1
|
Cantero M, Rodríguez-Espinosa MJ, Strobl K, Ibáñez P, Díez-Martínez A, Martín-González N, Jiménez-Zaragoza M, Ortega-Esteban A, de Pablo PJ. Atomic Force Microscopy of Viruses: Stability, Disassembly, and Genome Release. Methods Mol Biol 2024; 2694:317-338. [PMID: 37824011 DOI: 10.1007/978-1-0716-3377-9_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
In atomic force microscopy (AFM), the probe is a nanometric tip located at the end of a microcantilever which palpates the specimen under study as a blind person manages a walking stick. In this way, AFM allows obtaining nanometric resolution images of individual protein shells, such as viruses, in liquid milieu. Beyond imaging, AFM also enables not only the manipulation of single protein cages but also the evaluation of each physicochemical property which is able of inducing any measurable mechanical perturbation to the microcantilever that holds the tip. In this chapter, we start revising some recipes for adsorbing protein shells on surfaces and how the geometrical dilation of tips can affect to the AFM topographies. This work also deals with the abilities of AFM to monitor TGEV coronavirus under changing conditions of the liquid environment. Subsequently, we describe several AFM approaches to study cargo release, aging, and multilayered viruses with single indentation and fatigue assays. Finally, we comment on a combined AFM/fluorescence application to study the influence of crowding on GFP packed within individual P22 bacteriophage capsids.
Collapse
Affiliation(s)
- Miguel Cantero
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, Spain
| | - María Jesús Rodríguez-Espinosa
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Klara Strobl
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, Spain
| | - Pablo Ibáñez
- Department of Theoretical Physics of Condensed Matter, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alejandro Díez-Martínez
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Manuel Jiménez-Zaragoza
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alvaro Ortega-Esteban
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, Spain
| | - Pedro José de Pablo
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, Spain.
- Solid Condensed Matter Institute IFIMAC, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
2
|
Cardoso MA, Brito TFD, Brito IADA, Berni MA, Coelho VL, Pane A. The Neglected Virome of Triatomine Insects. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.828712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Triatominae subfamily (Reduviidae) harbors some hematophagous insect species that have been firmly connected to the transmission of Trypanosoma cruzi, the causative agent of Chagas disease. Triatomines not only host and transmit trypanosomatids, but also coexist with a variety of symbiotic microorganisms that generally reside in the insect’s intestinal flora. The microbiome has profound effects on the physiology, immunity, fitness and survival of animals and plants. The interaction between triatomines and bacteria has been investigated to some extent and has revealed important bacteria symbionts. In contrast, the range of viral species that can infect triatomine insects is almost completely unknown. In some cases, genomic and metatranscriptomic approaches have uncovered sequences related to possible viral genomes, but, to date, only eight positive single-strand RNA viruses, namely Triatoma virus and Rhodnius prolixus viruses 1 - 7 have been investigated in more detail. Here, we review the literature available on triatomine viruses and the viruses-insect host relationship. The lack of broader metagenomic and metatranscriptomic studies in these medically relevant insects underscores the importance of expanding our knowledge of the triatomine virome both for surveillance purposes as well as to possibly harness their potential for insect vector population control strategies.
Collapse
|
3
|
Carvalho-Costa TM, Tiveron RDR, Mendes MT, Barbosa CG, Nevoa JC, Roza GA, Silva MV, Figueiredo HCP, Rodrigues V, Soares SDC, Oliveira CJF. Salivary and Intestinal Transcriptomes Reveal Differential Gene Expression in Starving, Fed and Trypanosoma cruzi-Infected Rhodnius neglectus. Front Cell Infect Microbiol 2022; 11:773357. [PMID: 34988032 PMCID: PMC8722679 DOI: 10.3389/fcimb.2021.773357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/04/2021] [Indexed: 11/28/2022] Open
Abstract
Rhodnius neglectus is a potential vector of Trypanosoma cruzi (Tc), the causative agent of Chagas disease. The salivary glands (SGs) and intestine (INT) are actively required during blood feeding. The saliva from SGs is injected into the vertebrate host, modulating immune responses and favoring feeding for INT digestion. Tc infection significantly alters the physiology of these tissues; however, studies that assess this are still scarce. This study aimed to gain a better understanding of the global transcriptional expression of genes in SGs and INT during fasting (FA), fed (FE), and fed in the presence of Tc (FE + Tc) conditions. In FA, the expression of transcripts related to homeostasis maintenance proteins during periods of stress was predominant. Therefore, the transcript levels of Tret1-like and Hsp70Ba proteins were increased. Blood appeared to be responsible for alterations found in the FE group, as most of the expressed transcripts, such as proteases and cathepsin D, were related to digestion. In FE + Tc group, there was a decreased expression of blood processing genes for insect metabolism (e.g., Antigen-5 precursor, Pr13a, and Obp), detoxification (Sult1) in INT and acid phosphatases in SG. We also found decreased transcriptional expression of lipocalins and nitrophorins in SG and two new proteins, pacifastin and diptericin, in INT. Several transcripts of unknown proteins with investigative potential were found in both tissues. Our results also show that the presence of Tc can change the expression in both tissues for a long or short period of time. While SG homeostasis seems to be re-established on day 9, changes in INT are still evident. The findings of this study may be used for future research on parasite-vector interactions and contribute to the understanding of food physiology and post-meal/infection in triatomines.
