1
|
Verdonk CJ, Marshall AC, Ramsay JP, Bond CS. Crystallographic and X-ray scattering study of RdfS, a recombination directionality factor from an integrative and conjugative element. Acta Crystallogr D Struct Biol 2022; 78:1210-1220. [PMID: 36189741 PMCID: PMC9527761 DOI: 10.1107/s2059798322008579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/25/2022] [Indexed: 11/24/2022] Open
Abstract
The recombination directionality factors from Mesorhizobium spp. (RdfS) are involved in regulating the excision and transfer of integrative and conjugative elements. Here, solution small-angle X-ray scattering, and crystallization and preliminary structure solution of RdfS from Mesorhizobium japonicum R7A are presented. RdfS crystallizes in space group P212121, with evidence of eightfold rotational crystallographic/noncrystallographic symmetry. Initial structure determination by molecular replacement using ab initio models yielded a partial model (three molecules), which was completed after manual inspection revealed unmodelled electron density. The finalized crystal structure of RdfS reveals a head-to-tail polymer forming left-handed superhelices with large solvent channels. Additionally, RdfS has significant disorder in the C-terminal region of the protein, which is supported by the solution scattering data and the crystal structure. The steps taken to finalize structure determination, as well as the scattering and crystallographic characteristics of RdfS, are discussed.
Collapse
Affiliation(s)
- Callum J. Verdonk
- School of Molecular Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
- Curtin Health Innovation Research Institute and Curtin Medical School, Curtin University, Perth, Western Australia 6102, Australia
| | - Andrew C. Marshall
- School of Molecular Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Joshua P. Ramsay
- Curtin Health Innovation Research Institute and Curtin Medical School, Curtin University, Perth, Western Australia 6102, Australia
| | - Charles S. Bond
- School of Molecular Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
- Marshall Centre for Infectious Disease, Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| |
Collapse
|
2
|
Cutts EE, Barry Egan J, Dodd IB, Shearwin KE. A quantitative binding model for the Apl protein, the dual purpose recombination-directionality factor and lysis-lysogeny regulator of bacteriophage 186. Nucleic Acids Res 2020; 48:8914-8926. [PMID: 32789491 PMCID: PMC7498355 DOI: 10.1093/nar/gkaa655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/21/2020] [Accepted: 07/28/2020] [Indexed: 11/26/2022] Open
Abstract
The Apl protein of bacteriophage 186 functions both as an excisionase and as a transcriptional regulator; binding to the phage attachment site (att), and also between the major early phage promoters (pR-pL). Like other recombination directionality factors (RDFs), Apl binding sites are direct repeats spaced one DNA helix turn apart. Here, we use in vitro binding studies with purified Apl and pR-pL DNA to show that Apl binds to multiple sites with high cooperativity, bends the DNA and spreads from specific binding sites into adjacent non-specific DNA; features that are shared with other RDFs. By analysing Apl's repression of pR and pL, and the effect of operator mutants in vivo with a simple mathematical model, we were able to extract estimates of binding energies for single specific and non-specific sites and for Apl cooperativity, revealing that Apl monomers bind to DNA with low sequence specificity but with strong cooperativity between immediate neighbours. This model fit was then independently validated with in vitro data. The model we employed here is a simple but powerful tool that enabled better understanding of the balance between binding affinity and cooperativity required for RDF function. A modelling approach such as this is broadly applicable to other systems.
Collapse
Affiliation(s)
- Erin E Cutts
- Department of Molecular and Biomedical Science, The University of Adelaide, Adelaide 5005, Australia
| | - J Barry Egan
- Department of Molecular and Biomedical Science, The University of Adelaide, Adelaide 5005, Australia
| | - Ian B Dodd
- Department of Molecular and Biomedical Science, The University of Adelaide, Adelaide 5005, Australia
| | - Keith E Shearwin
- Department of Molecular and Biomedical Science, The University of Adelaide, Adelaide 5005, Australia
| |
Collapse
|
3
|
Liu X, Tang K, Zhang D, Li Y, Liu Z, Yao J, Wood TK, Wang X. Symbiosis of a P2‐family phage and deep‐sea
Shewanella putrefaciens. Environ Microbiol 2019; 21:4212-4232. [DOI: 10.1111/1462-2920.14781] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/12/2019] [Accepted: 08/13/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Xiaoxiao Liu
- Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou 510301 China
| | - Kaihao Tang
- Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou 510301 China
| | - Dali Zhang
- Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou 510301 China
| | - Yangmei Li
- Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou 510301 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhe Liu
- Guangdong Provincial Center for Disease Control and Prevention Guangdong Provincial Institute of Public Health Guangzhou 511430 China
| | - Jianyun Yao
- Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou 510301 China
| | - Thomas K. Wood
- Department of Chemical Engineering Pennsylvania State University University Park PA 16802‐4400 USA
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou 510301 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
