Histopathology revealed nuclear inclusion bodies in stromal cells suggesting the additional presence of a nuclear replicating virus. Transmission electron microscopy further demonstrated the presence of herpesvirus particles in the tissues of affected hares. We confirmed the presence of herpesvirus in 13 MYXV-positive hares by PCR and sequencing analysis. Herpesvirus-DNA was also detected in seven healthy hares, suggesting its asymptomatic circulation. Phylogenetic analysis based on concatenated partial sequences of DNA polymerase gene and glycoprotein B gene enabled greater resolution than analysing the sequences individually. The hare’ virus was classified close to herpesviruses from rodents within the Rhadinovirus genus of the gammaherpesvirus subfamily. We propose to name this new virus Leporid gammaherpesvirus 5 (LeHV-5), according to the International Committee on Taxonomy of Viruses standards. The impact of herpesvirus infection on the reproduction and mortality of the Iberian hare is yet unknown but may aggravate the decline of wild populations caused by the recently emerged natural recombinant myxoma virus.
Collapse
Affiliation(s)
- F A Abade dos Santos
- Instituto Nacional de Investigação Agrária e Veterinária, Oeiras, Portugal
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal
| | - M Monteiro
- Instituto Nacional de Investigação Agrária e Veterinária, Oeiras, Portugal
| | - A Pinto
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
- EM Suite, Royal Brompton Hospital and Harefield NHS Foundation Trust, Lisboa, Portugal
| | - C L Carvalho
- Instituto Nacional de Investigação Agrária e Veterinária, Oeiras, Portugal
| | - M C Peleteiro
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal
| | - P Carvalho
- Instituto Nacional de Investigação Agrária e Veterinária, Oeiras, Portugal
| | - P Mendonça
- Instituto Nacional de Investigação Agrária e Veterinária, Oeiras, Portugal
| | - T Carvalho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
| | - M D Duarte
- Instituto Nacional de Investigação Agrária e Veterinária, Oeiras, Portugal
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
4
|
Žlabravec Z, Krapež U, Slavec B, Vrezec A, Rojs OZ, Račnik J. Detection and Phylogenetic Analysis of Herpesviruses Detected in Wild Owls in Slovenia. Avian Dis 2019; 62:397-403. [PMID: 31119924 DOI: 10.1637/11899-051418-reg.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 10/01/2018] [Indexed: 11/05/2022]
Abstract
Herpesvirus (HV) was detected using PCR in the organs of eight of 55 wild owls (14.5%) from seven species that were found dead in various locations in Slovenia between 1995 and 2015. HV was detected in three species: the Eurasian eagle owl (Bubo bubo), Ural owl (Strix uralensis), and long-eared owl (Asio otus). Phylogenetic analysis of partial DNA polymerase gene nucleotide sequences showed that the detected HVs are similar to the avian and mammal alphaherpesviruses. Two sequences were very similar to known bird HV sequences. One sequence was identical to the columbid herpesvirus 1 (CoHV1) sequence, and the other was very similar to the gallid herpesvirus 2 (GaHV2) sequence. The phylogenetic tree revealed a lower similarity of the other six analyzed Slovenian sequences with the sequences of alphaherpesviruses of birds and mammals. This is the first study to report the detection of different HVs in owls.
Collapse
Affiliation(s)
- Zoran Žlabravec
- Institute for Poultry, Birds, Small Mammals, and Reptiles, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Uroš Krapež
- Institute for Poultry, Birds, Small Mammals, and Reptiles, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Brigita Slavec
- Institute for Poultry, Birds, Small Mammals, and Reptiles, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Al Vrezec
- National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia.,Slovenian Museum of Natural History, Prešernova 20, 1000 Ljubljana, Slovenia
| | - Olga Zorman Rojs
- Institute for Poultry, Birds, Small Mammals, and Reptiles, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Jožko Račnik
- Institute for Poultry, Birds, Small Mammals, and Reptiles, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia,
| |
Collapse
|
5
|
Kwit E, Rzeżutka A. Molecular methods in detection and epidemiologic studies of rabbit and hare viruses: a review. J Vet Diagn Invest 2019; 31:497-508. [PMID: 31131728 DOI: 10.1177/1040638719852374] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Various PCR-based assays for rabbit viruses have gradually replaced traditional virologic assays, such as virus isolation, because they offer high-throughput analysis, better test sensitivity and specificity, and allow vaccine and wild-type virus strains to be fully typed and differentiated. In addition, PCR is irreplaceable in the detection of uncultivable or fastidious rabbit pathogens or those occurring in low quantity in a tested sample. We provide herein an overview of the current state of the art in the molecular detection of lagomorph viral pathogens along with details of their targeted gene or nucleic acid sequence and recommendations for their application. Apart from the nucleic acids-based methods used for identification and comprehensive typing of rabbit viruses, novel methods such as microarray, next-generation sequencing, and mass spectrometry (MALDI-TOF MS) could also be employed given that they offer greater throughput in sample screening for viral pathogens. Molecular methods should be provided with an appropriate set of controls, including an internal amplification control, to confirm the validity of the results obtained.
