1
|
Rao PG, Lambert GS, Upadhyay C. Broadly neutralizing antibody epitopes on HIV-1 particles are exposed after virus interaction with host cells. J Virol 2023; 97:e0071023. [PMID: 37681958 PMCID: PMC10537810 DOI: 10.1128/jvi.00710-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/07/2023] [Indexed: 09/09/2023] Open
Abstract
The envelope (Env) glycoproteins on HIV-1 virions are the sole target of broadly neutralizing antibodies (bNAbs) and the focus of vaccines. However, many cross-reactive conserved epitopes are often occluded on virus particles, contributing to the evasion of humoral immunity. This study aimed to identify the Env epitopes that are exposed/occluded on HIV-1 particles and to investigate the mechanisms contributing to their masking. Using a flow cytometry-based assay, three HIV-1 isolates, and a panel of antibodies, we show that only select epitopes, including V2i, the gp120-g41 interface, and gp41-MPER, are accessible on HIV-1 particles, while V3, V2q, and select CD4bs epitopes are masked. These epitopes become accessible after allosteric conformational changes are induced by the pre-binding of select Abs, prompting us to test if similar conformational changes are required for these Abs to exhibit their neutralization capability. We tested HIV-1 neutralization where the virus-mAb mix was pre-incubated/not pre-incubated for 1 hour prior to adding the target cells. Similar levels of neutralization were observed under both assay conditions, suggesting that the interaction between virus and target cells sensitizes the virions for neutralization via bNAbs. We further show that lectin-glycan interactions can also expose these epitopes. However, this effect is dependent on the lectin specificity. Given that, bNAbs are ideal for providing sterilizing immunity and are the goal of current HIV-1 vaccine efforts, these data offer insight on how HIV-1 may occlude these vulnerable epitopes from the host immune response. In addition, the findings can guide the formulation of effective antibody combinations for therapeutic use. IMPORTANCE The human immunodeficiency virus (HIV-1) envelope (Env) glycoprotein mediates viral entry and is the sole target of neutralizing antibodies. Our data suggest that antibody epitopes including V2q (e.g., PG9, PGT145), CD4bs (e.g., VRC01, 3BNC117), and V3 (2219, 2557) are masked on HIV-1 particles. The PG9 and 2219 epitopes became accessible for binding after conformational unmasking was induced by the pre-binding of select mAbs. Attempts to understand the masking mechanism led to the revelation that interaction between virus and host cells is needed to sensitize the virions for neutralization by broadly neutralizing antibodies (bNAbs). These data provide insight on how bNAbs may gain access to these occluded epitopes to exert their neutralization effects and block HIV-1 infection. These findings have important implications for the way we evaluate the neutralizing efficacy of antibodies and can potentially guide vaccine design.
Collapse
Affiliation(s)
- Priyanka Gadam Rao
- Division of Infectious Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Gregory S. Lambert
- Division of Infectious Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Chitra Upadhyay
- Division of Infectious Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
2
|
Rao PG, Lambert GS, Upadhyay C. Broadly Neutralizing Antibody Epitopes on HIV-1 Particles are exposed after Virus Interaction with Host Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.20.524996. [PMID: 36711466 PMCID: PMC9882293 DOI: 10.1101/2023.01.20.524996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The envelope glycoproteins (Env) on HIV-1 virions are the sole target of broadly neutralizing antibodies (bNAb) and the focus of vaccines. However, many cross-reactive conserved epitopes are often occluded on virus particles, contributing to the evasion of humoral immunity. This study aimed to identify the Env epitopes that are exposed/occluded on HIV-1 particles and to investigate the mechanisms contributing to their masking. Using a flow cytometry-based assay, three HIV-1 isolates, and a panel of antibodies, we show that only select epitopes including V2i, gp120-g41 interface, and gp41-MPER are accessible on HIV-1 particles, while V3, V2q, and select CD4bs epitopes are masked. These epitopes become accessible after allosteric conformational changes are induced by pre-binding of select Abs, prompting us to test if similar conformational changes are required for these Abs to exhibit their neutralization capability. We tested HIV-1 neutralization where virus-mAb mix was pre-incubated/not pre-incubated for one hour prior to adding the target cells. Similar levels of neutralization were observed under both assay conditions, suggesting that the interaction between virus and target cells sensitizes the virions for neutralization via bNAbs. We further show that lectin-glycan interactions can also expose these epitopes. However, this effect is dependent on the lectin specificity. Given that, bNAbs are the ideal for providing sterilizing immunity and are the goal of current HIV-1 vaccine efforts, these data offer insight on how HIV-1 may occlude these vulnerable epitopes from the host immune response. In addition, the findings can guide the formulation of effective antibody combinations for therapeutic use.
Collapse
|
3
|
Timofeeva A, Sedykh S, Nevinsky G. Post-Immune Antibodies in HIV-1 Infection in the Context of Vaccine Development: A Variety of Biological Functions and Catalytic Activities. Vaccines (Basel) 2022; 10:384. [PMID: 35335016 PMCID: PMC8955465 DOI: 10.3390/vaccines10030384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 12/14/2022] Open
Abstract
Unlike many other viruses, HIV-1 is highly variable. The structure of the viral envelope changes as the infection progresses and is one of the biggest obstacles in developing an HIV-1 vaccine. HIV-1 infection can cause the production of various natural autoantibodies, including catalytic antibodies hydrolyzing DNA, myelin basic protein, histones, HIV-integrase, HIV-reverse transcriptase, β-casein, serum albumin, and some other natural substrates. Currently, there are various directions for the development of HIV-1 vaccines: stimulation of the immune response on the mucous membranes; induction of cytotoxic T cells, which lyse infected cells and hold back HIV-infection; immunization with recombinant Env proteins or vectors encoding Env; mRNA-based vaccines and some others. However, despite many attempts to develop an HIV-1 vaccine, none have been successful. Here we review the entire spectrum of antibodies found in HIV-infected patients, including neutralizing antibodies specific to various viral epitopes, as well as antibodies formed against various autoantigens, catalytic antibodies against autoantigens, and some viral proteins. We consider various promising targets for developing a vaccine that will not produce unwanted antibodies in vaccinated patients. In addition, we review common problems in the development of a vaccine against HIV-1.
Collapse
Affiliation(s)
- Anna Timofeeva
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia; (S.S.); (G.N.)
| | - Sergey Sedykh
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia; (S.S.); (G.N.)
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Georgy Nevinsky
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia; (S.S.); (G.N.)
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
4
|
Functional Antibody Response Against V1V2 and V3 of HIV gp120 in the VAX003 and VAX004 Vaccine Trials. Sci Rep 2018; 8:542. [PMID: 29323175 PMCID: PMC5765017 DOI: 10.1038/s41598-017-18863-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/18/2017] [Indexed: 11/09/2022] Open
Abstract
Immunization with HIV AIDSVAX gp120 vaccines in the phase III VAX003 and VAX004 trials did not confer protection. To understand the shortcomings in antibody (Ab) responses induced by these vaccines, we evaluated the kinetics of Ab responses to the V1V2 and V3 regions of gp120 and the induction of Ab-mediated antiviral functions during the course of 7 vaccinations over a 30.5-month period. Plasma samples from VAX003 and VAX004 vaccinees and placebo recipients were measured for ELISA-binding Abs and for virus neutralization, Ab-dependent cellular phagocytosis (ADCP), and Ab-dependent cellular cytotoxicity (ADCC). Ab responses to V1V2 and V3 peaked after 3 to 4 immunizations and declined after 5 to 7 immunizations. The deteriorating responses were most evident against epitopes in the underside of the V1V2 β-barrel and in the V3 crown. Correspondingly, vaccinees demonstrated higher neutralization against SF162 pseudovirus sensitive to anti-V1V2 and anti-V3 Abs after 3 or 4 immunizations than after 7 immunizations. Higher levels of ADCP and ADCC were also observed at early or mid-time points as compared with the final time point. Hence, VAX003 and VAX004 vaccinees generated V1V2- and V3-binding Abs and functional Abs after 3 to 4 immunizations, but subsequent boosts did not maintain these responses.