Collapse
Affiliation(s)
- Tamires Marielem Carvalho-Costa
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | - Rafael Destro Rosa Tiveron
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | - Maria Tays Mendes
- Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, United States
| | - Cecília Gomes Barbosa
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | - Jessica Coraiola Nevoa
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | - Guilherme Augusto Roza
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | - Marcos Vinícius Silva
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | | | - Virmondes Rodrigues
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | - Siomar de Castro Soares
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | - Carlo José Freire Oliveira
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| |
Collapse
|
4
|
Real-Hohn A, Blaas D. Rhinovirus Inhibitors: Including a New Target, the Viral RNA. Viruses 2021; 13:1784. [PMID: 34578365 PMCID: PMC8473194 DOI: 10.3390/v13091784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/21/2021] [Accepted: 09/03/2021] [Indexed: 12/18/2022] Open
Abstract
Rhinoviruses (RVs) are the main cause of recurrent infections with rather mild symptoms characteristic of the common cold. Nevertheless, RVs give rise to enormous numbers of absences from work and school and may become life-threatening in particular settings. Vaccination is jeopardised by the large number of serotypes eliciting only poorly cross-neutralising antibodies. Conversely, antivirals developed over the years failed FDA approval because of a low efficacy and/or side effects. RV species A, B, and C are now included in the fifteen species of the genus Enteroviruses based upon the high similarity of their genome sequences. As a result of their comparably low pathogenicity, RVs have become a handy model for other, more dangerous members of this genus, e.g., poliovirus and enterovirus 71. We provide a short overview of viral proteins that are considered potential drug targets and their corresponding drug candidates. We briefly mention more recently identified cellular enzymes whose inhibition impacts on RVs and comment novel approaches to interfere with infection via aggregation, virus trapping, or preventing viral access to the cell receptor. Finally, we devote a large part of this article to adding the viral RNA genome to the list of potential drug targets by dwelling on its structure, folding, and the still debated way of its exit from the capsid. Finally, we discuss the recent finding that G-quadruplex stabilising compounds impact on RNA egress possibly via obfuscating the unravelling of stable secondary structural elements.
Collapse
Affiliation(s)
- Antonio Real-Hohn
- Center for Medical Biochemistry, Vienna Biocenter, Max Perutz Laboratories, Medical University of Vienna, Dr. Bohr Gasse 9/3, A-1030 Vienna, Austria
| | - Dieter Blaas
- Center for Medical Biochemistry, Vienna Biocenter, Max Perutz Laboratories, Medical University of Vienna, Dr. Bohr Gasse 9/3, A-1030 Vienna, Austria
| |
Collapse
|
5
|
Virion structure and in vitro genome release mechanism of dicistrovirus Kashmir bee virus. J Virol 2021; 95:JVI.01950-20. [PMID: 33658338 PMCID: PMC8139710 DOI: 10.1128/jvi.01950-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Infections of Kashmir bee virus (KBV) are lethal for honeybees and have been associated with colony collapse disorder. KBV and closely related viruses contribute to the ongoing decline in the number of honeybee colonies in North America, Europe, Australia, and other parts of the world. Despite the economic and ecological impact of KBV, its structure and infection process remain unknown. Here we present the structure of the virion of KBV determined to a resolution of 2.8 Å. We show that the exposure of KBV to acidic pH induces a reduction in inter-pentamer contacts within capsids and the reorganization of its RNA genome from a uniform distribution to regions of high and low density. Capsids of KBV crack into pieces at acidic pH, resulting in the formation of open particles lacking pentamers of capsid proteins. The large openings of capsids enable the rapid release of genomes and thus limit the probability of their degradation by RNases. The opening of capsids may be a shared mechanism for the genome release of viruses from the family Dicistroviridae ImportanceThe western honeybee (Apis mellifera) is indispensable for maintaining agricultural productivity as well as the abundance and diversity of wild flowering plants. However, bees suffer from environmental pollution, parasites, and pathogens, including viruses. Outbreaks of virus infections cause the deaths of individual honeybees as well as collapses of whole colonies. Kashmir bee virus has been associated with colony collapse disorder in the US, and no cure of the disease is currently available. Here we report the structure of an infectious particle of Kashmir bee virus and show how its protein capsid opens to release the genome. Our structural characterization of the infection process determined that therapeutic compounds stabilizing contacts between pentamers of capsid proteins could prevent the genome release of the virus.