Collapse
Affiliation(s)
- Ewa Kwit
- Department of Food and Environmental Virology, National Veterinary Research Institute, Puławy, Poland
| | - Artur Rzeżutka
- Department of Food and Environmental Virology, National Veterinary Research Institute, Puławy, Poland
| |
Collapse
|
6
|
Detecting European Rabbit ( Oryctolagus cuniculus) Disease Outbreaks by Monitoring Digital Media. J Wildl Dis 2018; 54:544-547. [PMID: 29667872 DOI: 10.7589/2017-05-121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Digital media and digital search tools offer simple and effective means to monitor for pathogens and disease outbreaks in target organisms. Using tools such as Rich Site Summary feeds, and Google News and Google Scholar specific key word searches, international digital media were actively monitored from 2012 to 2016 for pathogens and disease outbreaks in the taxonomic order Lagomorpha, with a specific focus on the European rabbit ( Oryctolagus cuniculus). The primary objective was identifying pathogens for assessment as potential new biocontrol agents for Australia's pest populations of the European rabbit. A number of pathogens were detected in digital media reports. Additional benefits arose in the regular provision of case reports and research on myxomatosis and rabbit haemorrhagic disease virus that assisted with current research.
Collapse
|
7
|
Nowland MH, Brammer DW, Garcia A, Rush HG. Biology and Diseases of Rabbits. LABORATORY ANIMAL MEDICINE 2015. [PMCID: PMC7150064 DOI: 10.1016/b978-0-12-409527-4.00010-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Beginning in 1931, an inbred rabbit colony was developed at the Phipps Institute for the Study, Treatment and Prevention of Tuberculosis at the University of Pennsylvania. This colony was used to study natural resistance to infection with tuberculosis (Robertson et al., 1966). Other inbred colonies or well-defined breeding colonies were also developed at the University of Illinois College of Medicine Center for Genetics, the Laboratories of the International Health Division of The Rockefeller Foundation, the University of Utrecht in the Netherlands, and Jackson Laboratories. These colonies were moved or closed in the years to follow. Since 1973, the U.S. Department of Agriculture has reported the total number of certain species of animals used by registered research facilities (1997). In 1973, 447,570 rabbits were used in research. There has been an overall decrease in numbers of rabbits used. This decreasing trend started in the mid-1990s. In 2010, 210,172 rabbits were used in research. Despite the overall drop in the number used in research, the rabbit is still a valuable model and tool for many disciplines.
Collapse
|
8
|
de Matos R, Russell D, Van Alstine W, Miller A. Spontaneous fatal Human herpesvirus 1 encephalitis in two domestic rabbits (Oryctolagus cuniculus). J Vet Diagn Invest 2014; 26:689-94. [PMID: 25085871 DOI: 10.1177/1040638714545111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Despite the particular susceptibility of the rabbit to experimental infection with Human herpesvirus 1 (HHV-1) and the high seroprevalence of HHV-1 in human beings, reports of natural infection in pet rabbits are rare. The current report describes 2 cases of HHV encephalitis in pet rabbits in North America. Antemortem clinical signs included seizures, ptyalism, and muscle tremors. Results of complete blood cell count and plasma biochemistry panel were unremarkable except for a mild leukocytosis in both cases. Both rabbits died after a short period of hospitalization. Rabbit 1 presented mild optic chiasm hemorrhage on gross examination, while rabbit 2 had no gross lesions. Histologic findings for both cases included lymphocytic and/or lymphoplasmacytic encephalitis with necrosis and the presence of intranuclear inclusion bodies in neurons and glial cells. Polymerase chain reaction (PCR) analysis of affected brain tissue using primers specific for Human herpesvirus 1 and 2 confirmed diagnosis of HHV encephalitis for rabbit 1. Immunohistochemical staining (poly- and monoclonal) and PCR analysis using primers specific to HHV-1 confirmed the diagnosis of HHV-1 encephalitis for rabbit 2. The owner of rabbit 2 was suspected to be the source of infection due to close contact during an episode of herpes labialis. Given the high susceptibility of rabbits to experimental HHV-1, high seroprevalence of HHV-1 in human beings, and severity of clinical disease in this species, clinician awareness and client education is important for disease prevention. Human herpesvirus 1 encephalitis should be considered as a differential diagnosis for rabbits with neurologic disease.