Collapse
|
5
|
Balasubramanian P, Kumar R, Williams C, Itri V, Wang S, Lu S, Hessell AJ, Haigwood NL, Sinangil F, Higgins KW, Liu L, Li L, Nyambi P, Gorny MK, Totrov M, Nadas A, Kong XP, Zolla-Pazner S, Hioe CE. Differential induction of anti-V3 crown antibodies with cradle- and ladle-binding modes in response to HIV-1 envelope vaccination. Vaccine 2017; 35:1464-1473. [PMID: 28185743 DOI: 10.1016/j.vaccine.2016.11.107] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/22/2016] [Accepted: 11/09/2016] [Indexed: 11/25/2022]
Abstract
The V3 loop in the HIV envelope gp120 is one of the immunogenic sites targeted by Abs. The V3 crown in particular has conserved structural elements recognized by cross-reactive neutralizing Abs, indicating its potential contribution in protection against HIV. Crystallographic analyses of anti-V3 crown mAbs in complex with the V3 peptides have revealed that these mAbs recognize the conserved sites on the V3 crown via two distinct strategies: a cradle-binding mode (V3C) and a ladle-binding (V3L) mode. However, almost all of the anti-V3 crown mAbs studied in the past were isolated from chronically HIV-infected individuals. The extents to which the two types of anti-V3 crown Abs are generated by vaccination are unknown. This study analyzed the prevalence of V3C-type and V3L-type Ab responses in HIV-infected individuals and in HIV envelope-immunized humans and animals using peptide mimotopes that distinguish the two Ab types. The results show that both V3L-type and V3C-type Abs were generated by the vast majority of chronically HIV-infected humans, although the V3L-type were more prevalent. In contrast, only one of the two V3 Ab types was elicited in vaccinated humans or animal models, irrespective of HIV-1 envelope clades, envelope constructs (oligomeric or monomeric), and protocols (DNA plus protein or protein alone) used for vaccinations. The V3C-type Abs were produced by vaccinated humans, macaques, and rabbits, whereas the V3L-type Abs were made by mice. The V3C-type and V3L-type Abs generated by the vaccinations were able to mediate virus neutralization. These data indicate the restricted repertoires and the species-specific differences in the functional V3-specific Ab responses induced by the HIV envelope vaccines. The study implies the need for improving immunogen designs and vaccination strategies to broaden the diversity of Abs in order to target the different conserved epitopes in the V3 loop and, by extension, in the entire HIV envelope.
Collapse
Affiliation(s)
- Preetha Balasubramanian
- The Sackler Institute of Graduate Biomedical Sciences, NYU School of Medicine, New York, NY 10016, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rajnish Kumar
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; James J. Peters VA Medical Center, Bronx, NY 10468, USA
| | - Constance Williams
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
| | - Vincenza Itri
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Shixia Wang
- University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Shan Lu
- University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ann J Hessell
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Nancy L Haigwood
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA; Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Faruk Sinangil
- Global Solutions for Infectious Diseases, South San Francisco, CA, USA
| | - Keith W Higgins
- Global Solutions for Infectious Diseases, South San Francisco, CA, USA
| | - Lily Liu
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
| | - Liuzhe Li
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
| | - Phillipe Nyambi
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
| | - Miroslaw K Gorny
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
| | - Maxim Totrov
- Molsoft LLC, 3366 N Torrey Pines Ct., La Jolla, CA 92037, USA
| | - Arthur Nadas
- Department of Environment Medicine, NYU School of Medicine, New York, NY 10016, USA
| | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA
| | - Susan Zolla-Pazner
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Catarina E Hioe
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; James J. Peters VA Medical Center, Bronx, NY 10468, USA.
| |
Collapse
|
6
|
Moseri A, Sinha E, Zommer H, Arshava B, Naider F, Anglister J. Immunofocusing using conformationally constrained V3 peptide immunogens improves HIV-1 neutralization. Vaccine 2017; 35:222-230. [DOI: 10.1016/j.vaccine.2016.11.088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/24/2016] [Accepted: 11/28/2016] [Indexed: 01/07/2023]
|
7
|
Hessell AJ, McBurney S, Pandey S, Sutton W, Liu L, Li L, Totrov M, Zolla-Pazner S, Haigwood NL, Gorny MK. Induction of neutralizing antibodies in rhesus macaques using V3 mimotope peptides. Vaccine 2016; 34:2713-21. [PMID: 27102818 DOI: 10.1016/j.vaccine.2016.04.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 04/09/2016] [Accepted: 04/11/2016] [Indexed: 12/21/2022]
Abstract
RV144 vaccinees with low HIV-1 Envelope-specific IgA antibodies (Abs) also had Abs directed to the hypervariable region 3 (V3) that inversely correlated with infection risk. Thus, anti-V3 HIV-1 Abs may contribute to protection from HIV-1 infection. The V3 region contains two dominant clusters of epitopes; one is preferentially recognized by mAbs encoded by VH5-51 and VL lambda genes, while the second one is recognized by mAbs encoded by other VH genes. We designed a study in rhesus macaques to induce anti-V3 Abs specific to each of these two dominant clusters of V3 epitopes to test whether the usage of the VH5-51 gene results in different characteristics of antibodies. The two C4-V3 immunogens used for immunization were each comprised of a fusion of the C4 peptide containing the T cell epitope and a V3 mimotope peptide mimicking the V3 epitope. The C4-447 peptide was designed to target B cells with several VH1-VH4 genes, the C4-VH5-51 peptide was designed to specifically target B cells with the VH5-51 gene. Six animals in two groups were immunized five times with these two immunogens, and screening of 10 sequential plasma samples post immunization demonstrated that C4-447 induced higher titers of plasma anti-V3 Abs and significantly more potent neutralizing activities against tier 1 and some tier 2 pseudoviruses than C4-VH5-51. Levels of anti-V3 Abs in buccal secretions were significantly higher in sequential samples derived from C4-447- than from C4-VH5-51-immunized animals. The titers of anti-V3 Abs in plasma strongly correlated with their levels in mucosal secretions. The results show that high titers of vaccine-induced anti-V3 Abs in plasma determine the potency and breadth of neutralization, as well as the rate of transduction of Abs to mucosal tissues, where they can play a role in preventing HIV-1 infection.
Collapse
Affiliation(s)
- Ann J Hessell
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Sean McBurney
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Shilpi Pandey
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - William Sutton
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Lily Liu
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Liuzhe Li
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | | | | | - Nancy L Haigwood
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Miroslaw K Gorny
- Department of Pathology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
8
|
Abstract
Antibodies (Abs) are a critical component of the human immune response against viral infections. In HIV-infected patients, a robust Ab response against the virus develops within months of infection; however, due to numerous strategies, the virus usually escapes the biological effects of the various Abs. Here we provide an overview of the different viral evasion mechanisms, including glycosylation, high mutation rate, and conformational masking by the envelope glycoproteins of the virus. In response to virus infection and to its evolution within a host, "conventional Abs" are generated, and these can also be induced by immunization; generally, these Abs are limited in their neutralization breadth and potency. In contrast, "exceptional Abs" require extended exposure to virus to generate the required hypermutation in the immunoglobulin variable regions, and they occur only in rare HIV-infected individuals, but they display impressive breadth and potency. In this review, we describe the major regions of the HIV envelope spike that are targeted by conventional and exceptional Abs. These include the first, second, and third variable loops (V1, V2, and V3) located at the apex of the envelope trimer, the CD4 binding site, and the membrane-proximal external region of the gp41 ectodomain. Lastly, we discuss the challenging task of HIV immunogen design and approaches for choosing which immunogens might be used to elicit protective Abs.