Collapse
|
6
|
Virion structures and genome delivery of honeybee viruses. Curr Opin Virol 2020; 45:17-24. [PMID: 32679289 DOI: 10.1016/j.coviro.2020.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/10/2020] [Accepted: 06/18/2020] [Indexed: 10/23/2022]
Abstract
The western honeybee is the primary pollinator of numerous food crops. Furthermore, honeybees are essential for ecosystem stability by sustaining the diversity and abundance of wild flowering plants. However, the worldwide population of honeybees is under pressure from environmental stress and pathogens. Viruses from the families Iflaviridae and Dicistroviridae, together with their vector, the parasitic mite Varroa destructor, are the major threat to the world's honeybees. Dicistroviruses and iflaviruses have capsids with icosahedral symmetries. Acidic pH triggers the genome release of both dicistroviruses and iflaviruses. The capsids of iflaviruses expand, whereas those of dicistroviruses remain compact until the genome release. Furthermore, dicistroviruses use inner capsid proteins, whereas iflaviruses employ protruding domains or minor capsid proteins from the virion surface to penetrate membranes and deliver their genomes into the cell cytoplasm. The structural characterization of the infection process opens up possibilities for the development of antiviral compounds.
Collapse
|
7
|
The application of atomic force microscopy for viruses and protein shells: Imaging and spectroscopy. Adv Virus Res 2019; 105:161-187. [PMID: 31522704 DOI: 10.1016/bs.aivir.2019.07.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Atomic force microscopy (AFM) probes surface-adsorbed samples at the nanoscale by using a sharp stylus of nanometric size located at the end of a micro-cantilever. This technique can also work in a liquid environment and offers unique possibilities to study individual protein assemblies, such as viruses, under conditions that resemble their natural liquid milieu. Here, I show how AFM can be used to explore the topography of viruses and protein cages, including that of structures lacking a well-defined symmetry. AFM is not limited for imaging and allows the manipulation of individual viruses with force spectroscopy approaches, such as single indentation and mechanical fatigue assays. These pushing experiments deform the protein cages to obtain their mechanical information and can be used to monitor the structural changes induced by maturation or the exposure to different biochemical environments, such as pH variation. We discuss how studying capsid rupture and self-healing events offers insight into virus uncoating pathways. On the other hand, pulling tests can provide information about the virus-host interaction established between the viral fibers and the cell membrane.
Collapse
|
8
|
Branda MM, Guérin DMA. Alkalinization of Icosahedral Non-enveloped Viral Capsid Interior Through Proton Channeling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1215:181-199. [DOI: 10.1007/978-3-030-14741-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Ortega-Esteban Á, Martín-González N, Moreno-Madrid F, Llauró A, Hernando-Pérez M, MartÚn CS, de Pablo PJ. Structural and Mechanical Characterization of Viruses with AFM. Methods Mol Biol 2019; 1886:259-278. [PMID: 30374873 DOI: 10.1007/978-1-4939-8894-5_15] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Microscopes are used to characterize small objects with the help of probes that interact with the specimen, such as photons and electrons in optical and electron microscopies, respectively. In atomic force microscopy (AFM) the probe is a nanometric tip located at the end of a micro cantilever which palpates the specimen under study as a blind person manages a walking stick. In this way AFM allows obtaining nanometric resolution images of individual protein shells, such as viruses, in liquid milieu. Beyond imaging, AFM also enables not only the manipulation of single protein cages, but also the characterization of every physicochemical property able of inducing any measurable mechanical perturbation to the microcantilever that holds the tip. In this chapter we start revising some recipes for adsorbing protein shells on surfaces. Then we describe several AFM approaches to study individual protein cages, ranging from imaging to spectroscopic methodologies devoted for extracting physical information, such as mechanical and electrostatic properties. We also explain how a convenient combination of AFM and fluorescence methodologies entails monitoring genome release from individual viral shells during mechanical unpacking.