4
|
Verdonk CJ, Sullivan JT, Williman KM, Nicholson L, Bastholm TR, Hynes MF, Ronson CW, Bond CS, Ramsay JP. Delineation of the integrase-attachment and origin-of-transfer regions of the symbiosis island ICEMlSymR7A. Plasmid 2019; 104:102416. [DOI: 10.1016/j.plasmid.2019.102416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/12/2019] [Accepted: 05/07/2019] [Indexed: 12/12/2022]
|
5
|
Haskett TL, Terpolilli JJ, Ramachandran VK, Verdonk CJ, Poole PS, O’Hara GW, Ramsay JP. Sequential induction of three recombination directionality factors directs assembly of tripartite integrative and conjugative elements. PLoS Genet 2018; 14:e1007292. [PMID: 29565971 PMCID: PMC5882170 DOI: 10.1371/journal.pgen.1007292] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 04/03/2018] [Accepted: 03/06/2018] [Indexed: 12/14/2022] Open
Abstract
Tripartite integrative and conjugative elements (ICE3) are a novel form of ICE that exist as three separate DNA regions integrated within the genomes of Mesorhizobium spp. Prior to conjugative transfer the three ICE3 regions of M. ciceri WSM1271 ICEMcSym1271 combine and excise to form a single circular element. This assembly requires three coordinated recombination events involving three site-specific recombinases IntS, IntG and IntM. Here, we demonstrate that three excisionases–or recombination directionality factors—RdfS, RdfG and RdfM are required for ICE3 excision. Transcriptome sequencing revealed that expression of ICE3 transfer and conjugation genes was induced by quorum sensing. Quorum sensing activated expression of rdfS, and in turn RdfS stimulated transcription of both rdfG and rdfM. Therefore, RdfS acts as a “master controller” of ICE3 assembly and excision. The dependence of all three excisive reactions on RdfS ensures that ICE3 excision occurs via a stepwise sequence of recombination events that avoids splitting the chromosome into a non-viable configuration. These discoveries expose a surprisingly simple control system guiding molecular assembly of these novel and complex mobile genetic elements and highlight the diverse and critical functions of excisionase proteins in control of horizontal gene transfer. Bacteria evolve and adapt quickly through the horizontal transfer of DNA. A major mechanism facilitating this transfer is conjugation. Conjugative DNA elements that integrate into the chromosome are termed ‘Integrative and Conjugative Elements’ (ICE). We recently discovered a unique form of ICE that undergoes a complex series of recombination events with the host chromosome to split itself into three separate parts. This tripartite ICE must also precisely order its recombination when leaving the current host to avoid splitting the host chromosome and the ICE into non-viable parts. In this work, we show that the tripartite ICEs use chemical cell-cell communication to stimulate recombination and that recombination events are specifically ordered through cascaded transcriptional activation of small DNA-binding proteins called recombination directionality factors. Despite the inherent complexity of tripartite ICEs this work exposes a surprisingly simple system to stimulate their precise and ordered molecular assembly prior to horizontal transfer.
Collapse
Affiliation(s)
- Timothy L. Haskett
- Centre for Rhizobium Studies, School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia
- * E-mail:
| | - Jason J. Terpolilli
- Centre for Rhizobium Studies, School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia
| | | | - Callum J. Verdonk
- School of Pharmacy and Biomedical Sciences and the Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Phillip S. Poole
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Graham W. O’Hara
- Centre for Rhizobium Studies, School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia
| | - Joshua P. Ramsay
- School of Pharmacy and Biomedical Sciences and the Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| |
Collapse
|
6
|
Frykholm K, Berntsson RPA, Claesson M, de Battice L, Odegrip R, Stenmark P, Westerlund F. DNA compaction by the bacteriophage protein Cox studied on the single DNA molecule level using nanofluidic channels. Nucleic Acids Res 2016; 44:7219-27. [PMID: 27131370 PMCID: PMC5009727 DOI: 10.1093/nar/gkw352] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 03/30/2016] [Indexed: 01/10/2023] Open
Abstract
The Cox protein from bacteriophage P2 forms oligomeric filaments and it has been proposed that DNA can be wound up around these filaments, similar to how histones condense DNA. We here use fluorescence microscopy to study single DNA–Cox complexes in nanofluidic channels and compare how the Cox homologs from phages P2 and WΦ affect DNA. By measuring the extension of nanoconfined DNA in absence and presence of Cox we show that the protein compacts DNA and that the binding is highly cooperative, in agreement with the model of a Cox filament around which DNA is wrapped. Furthermore, comparing microscopy images for the wild-type P2 Cox protein and two mutants allows us to discriminate between compaction due to filament formation and compaction by monomeric Cox. P2 and WΦ Cox have similar effects on the physical properties of DNA and the subtle, but significant, differences in DNA binding are due to differences in binding affinity rather than binding mode. The presented work highlights the use of single DNA molecule studies to confirm structural predictions from X-ray crystallography. It also shows how a small protein by oligomerization can have great impact on the organization of DNA and thereby fulfill multiple regulatory functions.