Collapse
|
9
|
Functional and Structural Characterization of Human V3-Specific Monoclonal Antibody 2424 with Neutralizing Activity against HIV-1 JRFL. J Virol 2015; 89:9090-102. [PMID: 26109728 PMCID: PMC4524078 DOI: 10.1128/jvi.01280-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 06/06/2015] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED The V3 region of HIV-1 gp120 is important for virus-coreceptor interaction and highly immunogenic. Although most anti-V3 antibodies neutralize only the sensitive tier 1 viruses, anti-V3 antibodies effective against the more resistant viruses exist, and a better understanding of these antibodies and their epitopes would be beneficial for the development of novel vaccine immunogens against HIV. The HIV-1 isolate JRFL with its cryptic V3 is resistant to most V3-specific monoclonal antibodies (MAbs). However, the V3 MAb 2424 achieves 100% neutralization against JRFL. 2424 is encoded by IGHV3-53 and IGLV2-28 genes, a pairing rarely used by the other V3 MAbs. 2424 also has distinct binding and neutralization profiles. Studies of 2424-mediated neutralization of JRFL produced with a mannosidase inhibitor further revealed that its neutralizing activity is unaffected by the glycan composition of the virus envelope. To understand the distinct activity of 2424, we determined the crystal structure of 2424 Fab in complex with a JRFL V3 peptide and showed that the 2424 epitope is located at the tip of the V3 crown ((307)IHIGPGRAFYT(319)), dominated by interactions with His(P308), Pro(P313), and Arg(P315). The binding mode of 2424 is similar to that of the well-characterized MAb 447-52D, although 2424 is more side chain dependent. The 2424 epitope is focused on the very apex of V3, away from nearby glycans, facilitating antibody access. This feature distinguishes the 2424 epitope from the other V3 crown epitopes and indicates that the tip of V3 is a potential site to target and incorporate into HIV vaccine immunogens. IMPORTANCE HIV/AIDS vaccines are crucial for controlling the HIV epidemics that continue to afflict millions of people worldwide. However, HIV vaccine development has been hampered by significant scientific challenges, one of which is the inability of HIV vaccine candidates evaluated thus far to elicit production of potent and broadly neutralizing antibodies. The V3 loop is one of the few immunogenic targets on the virus envelope glycoprotein that can induce neutralizing antibodies, but in many viruses, parts of V3 are inaccessible for antibody recognition. This study examined a V3-specific monoclonal antibody that can completely neutralize HIV-1 JRFL, a virus isolate resistant to most V3 antibodies. Our data reveal that this antibody recognizes the most distal tip of V3, which is not as occluded as other parts of V3. Hence, the epitope of 2424 is in one of the vulnerable sites on the virus that may be exploited in designing HIV vaccine immunogens.
Collapse
|
10
|
Gianvincenzo PD, Calvo J, Perez S, Álvarez A, Bedoya LM, Alcamí J, Penadés S. Negatively charged glyconanoparticles modulate and stabilize the secondary structures of a gp120 V3 loop peptide: toward fully synthetic HIV vaccine candidates. Bioconjug Chem 2015; 26:755-65. [PMID: 25734507 DOI: 10.1021/acs.bioconjchem.5b00077] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The third variable region (V3 peptide) of the HIV-1 gp120 is a major immunogenic domain of HIV-1. Controlling the formation of the immunologically active conformation is a crucial step to the rational design of fully synthetic candidate vaccines. Herein, we present the modulation and stabilization of either the α-helix or β-strand conformation of the V3 peptide by conjugation to negatively charged gold glyconanoparticles (GNPs). The formation of the secondary structure can be triggered by the variation of the buffer concentration and/or pH as indicated by circular dichoism. The peptide on the GNPs shows increased stability toward peptidase degradation as compared to the free peptide. Moreover, only the V3β-GNPs bind to the anti-V3 human broadly neutralizing mAb 447-52D as demonstrated by surface plasmon resonance (SPR). The strong binding of V3β-GNPs to the 447-52D mAb was the starting point to address its study as immunogen. V3β-GNPs elicit antibodies in rabbits that recognize a recombinant gp120 and the serum displayed low but consistent neutralizing activity. These results open up the way for the design of new fully synthetic HIV vaccine candidates.
Collapse
Affiliation(s)
| | | | - Serge Perez
- ∥Département de Pharmacochimie, UMR 5063 CNRS-Université Grenoble Alpes, BP53, 38041, Grenoble cédex 09, France
| | - Amparo Álvarez
- ⊥Aids Immunopathology Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Ctra Pozuelo Km. 2, 28220, Majadahonda, Madrid, Spain
| | - Luis Miguel Bedoya
- ⊥Aids Immunopathology Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Ctra Pozuelo Km. 2, 28220, Majadahonda, Madrid, Spain.,#Pharmacology Department, Pharmacy Faculty, Universidad Complutense de Madrid. Pz. Ramón Y Cajal, 28040, Madrid, Spain
| | - José Alcamí
- ⊥Aids Immunopathology Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Ctra Pozuelo Km. 2, 28220, Majadahonda, Madrid, Spain
| | | |
Collapse
|
11
|
Cardozo T, Wang S, Jiang X, Kong XP, Hioe C, Krachmarov C. Vaccine focusing to cross-subtype HIV-1 gp120 variable loop epitopes. Vaccine 2014; 32:4916-24. [PMID: 25045827 DOI: 10.1016/j.vaccine.2014.07.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/30/2014] [Accepted: 07/08/2014] [Indexed: 10/25/2022]
Abstract
We designed synthetic, epitope-focused immunogens that preferentially display individual neutralization epitopes targeted by cross-subtype anti-HIV V3 loop neutralizing monoclonal antibodies (mAbs). Vaccination of rabbits with these immunogens resulted in the elicitation of distinct polyclonal serum Abs that exhibit cross-subtype neutralization specificities mimicking the mAbs that guided the design. Our results prove the principle that a predictable range of epitope-specific polyclonal cross-subtype HIV-1 neutralizing Abs can be intentionally elicited in mammals by vaccination. The precise boundaries of the epitopes and conformational flexibility in the presentation of the epitopes in the immunogen appeared to be important for successful elicitation. This work may serve as a starting point for translating the activities of human broadly neutralizing anti-HIV-1 monoclonal antibodies (bNAbs) into matched immunogens that can contribute to an efficacious HIV-1 vaccine.
Collapse
Affiliation(s)
- Timothy Cardozo
- New York University School of Medicine, Department of Biochemistry and Molecular Pharmacology, 550 First Avenue, New York, NY 10016, United States.
| | - Shixia Wang
- University of Massachusetts Medical School, Department of Medicine, 364 Plantation Street, Lazare Research Building, Worcester, MA 01605, United States
| | - Xunqing Jiang
- New York University School of Medicine, Department of Biochemistry and Molecular Pharmacology, 550 First Avenue, New York, NY 10016, United States
| | - Xiang-Peng Kong
- New York University School of Medicine, Department of Biochemistry and Molecular Pharmacology, 550 First Avenue, New York, NY 10016, United States
| | - Catarina Hioe
- New York University School of Medicine, Department of Pathology, 550 First Avenue, New York, NY 10016, United States; Veterans Affairs Medical Center, 423 East 23rd Street, New York, NY 10010, United States
| | - Chavdar Krachmarov
- New York University School of Medicine, Department of Biochemistry and Molecular Pharmacology, 550 First Avenue, New York, NY 10016, United States
| |
Collapse
|
12
|
Jespers V, Harandi AM, Hinkula J, Medaglini D, Grand RL, Stahl-Hennig C, Bogers W, Habib RE, Wegmann F, Fraser C, Cranage M, Shattock RJ, Spetz AL. Assessment of mucosal immunity to HIV-1. Expert Rev Vaccines 2014; 9:381-94. [DOI: 10.1586/erv.10.21] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
13
|
Zhou M, Meyer T, Koch S, Koch J, von Briesen H, Benito JM, Soriano V, Haberl A, Bickel M, Dübel S, Hust M, Dietrich U. Identification of a new epitope for HIV-neutralizing antibodies in the gp41 membrane proximal external region by an Env-tailored phage display library. Eur J Immunol 2012. [PMID: 23180650 DOI: 10.1002/eji.201242974] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
HIV controllers are a valuable source for the identification of HIV-neutralizing antibodies, as chronic infection over decades allows extensive affinity maturation of antibodies for improved Ag recognition. We analyzed a small cohort of elite controllers (ECs) for HIV-neutralizing antibodies using a panel of standardized HIV-1 pseudovirions on TZM-bl cells. An HIV-1 Env-tailored phage display library was generated to select epitopes targeted by neutralizing antibodies in the EC26 plasma sample showing the broadest neutralizing activity. Selected Env fragments were mostly allocated to the membrane proximal external region of gp41. After preabsorbing the EC26 plasma with the selected phage EC26-2A4, we achieved 50% depletion of its neutralizing activity. Furthermore, antibodies affinity-purified with the EC26-2A4 epitope from EC26 plasma showed neutralizing activity, proving that the selected phage indeed contains an epitope targeted by neutralizing plasma antibodies. Epitope fine mapping of the purified plasma antibodies on peptide arrays identified a new epitope overlapping, but clearly distinct, from the prominent 2F5 epitope. Of note, the purified antibodies did not show autoreactivity with cardiolipin, whereas low reactivity with phosphatidylserine comparable to mAb 2F5 was observed. Thus, this new epitope represents a promising candidate for further analysis in view of HIV vaccine development.
