1
|
Schreiber T, Koll N, Padberg C, de los Reyes B, Quinting T, Malyshkina A, Metzen E, Sutter K, Fandrey J, Winning S. Reduced vacuolar ATPase protects mice from Friend virus infection - an unintended but instructive effect in Hif-2afl mice. J Cell Sci 2024; 137:jcs261893. [PMID: 38856651 PMCID: PMC11234382 DOI: 10.1242/jcs.261893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/20/2024] [Indexed: 06/11/2024] Open
Abstract
During acute viral infections, innate immune cells invade inflamed tissues and face hypoxic areas. Hypoxia-inducible factors (HIFs) adapt cellular responses towards these conditions. We wanted to investigate the effects of a loss of HIF-2α in macrophages during acute Friend murine leukemia retrovirus (FV) infection in C57BL/6 mice using a Cre/loxP system. Remarkably, mice with floxed Hif-2a (Hif-2afl; Hif-2a is also known as Epas1) did not show any signs of FV infection independent of Cre activity. This prevented a detailed analysis of the role of macrophage HIF-2α for FV infection but allowed us to study a model of unexpected FV resistance. Hif-2afl mice showed a significant decrease in the expression of the Atp6v1e2 gene encoding for the E2 subunit of the vacuolar H+-ATPase, which resulted in a decreased acidification of lysosomes and limited virus entry into the cell. These findings highlight that the insertion of loxP sites is not always without functional consequences and has established a phenotype in the floxed Hif-2a mouse, which is not only unexpected, but unwanted and is of relevance for the use of this mouse strain in (at least virus) experiments.
Collapse
Affiliation(s)
- Timm Schreiber
- Institute of Physiology, University of Duisburg-Essen, 45147 Essen, Germany
- Institute of Physiology, Pathophysiology and Toxicology and Center for Biomedical Education and Research (ZBAF), University of Witten/Herdecke, 58455 Witten, Germany
| | - Nora Koll
- Institute of Physiology, University of Duisburg-Essen, 45147 Essen, Germany
| | - Claudia Padberg
- Institute of Physiology, University of Duisburg-Essen, 45147 Essen, Germany
| | - Buena de los Reyes
- Institute of Physiology, University of Duisburg-Essen, 45147 Essen, Germany
| | - Theresa Quinting
- Institute of Physiology, University of Duisburg-Essen, 45147 Essen, Germany
| | - Anna Malyshkina
- Institute of Physiology, University of Duisburg-Essen, 45147 Essen, Germany
| | - Eric Metzen
- Institute of Physiology, University of Duisburg-Essen, 45147 Essen, Germany
| | - Kathrin Sutter
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- Institute for Research on HIV and AIDS-associated Diseases, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Joachim Fandrey
- Institute of Physiology, University of Duisburg-Essen, 45147 Essen, Germany
| | - Sandra Winning
- Institute of Physiology, University of Duisburg-Essen, 45147 Essen, Germany
| |
Collapse
|
2
|
Zhu F, Li D, Song D, Huo S, Ma S, Lü P, Liu X, Yao Q, Chen K. Glycoproteome in silkworm Bombyx mori and alteration by BmCPV infection. J Proteomics 2020; 222:103802. [PMID: 32360640 PMCID: PMC7194664 DOI: 10.1016/j.jprot.2020.103802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/19/2020] [Accepted: 04/27/2020] [Indexed: 12/01/2022]
Abstract
The biological functions of protein glycosylation have been increasingly recognized but not yet been very well understood, especially in lower organisms. Silkworm as a model lepidopteran insect and important economic insect, has been widely studied in life science, however, the current knowledge on the glycosylation status of its proteome is not satisfactory, and little is known about how pathogenic infections could affect the glycosylation status. This study performed large scale glycosite mapping for the silkworm Bombyx mori P50 strain, and quantitatively compared with that infected with the Bombyx mori cytoplasmic polyhedrosis virus (BmCPV). Some 400 glycoproteins were mapped in the silkworm, including N- and O-glycoproteins. Upon virus infection, the glycosylation levels of 41 N-glycopeptides were significantly changed, some of them belonging to transmembrane glycoproteins. The O-glycosylation profiles were also affected. In addition, 4 BmCPV-encoded viral proteins were found to be glycosylated for the first time, including polyhedrin, P101, VP3, and the NS protein. This study drafted a silkworm protein glycosylation map and underlined the potential impact of virus infection on glycosylation. SIGNIFICANCE: This study reveals the characteristics of the glycoproteome in the silkworm strain P50, and quantitatively compared to that infected by the virus BmCPV, which underlines the impact of virus infection on the alteration of protein glycosylation in invertebrate species. Our findings add to the knowledge of the post translational modifications of this model organism, and also uncovered for the first time the glycosylation status of the viral proteins expressed by BmCPV.