Collapse
Affiliation(s)
- Karolin Frykholm
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Ronnie Per-Arne Berntsson
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-10691 Stockholm, Sweden
| | - Magnus Claesson
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-10691 Stockholm, Sweden
| | - Laura de Battice
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Richard Odegrip
- Department of Molecular Biosciences, The Wenner-Gren Institute, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-10691 Stockholm, Sweden
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-10691 Stockholm, Sweden
| | - Fredrik Westerlund
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| |
Collapse
|
7
|
Berntsson RPA, Odegrip R, Sehlén W, Skaar K, Svensson LM, Massad T, Högbom M, Haggård-Ljungquist E, Stenmark P. Structural insight into DNA binding and oligomerization of the multifunctional Cox protein of bacteriophage P2. Nucleic Acids Res 2013; 42:2725-35. [PMID: 24259428 PMCID: PMC3936717 DOI: 10.1093/nar/gkt1119] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The Cox protein from bacteriophage P2 is a small multifunctional DNA-binding protein. It is involved in site-specific recombination leading to P2 prophage excision and functions as a transcriptional repressor of the P2 Pc promoter. Furthermore, it transcriptionally activates the unrelated, defective prophage P4 that depends on phage P2 late gene products for lytic growth. In this article, we have investigated the structural determinants to understand how P2 Cox performs these different functions. We have solved the structure of P2 Cox to 2.4 Å resolution. Interestingly, P2 Cox crystallized in a continuous oligomeric spiral with its DNA-binding helix and wing positioned outwards. The extended C-terminal part of P2 Cox is largely responsible for the oligomerization in the structure. The spacing between the repeating DNA-binding elements along the helical P2 Cox filament is consistent with DNA binding along the filament. Functional analyses of alanine mutants in P2 Cox argue for the importance of key residues for protein function. We here present the first structure from the Cox protein family and, together with previous biochemical observations, propose that P2 Cox achieves its various functions by specific binding of DNA while wrapping the DNA around its helical oligomer.
Collapse
Affiliation(s)
- Ronnie P-A Berntsson
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-10691 Stockholm, Sweden and Department of Molecular Biosciences, The Wenner-Gren Institute, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-10691 Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Mandali S, Cardoso-Palacios C, Sylwan L, Haggård-Ljungquist E. Characterization of the site-specific recombination system of phage ΦD145, and its capacity to promote recombination in human cells. Virology 2010; 408:64-70. [PMID: 20875907 DOI: 10.1016/j.virol.2010.08.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 07/10/2010] [Accepted: 08/31/2010] [Indexed: 11/25/2022]
Abstract
Phage integrases have the potential of becoming tools for safe site-specific integration of genes into unmodified human genomes. The P2-like phages have been found to have different bacterial host integration sites and consequently they have related integrases with different sequence specificities. In this work the site-specific recombination system of the P2-like phage ΦD145 is characterized. The minimal attB site is determined to 22 nt with 18 nt identity to the core region of attP. A non-coding sequence on the human chromosome 13 is shown to be a rather good substrate for recombination in vivo in bacteria as well as in a plasmid system in HeLa cells when HMG protein recognition sequences are inserted between the left arm-binding site and the core in the complex phage attachment site attP. Thus ΦD145 integrase that belongs to the tyrosine family shows potential as a tool for site-specific integration into the human genome.
Collapse
Affiliation(s)
- Sridhar Mandali
- Dept. of Genetics, Microbiology and Toxicology, Stockholm University, Stockholm, Sweden
| | | | | | | |
Collapse
|
9
|
Panis G, Duverger Y, Champ S, Ansaldi M. Protein binding sites involved in the assembly of the KplE1 prophage intasome. Virology 2010; 404:41-50. [PMID: 20494389 DOI: 10.1016/j.virol.2010.04.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 02/24/2010] [Accepted: 04/27/2010] [Indexed: 11/25/2022]
Abstract
The organization of the recombination regions of the KplE1 prophage in Escherichia coli K12 differs from that observed in the lambda prophage. Indeed, the binding sites characterized for the IntS integrase, the TorI recombination directionality factor (RDF) and the integration host factor (IHF) vary in number, spacing and orientation on the attL and attR regions. In this paper, we performed site-directed mutagenesis of the recombination sites to decipher if all sites are essential for the site-specific recombination reaction and how the KplE1 intasome is assembled. We also show that TorI and IntS form oligomers that are stabilized in the presence of their target DNA. Moreover, we found that IHF is the only nucleoid associated protein (NAP) involved in KplE1 recombination, although it is dispensable. This is consistent with the presence of only one functional IHF site on attR and none on attL.
Collapse
Affiliation(s)
- Gaël Panis
- Laboratoire de Chimie Bactérienne CNRS UPR9043, Institut de Microbiologie de la Méditerranée, Marseille Cedex 20, France
| | | | | | | |
Collapse
|