Collapse
Affiliation(s)
- Mingkui Zhou
- Georg-Speyer-Haus, Institute for Biomedical Research, Frankfurt, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Gazarian KG, Palacios-Rodríguez Y, Gazarian TG, Huerta L. HIV-1 V3 loop crown epitope-focused mimotope selection by patient serum from random phage display libraries: implications for the epitope structural features. Mol Immunol 2012; 54:148-56. [PMID: 23270686 DOI: 10.1016/j.molimm.2012.11.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 11/26/2012] [Accepted: 11/27/2012] [Indexed: 12/26/2022]
Abstract
The crown region of the V3 loop in HIV-1 that contains the conserved amino acid sequence GPGR/G is known as the principal neutralizing determinant due to the extraordinary ability of antibodies to this region to neutralize the virus. To complement the existing peptide models of this epitope, we describe a family of 18 phage-displayed peptides, which include linear 12mer and constrained 7mer peptides that was selected by screening random libraries with serum from HIV-1 subtype B-infected patients. The 7mer constrained peptides presented two conserved amino acid sequences: PR-L in N-terminus and GPG in the C-terminus. On the basis of these peptides we propose a mimotope model of the V3 crown epitope in which the PR-L and GPG sequences represent the two known epitope binding sites. The GPG, has the same function as the V3 crown GPGR sequence but without the involvement of the "R" despite its being considered as the signature of the epitope in B-subtype viruses. The PR-L contains a proline not existing in the epitope that is postulated to induce kinks in the backbones of all peptides and create a spatial element mimicking the N-terminal conformationally variable binding site. Rabbit serum to these mimotopes recognized the V3 peptides and moderately decreased the fusion between HIV-1 Env- and CD4-expressing Jurkat cells. This study proposes the efficient generation by means of patient sera of V3 epitope mimics validated by interaction with the antibodies to contemporary viruses induced in patients. The serum antibody-selectable mimotopes are sources of novel information on the fine structure-function properties of HIV-1 principal neutralizing domain and candidate anti-HIV-1 immunogens.
Collapse
Affiliation(s)
- Karlen G Gazarian
- Department of Medicine Genomics and Environmental Toxicology, Institute of the Biomedical Research, Mexican National University, Ciudad Universitaria, 3er Circuito Exterior S/N, Mexico-City 04510, Mexico.
| | | | | | | |
Collapse
|
15
|
Andrabi R, Kumar R, Bala M, Nair A, Biswas A, Wig N, Kumar P, Pal R, Sinha S, Luthra K. Production and characterization of human anti-V3 monoclonal antibodies from the cells of HIV-1 infected Indian donors. Virol J 2012; 9:196. [PMID: 22971578 PMCID: PMC3493341 DOI: 10.1186/1743-422x-9-196] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 08/29/2012] [Indexed: 01/10/2023] Open
Abstract
Background Analysis of human monoclonal antibodies (mAbs) developed from HIV-1 infected donors have enormously contributed to the identification of neutralization sensitive epitopes on the HIV-1 envelope glycoprotein. The third variable region (V3) is a crucial target on gp120, primarily due to its involvement in co-receptor (CXCR4 or CCR5) binding and presence of epitopes recognized by broadly neutralizing antibodies. Methods Thirty-three HIV-1 seropositive drug naive patients (18 males and 15 females) within the age range of 20–57 years (median = 33 years) were recruited in this study for mAb production. The mAbs were selected from EBV transformed cultures with conformationally constrained Cholera-toxin-B containing V3C (V3C-CTB) fusion protein. We tested the mAbs for their binding with HIV-1 derived proteins and peptides by ELISA and for neutralization against HIV-1 viruses by TZM-bl assays. Results We isolated three anti-V3 mAbs, 277, 903 and 904 from the cells of different individuals. The ELISA binding revealed a subtype-C and subtype-A specific binding of antibody 277 and 903 while mAb 904 exhibited cross reactivity also with subtype-B V3. Epitope mapping of mAbs with overlapping V3 peptides showed exclusive binding to V3 crown. The antibodies displayed high and low neutralizing activity against 2/5 tier 1 and 1/6 tier 2 viruses respectively. Overall, we observed a resistance of the tier 2 viruses to neutralization by the anti-V3 mAbs, despite the exposure of the epitopes recognized by these antibodies on two representative native viruses (Du156.12 and JRFL), suggesting that the affinity of mAb might equally be crucial for neutralization, as the epitope recognition. Conclusions Our study suggests that the anti-V3 antibodies derived from subtype-C infected Indian patients display neutralization potential against tier 1 viruses while such activity may be limited against more resistant tier 2 viruses. Defining the fine epitope specificities of these mAbs and further experimental manipulations will be helpful in identification of epitopes, unique to clade C or shared with non-clade C viruses, in context of V3 region.
Collapse
Affiliation(s)
- Raiees Andrabi
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Broader neutralizing antibodies against H5N1 viruses using prime-boost immunization of hyperglycosylated hemagglutinin DNA and virus-like particles. PLoS One 2012; 7:e39075. [PMID: 22720032 PMCID: PMC3374787 DOI: 10.1371/journal.pone.0039075] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 05/17/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Highly pathogenic avian influenza (HPAI) H5N1 viruses and their transmission capability from birds to humans have raised global concerns about a potential human pandemic. The inherent nature of antigenic changes in influenza viruses has not been sufficiently taken into account in immunogen designs for broadly protective HPAI H5N1 vaccines. METHODS We designed a hyperglycosylated HA vaccine using N-linked glycan masking on highly variable sequences in the HA1 globular head. Immunization of these hyperglycosylated HA DNA vaccines followed by a flagellin-containing virus-like particle booster in mice was conducted to evaluate neutralizing antibody responses against various clades of HPAI H5N1 viruses. RESULTS We introduced nine N-X-S/T motifs in five HA1 regions: 83NNT, 86NNT, 94NFT, 127NSS, 138NRT, 156NTT, 161NRS, 182NDT, and 252NAT according to sequence alignment analyses from 163 HPAI H5N1 human isolates. Although no significant differences of anti-HA total IgG titers were found with these hyperglycosyalted HA compared to the wild-type control, the 83NNT and 127NSS mutants elicited significantly potent cross-clade neutralizing antibodies against HPAI H5N1 viruses. CONCLUSIONS This finding may have value in terms of novel immunogen design for developing cross-protective H5N1 vaccines.
Collapse
|
17
|
Prime boost vaccination approaches with different conjugates of a new HIV-1 gp41 epitope encompassing the membrane proximal external region induce neutralizing antibodies in mice. Vaccine 2012; 30:1911-6. [DOI: 10.1016/j.vaccine.2012.01.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 12/02/2011] [Accepted: 01/07/2012] [Indexed: 11/24/2022]
|
18
|
Jaworski JP, Krebs SJ, Trovato M, Kovarik DN, Brower Z, Sutton WF, Waagmeester G, Sartorius R, D'Apice L, Caivano A, Doria-Rose NA, Malherbe D, Montefiori DC, Barnett S, De Berardinis P, Haigwood NL. Co-immunization with multimeric scaffolds and DNA rapidly induces potent autologous HIV-1 neutralizing antibodies and CD8+ T cells. PLoS One 2012; 7:e31464. [PMID: 22359593 PMCID: PMC3281069 DOI: 10.1371/journal.pone.0031464] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 01/08/2012] [Indexed: 01/11/2023] Open
Abstract
To obtain proof of concept for HIV vaccines, we generated recombinant multimeric particles displaying the HIV-1 Envelope (Env) third hypervariable region (V3) as an N-terminal fusion protein on the E2 subunit of the pyruvate dehydrogenase complex of Geobacillus stearothermophilus. The E2 scaffold self-assembles into a 60-mer core that is 24 nm in diameter, with a molecular weight of 1.5 MDa, similar to a virus like particle with up to 60 copies of a heterologous protein accessible on the surface. Env(V3)-E2 multimers were tested alone and in combination with Env(gp160) DNA in mice and rabbits. Following two or more co-immunizations with Env(V3)-E2 and Env gp160 DNA, all 18 rabbits developed potent autologous neutralizing antibodies specific for V3 in six weeks. These neutralizing antibodies were sustained for 16 weeks without boosting, and comparable responses were obtained when lipopolysaccharide, a contaminant from expression in E. coli, was removed. Co-immunizations of Env(V3)-E2 and DNA expressing gp160 elicited moderate CD8-specific responses and Env-specific antibodies in mice. Co-immunization with DNA and E2 was superior to individual or sequential vaccination with these components in eliciting both neutralizing antibodies in rabbits and CD8(+) T cell responses in mice. Co-immunization with DNA and multimeric E2 scaffolds appears to offer a highly effective means of eliciting rapid, specific, and sustained immune responses that may be a useful approach for other vaccine targets.