Collapse
Affiliation(s)
- Feifei Zhu
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Dong Li
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Dandan Song
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Shuhao Huo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shangshang Ma
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Peng Lü
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Xiaoyong Liu
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Qin Yao
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Keping Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
3
|
Lu X, Kassner J, Skorski M, Carley S, Shaffer E, Kozak CA. Mutational analysis and glycosylation sensitivity of restrictive XPR1 gammaretrovirus receptors in six mammalian species. Virology 2019; 535:154-161. [PMID: 31302509 PMCID: PMC11002975 DOI: 10.1016/j.virol.2019.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/29/2019] [Accepted: 07/02/2019] [Indexed: 01/04/2023]
Abstract
Most viruses infect only a few hosts, but the xenotropic and polytropic mouse leukemia viruses (X/P-MLVs) are broadly infectious in mammalian species. X/P-MLVs use the XPR1 receptor for cell entry, and tropism differences are due to polymorphisms in XPR1 and the viral envelope. To characterize these receptor variants and identify blocks to cross-species transmission, we examined the XPR1 receptors in six mammalian species that restrict different subsets of X/P-MLVs. These restrictive receptors have replacement mutations in regions implicated in receptor function, and some entry restrictions can be relieved by glycosylation inhibitors. Mutation of the cow and hamster XPR1 genes identified a shared, previously unrecognized receptor-critical site. This G/Q503N replacement dramatically improves receptor function. While this substitution introduces an N-linked glycosylation site, XPR1 receptors are not glycosylated indicating that this replacement alters the virus-receptor interface independently of glycosylation. Our data also suggest that an unidentified glycosylated cofactor may influence X/P-MLV entry.
Collapse
Affiliation(s)
- Xiaoyu Lu
- National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20854, USA
| | - Joshua Kassner
- National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20854, USA
| | - Matthew Skorski
- National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20854, USA
| | - Samuel Carley
- National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20854, USA
| | - Esther Shaffer
- National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20854, USA
| | - Christine A Kozak
- National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20854, USA.
| |
Collapse
|
4
|
Unique N-linked glycosylation of CasBrE Env influences its stability, processing, and viral infectivity but not its neurotoxicity. J Virol 2013; 87:8372-87. [PMID: 23698308 DOI: 10.1128/jvi.00392-13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The envelope protein (Env) from the CasBrE murine leukemia virus (MLV) can cause acute spongiform neurodegeneration analogous to that induced by prions. Upon central nervous system (CNS) infection, Env is expressed as multiple isoforms owing to differential asparagine (N)-linked glycosylation. Because N-glycosylation can affect protein folding, stability, and quality control, we explored whether unique CasBrE Env glycosylation features could influence neurovirulence. CasBrE Env possesses 6/8 consensus MLV glycosylation sites (gs) but is missing gs3 and gs5 and contains a putative site (gs*). Twenty-nine mutants were generated by modifying these three sites, individually or in combination, to mimic the amino acid sequence in the nonneurovirulent Friend 57 MLV. Three basic viral phenotypes were observed: replication defective (dead; titer < 1 focus-forming unit [FFU]/ml), replication compromised (RC) (titer = 10(2) to 10(5) FFU/ml); and wild-type-like (WTL) (titer > 10(5) FFU/ml). Env protein was undetectable in dead mutants, while RC and WTL mutants showed variations in Env expression, processing, virus incorporation, virus entry, and virus spread. The newly introduced gs3 and gs5 sites were glycosylated, whereas gs* was not. Six WTL mutants tested in mice showed no clear attenuation in disease onset or severity versus controls. Furthermore, three RC viruses tested by neural stem cell (NSC)-mediated brainstem dissemination also induced acute spongiosis. Thus, while unique N-glycosylation affected structural features of Env involved in protein stability, proteolytic processing, and virus assembly and entry, these changes had minimal impact on CasBrE Env neurotoxicity. These findings suggest that the Env protein domains responsible for spongiogenesis represent highly stable elements upon which the more variable viral functional domains have evolved.