Collapse
Affiliation(s)
- Ricardo de Matos
- Department of Clinical Sciences, Section of Zoological Medicine (de Matos), College of Veterinary Medicine, Cornell University, Ithaca, NYDepartment of Biomedical Sciences, Section of Anatomic Pathology (Miller), College of Veterinary Medicine, Cornell University, Ithaca, NYDepartment of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN (Van Alstine)Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH (Russell)
| | - Duncan Russell
- Department of Clinical Sciences, Section of Zoological Medicine (de Matos), College of Veterinary Medicine, Cornell University, Ithaca, NYDepartment of Biomedical Sciences, Section of Anatomic Pathology (Miller), College of Veterinary Medicine, Cornell University, Ithaca, NYDepartment of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN (Van Alstine)Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH (Russell)
| | - William Van Alstine
- Department of Clinical Sciences, Section of Zoological Medicine (de Matos), College of Veterinary Medicine, Cornell University, Ithaca, NYDepartment of Biomedical Sciences, Section of Anatomic Pathology (Miller), College of Veterinary Medicine, Cornell University, Ithaca, NYDepartment of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN (Van Alstine)Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH (Russell)
| | - Andrew Miller
- Department of Clinical Sciences, Section of Zoological Medicine (de Matos), College of Veterinary Medicine, Cornell University, Ithaca, NYDepartment of Biomedical Sciences, Section of Anatomic Pathology (Miller), College of Veterinary Medicine, Cornell University, Ithaca, NYDepartment of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN (Van Alstine)Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH (Russell)
| |
Collapse
|
9
|
Abstract
Viral diseases of rabbits have been used historically to study oncogenesis (e.g. rabbit fibroma virus, cottontail rabbit papillomavirus) and biologically to control feral rabbit populations (e.g. myxoma virus). However, clinicians seeing pet rabbits in North America infrequently encounter viral diseases although myxomatosis may be seen occasionally. The situation is different in Europe and Australia, where myxomatosis and rabbit hemorrhagic disease are endemic. Advances in epidemiology and virology have led to detection of other lapine viruses that are now recognized as agents of emerging infectious diseases. Rabbit caliciviruses, related to rabbit hemorrhagic disease, are generally avirulent, but lethal variants are being identified in Europe and North America. Enteric viruses including lapine rotavirus, rabbit enteric coronavirus and rabbit astrovirus are being acknowledged as contributors to the multifactorial enteritis complex of juvenile rabbits. Three avirulent leporid herpesviruses are found in domestic rabbits. A fourth highly pathogenic virus designated leporid herpesvirus 4 has been described in Canada and Alaska. This review considers viruses affecting rabbits by their clinical significance. Viruses of major and minor clinical significance are described, and viruses of laboratory significance are mentioned.