Collapse
Affiliation(s)
- Juan Pablo Jaworski
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Sciences University, Beaverton, Oregon, United States of America
| | - Shelly J. Krebs
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Sciences University, Beaverton, Oregon, United States of America
| | - Maria Trovato
- Institute of Protein Biochemistry, C.N.R., Naples, Italy
| | - Dina N. Kovarik
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, United States of America
| | - Zachary Brower
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Sciences University, Beaverton, Oregon, United States of America
| | - William F. Sutton
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Sciences University, Beaverton, Oregon, United States of America
| | - Garrett Waagmeester
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Sciences University, Beaverton, Oregon, United States of America
| | | | | | | | - Nicole A. Doria-Rose
- Viral Vaccines Program, Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Delphine Malherbe
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Sciences University, Beaverton, Oregon, United States of America
| | - David C. Montefiori
- Duke University Medical Center, Durham, North Carolina, United States of America
| | - Susan Barnett
- Novartis, Cambridge, Massachusetts, United States of America
| | | | - Nancy L. Haigwood
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Sciences University, Beaverton, Oregon, United States of America
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
19
|
Human anti-V3 HIV-1 monoclonal antibodies encoded by the VH5-51/VL lambda genes define a conserved antigenic structure. PLoS One 2011; 6:e27780. [PMID: 22164215 PMCID: PMC3229485 DOI: 10.1371/journal.pone.0027780] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 10/25/2011] [Indexed: 02/04/2023] Open
Abstract
Preferential usage of immunoglobulin (Ig) genes that encode antibodies (Abs) against various pathogens is rarely observed and the nature of their dominance is unclear in the context of stochastic recombination of Ig genes. The hypothesis that restricted usage of Ig genes predetermines the antibody specificity was tested in this study of 18 human anti-V3 monoclonal Abs (mAbs) generated from unrelated individuals infected with various subtypes of HIV-1, all of which preferentially used pairing of the VH5-51 and VL lambda genes. Crystallographic analysis of five VH5-51/VL lambda-encoded Fabs complexed with various V3 peptides revealed a common three dimensional (3D) shape of the antigen-binding sites primarily determined by the four complementarity determining regions (CDR) for the heavy (H) and light (L) chains: specifically, the H1, H2, L1 and L2 domains. The CDR H3 domain did not contribute to the shape of the binding pocket, as it had different lengths, sequences and conformations for each mAb. The same shape of the binding site was further confirmed by the identical backbone conformation exhibited by V3 peptides in complex with Fabs which fully adapted to the binding pocket and the same key contact residues, mainly germline-encoded in the heavy and light chains of five Fabs. Finally, the VH5-51 anti-V3 mAbs recognized an epitope with an identical 3D structure which is mimicked by a single mimotope recognized by the majority of VH5-51-derived mAbs but not by other V3 mAbs. These data suggest that the identification of preferentially used Ig genes by neutralizing mAbs may define conserved epitopes in the diverse virus envelopes. This will be useful information for designing vaccine immunogen inducing cross-neutralizing Abs.
Collapse
|
20
|
Kumar R, Tuen M, Li H, Tse DB, Hioe CE. Improving immunogenicity of HIV-1 envelope gp120 by glycan removal and immune complex formation. Vaccine 2011; 29:9064-74. [PMID: 21945958 DOI: 10.1016/j.vaccine.2011.09.057] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 08/18/2011] [Accepted: 09/02/2011] [Indexed: 11/18/2022]
Abstract
HIV-1 envelope (Env) gp120 is an important target for neutralizing antibody (Ab) responses against the virus; however, developing gp120 vaccines that elicit potent and broad neutralizing Abs has proven to be a formidable challenge. Previously, removal of an N-linked glycan at residue 448 by an N to Q mutation (N448Q) has been found to enhance the in vitro antigenicity of neutralizing epitopes in the V3 loop. In this study the mutated gp120 was first compared with wild type gp120 for immunogenicity in mice using a DNA prime and protein boost immunization regimen. The N448Q mutant did not elicit higher titers of anti-gp120 serum Abs and failed to generate anti-V3 Abs. The sera also had no virus-neutralizing activity, even though the mutant induced higher levels of lymphoproliferation and cytokine production. Subsequently, the N448Q mutant was used to construct an immune complex vaccine with the anti-CD4 binding site monoclonal antibody (mAb) 654. The N448Q/654 complex stimulated comparably high levels of serum Abs to gp120 and V3 as the wild type complex. However, Abs against the C1 and C2 regions in the gp120 core were more elevated. Importantly, the mutant complex also elicited higher titers of neutralizing Abs activity than the wild type counterpart. Similar results were achieved with a complex made with gp120 bearing an N448E mutation, confirming the importance of the N448-linked glycan in modulating gp120 immunogenicity. Neutralizing activity was directed to V3 and other undefined neutralizing epitopes. Improved immunogenicity of the immune complexes correlated with alterations in exposure of V3 and other Ab epitopes and their stability against proteases. These data demonstrate the advantage of combining site-specific N-glycan removal and immune complex formation as a novel vaccine strategy to improve immunogenicity of targeted Ab epitopes on critical regions of HIV-1 gp120.
Collapse
Affiliation(s)
- Rajnish Kumar
- New York University School of Medicine, Department of Pathology, New York, NY 10016, USA
| | | | | | | | | |
Collapse
|
21
|
Saha P, Barua B, Bhattacharyya S, Balamurali MM, Schief WR, Baker D, Varadarajan R. Design and characterization of stabilized derivatives of human CD4D12 and CD4D1. Biochemistry 2011; 50:7891-900. [PMID: 21827143 DOI: 10.1021/bi200870r] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
CD4 is present on the surface of T-lymphocytes and is the primary cellular receptor for HIV-1. CD4 consists of a cytoplasmic tail, one transmembrane region, and four extracellular domains, D1-D4. A construct consisting of the first two domains of CD4 (CD4D12) is folded and binds gp120 with similar affinity as soluble 4-domain CD4 (sCD4). However, the first domain alone (CD4D1) was previously shown to be largely unfolded and had 3-fold weaker affinity for gp120 when compared to sCD4 [Sharma, D.; et al. (2005) Biochemistry 44, 16192-16202]. We now report the design and characterization of three single-site mutants of CD4D12 (G6A, L51I, and V86L) and one multisite mutant of CD4D1 (G6A/L51I/L5K/F98T). G6A, L51I, and V86L are cavity-filling mutations while L5K and F98T are surface mutations which were introduced to minimize the aggregation of CD4D1 upon removal of the second domain. Two mutations, G6A and V86L in CD4D12 increased the stability and yield of the protein relative to the wild-type protein. The mutant CD4D1 (CD4D1a) with the 4 mutations was folded and more stable compared to the original CD4D1, but both bound gp120 with comparable affinity. In in vitro neutralization assays, both CD4D1a and G6A-CD4D12 were able to neutralize diverse HIV-1 viruses with similar IC(50)s as 4-domain CD4. These stabilized derivatives of human CD4 can be useful starting points for the design of other more complex viral entry inhibitors.
Collapse
Affiliation(s)
- Piyali Saha
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | | | | | | | | | | | | |
Collapse
|
22
|
Cross-clade HIV-1 neutralizing antibodies induced with V3-scaffold protein immunogens following priming with gp120 DNA. J Virol 2011; 85:9887-98. [PMID: 21795338 DOI: 10.1128/jvi.05086-11] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The V3 epitope is a known target for HIV-1 neutralizing antibodies (NAbs), and V3-scaffold fusion proteins used as boosting immunogens after gp120 DNA priming were previously shown to induce NAbs in rabbits. Here, we evaluated whether the breadth and potency of the NAb response could be improved when boosted with rationally designed V3-scaffold immunogens. Rabbits were primed with codon-optimized clade C gp120 DNA and boosted with one of five V3-cholera toxin B fusion proteins (V3-CTBs) or with double combinations of these. The inserts in these immunogens were designed to display V3 epitopes shared by the majority of global HIV-1 isolates. Double combinations of V3-CTB immunogens generally induced more broad and potent NAbs than did boosts with single V3-CTB immunogens, with the most potent and broad NAbs elicited with the V3-CTB carrying the consensus V3 of clade C (V3(C)-CTB), or with double combinations of V3-CTB immunogens that included V3(C)-CTB. Neutralization of tier 1 and 2 pseudoviruses from clades AG, B, and C and of peripheral blood mononuclear cell (PBMC)-grown primary viruses from clades A, AG, and B was achieved, demonstrating that priming with gp120 DNA followed by boosts with V3-scaffold immunogens effectively elicits cross-clade NAbs. Focusing on the V3 region is a first step in designing a vaccine targeting protective epitopes, a strategy with potential advantages over the use of Env, a molecule that evolved to protect the virus by poorly inducing NAbs and by shielding the epitopes that are most critical for infectivity.