Collapse
|
5
|
Bonhomme CJ, Knopp KA, Bederka LH, Angelini MM, Buchmeier MJ. LCMV glycosylation modulates viral fitness and cell tropism. PLoS One 2013; 8:e53273. [PMID: 23308183 PMCID: PMC3538765 DOI: 10.1371/journal.pone.0053273] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 11/27/2012] [Indexed: 12/22/2022] Open
Abstract
The glycoprotein (GP) of arenaviruses is glycosylated at 11 conserved N-glycosylation sites. We constructed recombinant lymphocytic choriomeningitis virus (rLCMV) featuring either additions or deletions of these N-glycans to investigate their role in the viral life cycle. N-glycosylation at two sites, T87 and S97, were found to be necessary to rescue rLCMV. Three of nine successfully rescued mutants, S116A, T234A, and S373A, under selective pressures in either epithelial, neuronal, or macrophage cells reverted to WT sequence. Of the seven stable N-glycan deletion mutants, five of these led to altered viral fitness and cell tropism, assessed as growth in either mouse primary cortical neurons or bone marrow derived macrophages. These results demonstrate that the deletion of N-glycans in LCMV GP may confer an advantage to the virus for infection of neurons but a disadvantage in macrophages.
Collapse
Affiliation(s)
- Cyrille J. Bonhomme
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Kristeene A. Knopp
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Lydia H. Bederka
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Megan M. Angelini
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Michael J. Buchmeier
- Departments of Molecular Biology and Biochemistry and Division of Infectious Disease, Department of Medicine, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
6
|
Membrane fusion and cell entry of XMRV are pH-independent and modulated by the envelope glycoprotein's cytoplasmic tail. PLoS One 2012; 7:e33734. [PMID: 22479434 PMCID: PMC3313918 DOI: 10.1371/journal.pone.0033734] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 02/16/2012] [Indexed: 11/19/2022] Open
Abstract
Xenotropic murine leukemia virus-related virus (XMRV) is a gammaretrovirus that was originally identified from human prostate cancer patients and subsequently linked to chronic fatigue syndrome. Recent studies showed that XMRV is a recombinant mouse retrovirus; hence, its association with human diseases has become questionable. Here, we demonstrated that XMRV envelope (Env)-mediated pseudoviral infection is not blocked by lysosomotropic agents and cellular protease inhibitors, suggesting that XMRV entry is not pH-dependent. The full length XMRV Env was unable to induce syncytia formation and cell-cell fusion, even in cells overexpressing the viral receptor, XPR1. However, truncation of the C-terminal 21 or 33 amino acid residues in the cytoplasmic tail (CT) of XMRV Env induced substantial membrane fusion, not only in the permissive 293 cells but also in the nonpermissive CHO cells that lack a functional XPR1 receptor. The increased fusion activities of these truncations correlated with their enhanced SU shedding into culture media, suggesting conformational changes in the ectodomain of XMRV Env. Noticeably, further truncation of the CT of XMRV Env proximal to the membrane-spanning domain severely impaired the Env fusogenicity, as well as dramatically decreased the Env incorporations into MoMLV oncoretroviral and HIV-1 lentiviral vectors resulting in greatly reduced viral transductions. Collectively, our studies reveal that XMRV entry does not require a low pH or low pH-dependent host proteases, and that the cytoplasmic tail of XMRV Env critically modulates membrane fusion and cell entry. Our data also imply that additional cellular factors besides XPR1 are likely to be involved in XMRV entry.
Collapse
|
7
|
Naturally Occurring Polymorphisms of the Mouse Gammaretrovirus Receptors CAT-1 and XPR1 Alter Virus Tropism and Pathogenicity. Adv Virol 2011; 2011:975801. [PMID: 22312361 PMCID: PMC3265322 DOI: 10.1155/2011/975801] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 07/12/2011] [Indexed: 01/29/2023] Open
Abstract
Gammaretroviruses of several different host range subgroups have been isolated from laboratory mice. The ecotropic viruses infect mouse cells and rely on the host CAT-1 receptor. The xenotropic/polytropic viruses, and the related human-derived XMRV, can infect cells of other mammalian species and use the XPR1 receptor for entry. The coevolution of these viruses and their receptors in infected mouse populations provides a good example of how genetic conflicts can drive diversifying selection. Genetic and epigenetic variations in the virus envelope glycoproteins can result in altered host range and pathogenicity, and changes in the virus binding sites of the receptors are responsible for host restrictions that reduce virus entry or block it altogether. These battleground regions are marked by mutational changes that have produced 2 functionally distinct variants of the CAT-1 receptor and 5 variants of the XPR1 receptor in mice, as well as a diverse set of infectious viruses, and several endogenous retroviruses coopted by the host to interfere with entry.
Collapse
|