Collapse
Affiliation(s)
- Álvaro Ortega-Esteban
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Natália Martín-González
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, Spain
| | - Francisco Moreno-Madrid
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, Spain
| | - Aida Llauró
- School of Medicine, University of Washington, Seattle, WA, USA
| | - Mercedes Hernando-Pérez
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Cármen San MartÚn
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Pedro J de Pablo
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, Spain.
- Solid Condensed Matter Institute IFIMAC, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
10
|
de Pablo PJ, Schaap IAT. Atomic Force Microscopy of Viruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1215:159-179. [PMID: 31317500 DOI: 10.1007/978-3-030-14741-9_8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Atomic force microscopy employs a nanometric tip located at the end of a micro-cantilever to probe surface-mounted samples at nanometer resolution. Because the technique can also work in a liquid environment it offers unique possibilities to study individual viruses under conditions that mimic their natural milieu. Here, we review how AFM imaging can be used to study the surface structure of viruses including that of viruses lacking a well-defined symmetry. Beyond imaging, AFM enables the manipulation of single viruses by force spectroscopy experiments. Pulling experiments can provide information about the early events of virus-host interaction between the viral fibers and the cell membrane receptors. Pushing experiments measure the mechanical response of the viral capsid and its contents and can be used to show how virus maturation and exposure to different pH values change the mechanical response of the viruses and the interaction between the capsid and genome. Finally, we discuss how studying capsid rupture and self-healing events offers insight in virus uncoating pathways.
Collapse
Affiliation(s)
- P J de Pablo
- Department of Condensed Matter Physics and Solid Condensed Matter Institute IFIMAC, Universidad Autónoma de Madrid, Madrid, Spain.
| | | |
Collapse
|
11
|
Vieira CB, Praça YR, Bentes KLDS, Santiago PB, Silva SMM, Silva GDS, Motta FN, Bastos IMD, de Santana JM, de Araújo CN. Triatomines: Trypanosomatids, Bacteria, and Viruses Potential Vectors? Front Cell Infect Microbiol 2018; 8:405. [PMID: 30505806 PMCID: PMC6250844 DOI: 10.3389/fcimb.2018.00405] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/29/2018] [Indexed: 12/17/2022] Open
Abstract
Triatominae bugs are the vectors of Chagas disease, a major concern to public health especially in Latin America, where vector-borne Chagas disease has undergone resurgence due mainly to diminished triatomine control in many endemic municipalities. Although the majority of Triatominae species occurs in the Americas, species belonging to the genus Linshcosteus occur in India, and species belonging to the Triatoma rubrofasciata complex have been also identified in Africa, the Middle East, South-East Asia, and in the Western Pacific. Not all of Triatominae species have been found to be infected with Trypanosoma cruzi, but the possibility of establishing vector transmission to areas where Chagas disease was previously non-endemic has increased with global population mobility. Additionally, the worldwide distribution of triatomines is concerning, as they are able to enter in contact and harbor other pathogens, leading us to wonder if they would have competence and capacity to transmit them to humans during the bite or after successful blood feeding, spreading other infectious diseases. In this review, we searched the literature for infectious agents transmitted to humans by Triatominae. There are reports suggesting that triatomines may be competent vectors for pathogens such as Serratia marcescens, Bartonella, and Mycobacterium leprae, and that triatomine infection with other microrganisms may interfere with triatomine-T. cruzi interactions, altering their competence and possibly their capacity to transmit Chagas disease.