Collapse
|
23
|
Yin Y, Wu C, Song J, Wang J, Zhang E, Liu H, Yang D, Chen X, Lu M, Xu Y. DNA immunization with fusion of CTLA-4 to hepatitis B virus (HBV) core protein enhanced Th2 type responses and cleared HBV with an accelerated kinetic. PLoS One 2011; 6:e22524. [PMID: 21799884 PMCID: PMC3142188 DOI: 10.1371/journal.pone.0022524] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 06/22/2011] [Indexed: 01/26/2023] Open
Abstract
Background Typically, DNA immunization via the intramuscular route induces specific, Th1-dominant immune responses. However, plasmids expressing viral proteins fused to cytotoxic T lymphocyte antigen 4 (CTLA-4) primed Th2-biased responses and were able to induced effective protection against viral challenge in the woodchuck model. Thus, we addressed the question in the mouse model how the Th1/Th2 bias of primed immune responses by a DNA vaccine influences hepatitis B virus (HBV) clearance. Principal Findings Plasmids expressing HBV core protein (HBcAg) or HBV e antigen and HBcAg fused to the extracellular domain of CTLA-4 (pCTLA-4-HBc), CD27, and full length CD40L were constructed. Immunizations of these DNA plasmids induced HBcAg-specific antibody and cytotoxic T-cell responses in mice, but with different characteristics regarding the titers and subtypes of specific antibodies and intensity of T-cell responses. The plasmid pHBc expressing HBcAg induced an IgG2a-dominant response while immunizations of pCTLA-4-HBc induced a balanced IgG1/IgG2a response. To assess the protective values of the immune responses of different characteristics, mice were pre-immunized with pCTLA-4-HBc and pHBc, and challenged by hydrodynamic injection (HI) of pAAV/HBV1.2. HBV surface antigen (HBsAg) and DNA in peripheral blood and HBcAg in liver tissue were cleared with significantly accelerated kinetics in both groups. The clearance of HBsAg was completed within 16 days in immunized mice while more than 50% of the control mice are still positive for HBsAg on day 22. Stronger HBcAg-specific T-cell responses were primed by pHBc correlating with a more rapid decline of HBcAg expression in liver tissue, while anti-HBs antibody response developed rapidly in the mice immunized with pCTLA-4-HBc, indicating that the Th1/Th2 bias of vaccine-primed immune responses influences the mode of viral clearance. Conclusion Viral clearance could be efficiently achieved by Th1/Th2-balanced immune response, with a small but significant shift in T-cell and B-cell immune responses.
Collapse
Affiliation(s)
- Ying Yin
- Department of Microbiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunchen Wu
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jingjiao Song
- Division of Clinical Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Junzhong Wang
- Division of Clinical Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Ejuan Zhang
- Department of Microbiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongyan Liu
- Institute of Virology, University Hospital of Essen, Essen, Germany
| | - Dongliang Yang
- Division of Clinical Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xinwen Chen
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Mengji Lu
- Department of Microbiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Virology, University Hospital of Essen, Essen, Germany
| | - Yang Xu
- Department of Microbiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- * E-mail:
| |
Collapse
|
24
|
Charles-Niño C, Pedroza-Roldan C, Viveros M, Gevorkian G, Manoutcharian K. Variable epitope libraries: new vaccine immunogens capable of inducing broad human immunodeficiency virus type 1-neutralizing antibody response. Vaccine 2011; 29:5313-21. [PMID: 21600948 DOI: 10.1016/j.vaccine.2011.05.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/03/2011] [Accepted: 05/04/2011] [Indexed: 11/25/2022]
Abstract
The extreme antigenic variability of human immunodeficiency virus (HIV) leads to immune escape of the virus, representing a major challenge in the design of effective vaccine. We have developed a novel concept for immunogen construction based on introduction of massive mutations within the epitopes targeting antigenically variable pathogens and diseases. Previously, we showed that these immunogens carrying large combinatorial libraries of mutated epitope variants, termed as variable epitope libraries (VELs), induce potent, broad and long lasting CD8+IFN-γ+ T-cell response. Moreover, we demonstrated that these T cells recognize more than 50% of heavily mutated variants (5 out of 10 amino acid positions were mutated in each epitope variant) of HIV-1 gp120 V3 loop-derived cytotoxic T lymphocyte epitope (RGPGRAFVTI) in mice. The constructed VELs had complexities of 10000 and 12500 individual members, generated as plasmid DNA or as M13 phage display combinatorial libraries, respectively, and with structural composition RGPGXAXXXX or XGXGXAXVXI, where X is any of 20 natural amino acids. Here, we demonstrated that sera from mice immunized with these VELs are capable of neutralizing 5 out of 10 viral isolates from Tier 2 reference panel of subtype B envelope clones, including HIV-1 isolates which are known to be resistant to neutralization by several potent monoclonal antibodies, described previously. These data indicate the feasibility of the application of immunogens based on VEL concept as an alternative approach for the development of molecular vaccines against antigenically variable pathogens.
Collapse
Affiliation(s)
- Claudia Charles-Niño
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70228, Cuidad Universitaria, México, Distrito Federal 04510, Mexico
| | | | | | | | | |
Collapse
|
25
|
Swetnam J, Shmelkov E, Zolla-Pazner S, Cardozo T. Comparative magnitude of cross-strain conservation of HIV variable loop neutralization epitopes. PLoS One 2010; 5:e15994. [PMID: 21209919 PMCID: PMC3012121 DOI: 10.1371/journal.pone.0015994] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 12/02/2010] [Indexed: 01/17/2023] Open
Abstract
Although the sequence variable loops of the human immunodeficiency virus' (HIV-1) surface envelope glycoprotein (gp120) can exhibit good immunogenicity, characterizing conserved (invariant) cross-strain neutralization epitopes within these loops has proven difficult. We recently developed a method to derive sensitive and specific signature motifs for the three-dimensional (3D) shapes of the HIV-1 neutralization epitopes in the third variable (V3) loop of gp120 that are recognized by human monoclonal antibodies (mAbs). We used the signature motif method to estimate the conservation of these epitopes across circulating worldwide HIV-1 strains. The epitope targeted by the anti-V3 loop neutralizing mAb 3074 is present in 87% of circulating strains, distributed nearly evenly among all subtypes. The results for other anti-V3 Abs are: 3791, present in 63% of primarily non-B subtypes; 2219, present in 56% of strains across all subtypes; 2557, present in 52% across all subtypes; 447-52D, present in 11% of primarily subtype B strains; 537-10D, present in 9% of primarily subtype B strains; and 268-D, present in 5% of primarily subtype B strains. The estimates correlate with in vitro tests of these mAbs against diverse viral panels. The mAb 3074 thus targets an epitope that is nearly completely conserved among circulating HIV-1 strains, demonstrating the presence of an invariant structure hidden in the dynamic and sequence-variable V3 loop in gp120. Since some variable loop regions are naturally immunogenic, designing immunogens to mimic their conserved epitopes may be a promising vaccine discovery approach. Our results suggest one way to quantify and compare the magnitude of the conservation.
Collapse
Affiliation(s)
- James Swetnam
- Department of Pharmacology, New York University School of Medicine, New York, New York, United States of America
| | - Evgeny Shmelkov
- Department of Pharmacology, New York University School of Medicine, New York, New York, United States of America
| | - Susan Zolla-Pazner
- Department of Pathology, New York University School of Medicine, New York, New York, United States of America
- New York Veterans Affairs Medical Center, New York, New York, United States of America
| | - Timothy Cardozo
- Department of Pharmacology, New York University School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
26
|
Paul S, Planque S, Nishiyama Y, Escobar M, Hanson C. Back to the future: covalent epitope-based HIV vaccine development. Expert Rev Vaccines 2010; 9:1027-43. [PMID: 20822346 DOI: 10.1586/erv.10.77] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Traditional HIV vaccine approaches have proved ineffective because the immunodominant viral epitopes are mutable and the conserved epitopes necessary for infection are not sufficiently immunogenic. The CD4 binding site expressed by the HIV envelope protein of glycoprotein 120 is essential for viral entry into host cells. In this article, we review the B-cell superantigenic character of the CD4 binding site as the cause of its poor immunogenicity. We summarize evidence supporting development of covalent immunization as the first vaccine strategy with the potential to induce an antibody response to a conserved HIV epitope that neutralizes genetically divergent HIV strains.