Collapse
Affiliation(s)
- Peter J. Kerr
- CSIRO Entomology, GPO Box 1700, Canberra, ACT 2601, Australia
| | - Thomas M. Donnelly
- The Kenneth S. Warren Institute, 712 Kitchawan Road, Ossining, NY 10562, USA
| |
Collapse
|
10
|
Babra B, Watson G, Xu W, Jeffrey BM, Xu JR, Rockey DD, Rohrmann GF, Jin L. Analysis of the genome of leporid herpesvirus 4. Virology 2012; 433:183-91. [PMID: 22921533 DOI: 10.1016/j.virol.2012.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 07/16/2012] [Accepted: 08/01/2012] [Indexed: 10/28/2022]
Abstract
The genome of a herpesvirus highly pathogenic to rabbits, leporid herpesvirus 4 (LHV-4), was analyzed using high-throughput DNA sequencing technology and primer walking. The assembled DNA sequences were further verified by restriction endonuclease digestion and Southern blot analyses. The total length of the LHV-4 genome was determined to be about 124 kb. Genes encoded in the LHV-4 genome are most closely related to herpesvirus of the Simplexvirus genus, including human herpesviruses (HHV-1 and HHV-2), monkey herpesviruses including cercopithicine (CeHV-2 and CeHV-16), macacine (McHV-1), bovine herpesvirus 2 (BHV-2), and a lineage of wallaby (macropodid) herpesviruses (MaHV-1 and -2). Similar to other simplexvirus genomes, LHV-4 has a high overall G+C content of 65-70% in the unique regions and 75-77% in the inverted repeat regions. Orthologs of ICP34.5 and US5 were not identified in the LHV-4 genome. This study shows that LHV-4 has the smallest simplexvirus genome characterized to date.
Collapse
Affiliation(s)
- Bobby Babra
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Dugan VG, Saira K, Ghedin E. Large-scale sequencing and the natural history of model human RNA viruses. Future Virol 2012; 7:563-573. [PMID: 23682295 DOI: 10.2217/fvl.12.45] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
RNA virus exploration within the field of medical virology has greatly benefited from technological developments in genomics, deepening our understanding of viral dynamics and emergence. Large-scale first-generation technology sequencing projects have expedited molecular epidemiology studies at an unprecedented scale for two pathogenic RNA viruses chosen as models: influenza A virus and dengue. Next-generation sequencing approaches are now leading to a more in-depth analysis of virus genetic diversity, which is greater for RNA than DNA viruses because of high replication rates and the absence of proofreading activity of the RNA-dependent RNA polymerase. In the field of virus discovery, technological advancements and metagenomic approaches are expanding the catalogs of novel viruses by facilitating our probing into the RNA virus world.
Collapse
Affiliation(s)
- Vivien G Dugan
- Viral Genomics, J Craig Venter Institute, Rockville, MD, USA
| | | | | |
Collapse
|
12
|
|
13
|
Abstract
Koi herpesvirus (KHV) has recently been classified as a member of the family of Alloherpesviridae within the order of Herpesvirales. One of the unique features of Herpesviridae is latent infection following a primary infection. However, KHV latency has not been recognized. To determine if latency occurs in clinically normal fish from facilities with a history of KHV infection or exposure, the presence of the KHV genome was investigated in healthy koi by PCR and Southern blotting. KHV DNA, but not infectious virus or mRNAs from lytic infection, was detected in white blood cells from investigated koi. Virus shedding was examined via tissue culture and reverse transcription-PCR (RT-PCR) testing of gill mucus and feces from six koi every other day for 1 month. No infectious virus or KHV DNA was detected in fecal secretion or gill swabs, suggesting that neither acute nor persistent infection was present. To determine if KHV latent infections can be reactivated, six koi were subjected to a temperature stress regime. KHV DNA and infectious virus were detected in both gill and fecal swabs by day 8 following temperature stress. KHV DNA was also detectable in brain, spleen, gills, heart, eye, intestine, kidney, liver, and pancreas in euthanized koi 1 month post-temperature stress. Our study suggests that KHV may become latent in leukocytes and other tissues, that it can be reactivated from latency by temperature stress, and that it may be more widespread in the koi population than previously suspected.
Collapse
|
14
|
Metagenomics and the molecular identification of novel viruses. Vet J 2010; 190:191-198. [PMID: 21111643 PMCID: PMC7110547 DOI: 10.1016/j.tvjl.2010.10.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 10/16/2010] [Accepted: 10/20/2010] [Indexed: 12/16/2022]
Abstract
There have been rapid recent developments in establishing methods for identifying and characterising viruses associated with animal and human diseases. These methodologies, commonly based on hybridisation or PCR techniques, are combined with advanced sequencing techniques termed ‘next generation sequencing’. Allied advances in data analysis, including the use of computational transcriptome subtraction, have also impacted the field of viral pathogen discovery. This review details these molecular detection techniques, discusses their application in viral discovery, and provides an overview of some of the novel viruses discovered. The problems encountered in attributing disease causality to a newly identified virus are also considered.
Collapse
|