Collapse
Affiliation(s)
- Sudhir Paul
- Department of Pathology and Laboratory Medicine, Chemical Immunology Research Center, University of Texas-Houston Medical School, 6431 Fannin, MSB 2.230A, Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
27
|
Golkar Z, Jamil N. Hepatitis C virus, human immunodeficiency virus and Pseudomonas phage PS5 triad share epitopes of immunogenic determinants. Virol J 2010; 7:346. [PMID: 21108852 PMCID: PMC3006387 DOI: 10.1186/1743-422x-7-346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 11/26/2010] [Indexed: 12/25/2022] Open
Abstract
A lytic phage for Pseudomonas aeruginosa belongs to the Myoviridea family was isolated from urine for use in therapeutics. Pair of hepatitis C virus (HCV) primers highlighted segments on the genome of this phage. The sequence of these PCR products as well as the possible serological cross reactivity/relationship between HCV and the phage were investigated. One hundred HCV positive human sera were analyzed by ELISA. Ninety six well plates were coated with multiple epitopes of HCV proteins (Kit), phage and Pseudomonas cells. Initially the positive and negative control sera supplied in the test kit were used to evaluate the cross reactivity between the phage and anti-HCV antibodies. The results suggested a value over than 0.105 for a HCV positive reaction. Of the 100 HCV positive sera tested, sixty five and thirty percent showed cross reaction with phage lysate and Pseudomonas aeruginosa, respectively. High HCV antibody titer correlated to high cut off value for phage cross reaction, whereas no such correlation existed between HCV antibody titer and Pseudomonas cross reaction. The PCR products were sequenced and aligned with the HCV genome of H77. Sequence homology was detected in the 5', 3' UTRs and NS3 regions. Further these products showed similarity with HIV-1 Env, Pol & 3'LTR regions as well.
Collapse
Affiliation(s)
- Zhabiz Golkar
- No.102, Department of Microbiology, University of Karachi, Karachi, Pakistan
| | - Nusrat Jamil
- No.102, Department of Microbiology, University of Karachi, Karachi, Pakistan
| |
Collapse
|
28
|
Totrov M, Jiang X, Kong XP, Cohen S, Krachmarov C, Salomon A, Williams C, Seaman MS, Abagyan R, Cardozo T, Gorny MK, Wang S, Lu S, Pinter A, Zolla-Pazner S. Structure-guided design and immunological characterization of immunogens presenting the HIV-1 gp120 V3 loop on a CTB scaffold. Virology 2010; 405:513-23. [PMID: 20663531 DOI: 10.1016/j.virol.2010.06.027] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Revised: 06/04/2010] [Accepted: 06/14/2010] [Indexed: 11/24/2022]
Abstract
V3 loop is a major neutralizing determinant of the HIV-1 gp120. Using 3D structures of cholera toxin B subunit (CTB), complete V3 in the gp120 context, and V3 bound to a monoclonal antibody (mAb), we designed two V3-scaffold immunogen constructs (V3-CTB). The full-length V3-CTB presenting the complete V3 in a structural context mimicking gp120 was recognized by the large majority of our panel of 24 mAbs. The short V3-CTB presenting a V3 fragment in the conformation observed in the complex with the 447-52D Fab, exhibited high-affinity binding to this mAb. The immunogens were evaluated in rabbits using DNA-prime/protein-boost protocol. Boosting with the full-length V3-CTB induced high anti-V3 titers in sera that potently neutralize multiple HIV virus strains. The short V3-CTB was ineffective. The results suggest that very narrow antigenic profile of an immunogen is associated with poor Ab response. An immunogen with broader antigenic activity elicits robust Ab response.
Collapse
Affiliation(s)
- Maxim Totrov
- Molsoft LLC, 3366 N Torrey Pines Ct., La Jolla, CA 92037, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Structure-function relationships of HIV-1 envelope sequence-variable regions refocus vaccine design. Nat Rev Immunol 2010; 10:527-35. [PMID: 20577269 DOI: 10.1038/nri2801] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
One of the main challenges of developing an HIV-1 vaccine lies in eliciting immune responses that can overcome the antigenic variability exhibited by HIV. Most HIV-1 vaccine development has focused on inducing immunity to conserved regions of the HIV-1 envelope. However, new studies of the sequence-variable regions of the HIV-1 gp120 envelope glycoprotein have shown that there are conserved immunological and structural features in these regions. Recombinant immunogens that include these features may provide the means to address the antigenic diversity of HIV-1 and induce protective antibodies that can prevent infection with HIV-1.
Collapse
|
30
|
Jiang X, Burke V, Totrov M, Williams C, Cardozo T, Gorny MK, Zolla-Pazner S, Kong XP. Conserved structural elements in the V3 crown of HIV-1 gp120. Nat Struct Mol Biol 2010; 17:955-61. [PMID: 20622876 DOI: 10.1038/nsmb.1861] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 04/29/2010] [Indexed: 11/09/2022]
Abstract
Binding of the third variable region (V3) of the HIV-1 envelope glycoprotein gp120 to the cell-surface coreceptors CCR5 or CXCR4 during viral entry suggests that there are conserved structural elements in this sequence-variable region. These conserved elements could serve as epitopes to be targeted by a vaccine against HIV-1. Here we perform a systematic structural analysis of representative human anti-V3 monoclonal antibodies in complex with V3 peptides, revealing that the crown of V3 has four conserved structural elements: an arch, a band, a hydrophobic core and the peptide backbone. These are either unaffected by or are subject to minimal sequence variation. As these regions are targeted by cross-clade neutralizing human antibodies, they provide a blueprint for the design of vaccine immunogens that could elicit broadly cross-reactive protective antibodies.
Collapse
Affiliation(s)
- Xunqing Jiang
- Department of Biochemistry, New York University School of Medicine, New York, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Almond D, Kimura T, Kong X, Swetnam J, Zolla-Pazner S, Cardozo T. Structural conservation predominates over sequence variability in the crown of HIV type 1's V3 loop. AIDS Res Hum Retroviruses 2010; 26:717-23. [PMID: 20560796 DOI: 10.1089/aid.2009.0254] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The diversity of HIV-1 is a confounding problem for vaccine design, as the human immune response appears to favor poor or strain-specific responses to any given HIV-1 virus strain. A significant portion of this diversity is manifested as sequence variability in the loops of HIV-1's surface envelope glycoprotein. Here we show that the most variable sequence positions in the third variable (V3) loop crown cluster to a small zone on the surface of one face of the V3 loop ss-hairpin conformation. These results provide a novel visualization of the gp120 V3 loop, specifically demonstrating a surprising preponderance of conserved three-dimensional structure in a highly sequence-variable region. From a structural point of view, there appears to be less diversity in this region of the HIV-1 "principle neutralizing domain" than previously appreciated.
Collapse
Affiliation(s)
- David Almond
- Department of Pharmacology, New York University School of Medicine (NYUSoM), New York, New York
| | - Tetsuya Kimura
- Department of Immunology, Kumamoto University, Kumamoto, Japan
| | - XiangPeng Kong
- Department of Biochemistry, New York University School of Medicine (NYUSoM), New York, New York
| | - James Swetnam
- Department of Pharmacology, New York University School of Medicine (NYUSoM), New York, New York
| | - Susan Zolla-Pazner
- Department Pathology, New York University School of Medicine (NYUSoM), New York, New York
- Veterans Affairs Medical Center, New York, New York
| | - Timothy Cardozo
- Department of Pharmacology, New York University School of Medicine (NYUSoM), New York, New York
| |
Collapse
|
32
|
Progress towards development of an HIV vaccine: report of the AIDS Vaccine 2009 Conference. THE LANCET. INFECTIOUS DISEASES 2010; 10:305-16. [PMID: 20417413 DOI: 10.1016/s1473-3099(10)70069-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The search for an HIV/AIDS vaccine is steadily moving ahead, generating and validating new concepts in terms of novel vectors for antigen delivery and presentation, new vaccine and adjuvant strategies, alternative approaches to design HIV-1 antigens for eliciting protective cross-neutralising antibodies, and identification of key mechanisms in HIV infection and modulation of the immune system. All these different perspectives are contributing to the unprecedented challenge of developing a protective HIV-1 vaccine. The high scientific value of this massive effort is its great impact on vaccinology as a whole, providing invaluable scientific information for the current and future development of new preventive vaccine as well as therapeutic knowledge-based infectious-disease and cancer vaccines.
Collapse
|
33
|
Hioe CE, Wrin T, Seaman MS, Yu X, Wood B, Self S, Williams C, Gorny MK, Zolla-Pazner S. Anti-V3 monoclonal antibodies display broad neutralizing activities against multiple HIV-1 subtypes. PLoS One 2010; 5:e10254. [PMID: 20421997 PMCID: PMC2858080 DOI: 10.1371/journal.pone.0010254] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 03/17/2010] [Indexed: 11/24/2022] Open
Abstract
Background The V3 loop of the HIV-1 envelope (Env) glycoprotein gp120 was identified as the “principal neutralizing domain” of HIV-1, but has been considered too variable to serve as a neutralizing antibody (Ab) target. Structural and immunochemical data suggest, however, that V3 contains conserved elements which explain its role in binding to virus co-receptors despite its sequence variability. Despite this evidence of V3 conservation, the ability of anti-V3 Abs to neutralize a significant proportion of HIV-1 isolates from different subtypes (clades) has remained controversial. Methods HIV-1 neutralization experiments were conducted in two independent laboratories to test human anti-V3 monoclonal Abs (mAbs) against pseudoviruses (psVs) expressing Envs of diverse HIV-1 subtypes from subjects with acute and chronic infections. Neutralization was defined by 50% inhibitory concentrations (IC50), and was statistically assessed based on the area under the neutralization titration curves (AUC). Results Using AUC analyses, statistically significant neutralization was observed by ≥1 anti-V3 mAbs against 56/98 (57%) psVs expressing Envs of diverse subtypes, including subtypes A, AG, B, C and D. Even when the 10 Tier 1 psVs tested were excluded from the analysis, significant neutralization was detected by ≥1 anti-V3 mAbs against 46/88 (52%) psVs from diverse HIV-1 subtypes. Furthermore, 9/24 (37.5%) Tier 2 viruses from the clade B and C standard reference panels were neutralized by ≥1 anti-V3 mAbs. Each anti-V3 mAb tested was able to neutralize 28–42% of the psVs tested. By IC50 criteria, 40/98 (41%) psVs were neutralized by ≥1 anti-V3 mAbs. Conclusions Using standard and new statistical methods of data analysis, 6/7 anti-V3 human mAbs displayed cross-clade neutralizing activity and revealed that a significant proportion of viruses can be neutralized by anti-V3 Abs. The new statistical method for analysis of neutralization data provides many advantages to previously used analyses.
Collapse
Affiliation(s)
- Catarina E Hioe
- Department of Pathology, New York University Langone School of Medicine, New York, New York, United States of America.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Vaine M, Wang S, Hackett A, Arthos J, Lu S. Antibody responses elicited through homologous or heterologous prime-boost DNA and protein vaccinations differ in functional activity and avidity. Vaccine 2010; 28:2999-3007. [PMID: 20170767 PMCID: PMC2847033 DOI: 10.1016/j.vaccine.2010.02.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 12/29/2009] [Accepted: 02/03/2010] [Indexed: 11/25/2022]
Abstract
Using a gp120 envelope glycoprotein from the JR-FL strain of human immunodeficiency virus-1 (HIV-1) as a model antigen, the goal of the current study was to evaluate the level and quality of antibody responses elicited by different prime-boost vaccination regimens (protein only, DNA only, DNA plus protein) in rabbits. Our data demonstrated that incorporating DNA immunization as a prime in a heterologous prime-boost regimen was able to elicit a more diverse and conformational epitope profile, higher antibody avidity, and improved neutralizing activity than immunization with only protein. Additionally, this improved neutralizing activity was observed in spite of similar antibody specificities and avidities seen when only DNA vaccination was used, providing additional evidence that the use of a combination immunization regimen increases the protective antibody response. Insights gained from the current study confirmed that the heterologous DNA prime-protein boost approach is effective in eliciting not only high level but also improved quality of antigen-specific antibody responses, and thus may offer a new technology platform to develop better and safer subunit vaccines.
Collapse
Affiliation(s)
- Michael Vaine
- Laboratory of Nucleic Acid Vaccines, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655
| | - Shixia Wang
- Laboratory of Nucleic Acid Vaccines, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655
| | - Anthony Hackett
- Laboratory of Nucleic Acid Vaccines, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655
| | - James Arthos
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda 20892, United States
| | - Shan Lu
- Laboratory of Nucleic Acid Vaccines, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655
| |
Collapse
|
35
|
An optimally constrained V3 peptide is a better immunogen than its linear homolog or HIV-1 gp120. Virology 2010; 401:293-304. [PMID: 20347111 DOI: 10.1016/j.virol.2010.03.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 01/12/2010] [Accepted: 03/01/2010] [Indexed: 11/20/2022]
Abstract
Synthetic peptides offer an attractive option for development of a V3-directed vaccine. However, immunization with flexible linear peptides may result in an immune response to multiple conformations, many of which differ from the native conformation of the corresponding region in the protein. Here we show that optimization of the location of a disulfide bond in peptides constrained to mimic the beta-hairpin conformation of the V3, yields an immunogen that elicits a 30-fold stronger HIV-1 neutralizing response in rabbits compared with the homologous linear V3 peptide. The HIV-1 neutralizing response elicited by the optimally constrained peptide is also significantly stronger than that elicited by a gp120 construct in which the V3 is exposed. Neutralization of an HIV-1 strain that shares only 72% identity with the immunizing peptide was demonstrated. The most effective immunogen was also able to neutralize primary isolates that are more resistant to neutralization such as SS1196 and 6535.
Collapse
|
36
|
Burke V, Williams C, Sukumaran M, Kim SS, Li H, Wang XH, Gorny MK, Zolla-Pazner S, Kong XP. Structural basis of the cross-reactivity of genetically related human anti-HIV-1 mAbs: implications for design of V3-based immunogens. Structure 2009; 17:1538-46. [PMID: 19913488 PMCID: PMC3683248 DOI: 10.1016/j.str.2009.09.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 08/26/2009] [Accepted: 09/15/2009] [Indexed: 01/07/2023]
Abstract
Human monoclonal antibodies 447-52D and 537-10D, both coded by the VH3 gene and specific for the third variable region (V3) of the HIV-1 gp120, were found to share antigen-binding structural elements including an elongated CDR H3 forming main-chain interactions with the N terminus of the V3 crown. However, water-mediated hydrogen bonds and a unique cation-pi sandwich stacking allow 447-52D to be broadly reactive with V3 containing both the GPGR and GPGQ crown motifs, while the deeper binding pocket and a buried Glu in the binding site of 537-10D limit its reactivity to only V3 containing the GPGR motif. Our results suggest that the design of immunogens for anti-V3 antibodies should avoid the Arg at the V3 crown, as GPGR-containing epitopes appear to select for B cells making antibodies of narrower specificity than V3 that carry Gln at this position.
Collapse
Affiliation(s)
- Valicia Burke
- Department of Biochemistry, New York University School of Medicine, New York, NY, 10016
| | - Constance Williams
- Department of Pathology, New York University School of Medicine, New York, NY, 10016
| | - Madhav Sukumaran
- Department of Biochemistry, New York University School of Medicine, New York, NY, 10016
| | - Seung-Sup Kim
- Department of Biochemistry, New York University School of Medicine, New York, NY, 10016
| | - Huiguang Li
- Department of Biochemistry, New York University School of Medicine, New York, NY, 10016
| | - Xiao-Hong Wang
- Veterans Affairs New York Harbor Healthcare System, New York, NY 10010
| | - Miroslaw K. Gorny
- Department of Pathology, New York University School of Medicine, New York, NY, 10016
| | - Susan Zolla-Pazner
- Department of Pathology, New York University School of Medicine, New York, NY, 10016
,Veterans Affairs New York Harbor Healthcare System, New York, NY 10010
| | - Xiang-Peng Kong
- Department of Biochemistry, New York University School of Medicine, New York, NY, 10016
| |
Collapse
|