Collapse
Affiliation(s)
- Caroline Barreto Vieira
- Programa de Pós-Graduação em Ciências Médicas, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil
| | - Yanna Reis Praça
- Programa de Pós-Graduação em Ciências Médicas, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil
| | - Kaio Luís da Silva Bentes
- Laboratório de Interação Patógeno-Hospedeiro, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Universidade de Brasília, Brasília, Brazil
| | - Paula Beatriz Santiago
- Laboratório de Interação Patógeno-Hospedeiro, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Universidade de Brasília, Brasília, Brazil
| | - Sofia Marcelino Martins Silva
- Laboratório de Interação Patógeno-Hospedeiro, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Universidade de Brasília, Brasília, Brazil
| | - Gabriel dos Santos Silva
- Laboratório de Interação Patógeno-Hospedeiro, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Universidade de Brasília, Brasília, Brazil
| | - Flávia Nader Motta
- Laboratório de Interação Patógeno-Hospedeiro, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Universidade de Brasília, Brasília, Brazil
- Faculdade de Ceilândia, Universidade de Brasília, Brasília, Brazil
| | - Izabela Marques Dourado Bastos
- Laboratório de Interação Patógeno-Hospedeiro, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Universidade de Brasília, Brasília, Brazil
| | - Jaime Martins de Santana
- Laboratório de Interação Patógeno-Hospedeiro, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Universidade de Brasília, Brasília, Brazil
| | - Carla Nunes de Araújo
- Laboratório de Interação Patógeno-Hospedeiro, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Universidade de Brasília, Brasília, Brazil
- Faculdade de Ceilândia, Universidade de Brasília, Brasília, Brazil
| |
Collapse
|
12
|
Abstract
Honey bee pollination is required to sustain the biodiversity of wild flora and for agricultural production; however, honey bee populations in Europe and North America are declining due to virus infections. Sacbrood virus (SBV) infection is lethal to honey bee larvae and decreases the fitness of honey bee colonies. Here we present the structure of the SBV particle and show that it contains 60 copies of a minor capsid protein attached to its surface. No similar minor capsid proteins have been previously observed in any of the related viruses. We also present a structural analysis of the genome release of SBV. The possibility of blocking virus genome delivery may provide a tool to prevent the spread of this honey bee pathogen. Infection by sacbrood virus (SBV) from the family Iflaviridae is lethal to honey bee larvae but only rarely causes the collapse of honey bee colonies. Despite the negative effect of SBV on honey bees, the structure of its particles and mechanism of its genome delivery are unknown. Here we present the crystal structure of SBV virion and show that it contains 60 copies of a minor capsid protein (MiCP) attached to the virion surface. No similar MiCPs have been previously reported in any of the related viruses from the order Picornavirales. The location of the MiCP coding sequence within the SBV genome indicates that the MiCP evolved from a C-terminal extension of a major capsid protein by the introduction of a cleavage site for a virus protease. The exposure of SBV to acidic pH, which the virus likely encounters during cell entry, induces the formation of pores at threefold and fivefold axes of the capsid that are 7 Å and 12 Å in diameter, respectively. This is in contrast to vertebrate picornaviruses, in which the pores along twofold icosahedral symmetry axes are currently considered the most likely sites for genome release. SBV virions lack VP4 subunits that facilitate the genome delivery of many related dicistroviruses and picornaviruses. MiCP subunits induce liposome disruption in vitro, indicating that they are functional analogs of VP4 subunits and enable the virus genome to escape across the endosome membrane into the cell cytoplasm.
Collapse
|
13
|
Viso JF, Belelli P, Machado M, González H, Pantano S, Amundarain MJ, Zamarreño F, Branda MM, Guérin DMA, Costabel MD. Multiscale modelization in a small virus: Mechanism of proton channeling and its role in triggering capsid disassembly. PLoS Comput Biol 2018; 14:e1006082. [PMID: 29659564 PMCID: PMC5919690 DOI: 10.1371/journal.pcbi.1006082] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 04/26/2018] [Accepted: 03/09/2018] [Indexed: 12/04/2022] Open
Abstract
In this work, we assess a previously advanced hypothesis that predicts the existence of ion channels in the capsid of small and non-enveloped icosahedral viruses. With this purpose we examine Triatoma Virus (TrV) as a case study. This virus has a stable capsid under highly acidic conditions but disassembles and releases the genome in alkaline environments. Our calculations range from a subtle sub-atomic proton interchange to the dismantling of a large-scale system representing several million of atoms. Our results provide structure-based explanations for the three roles played by the capsid to enable genome release. First, we observe, for the first time, the formation of a hydrophobic gate in the cavity along the five-fold axis of the wild-type virus capsid, which can be disrupted by an ion located in the pore. Second, the channel enables protons to permeate the capsid through a unidirectional Grotthuss-like mechanism, which is the most likely process through which the capsid senses pH. Finally, assuming that the proton leak promotes a charge imbalance in the interior of the capsid, we model an internal pressure that forces shell cracking using coarse-grained simulations. Although qualitatively, this last step could represent the mechanism of capsid opening that allows RNA release. All of our calculations are in agreement with current experimental data obtained using TrV and describe a cascade of events that could explain the destabilization and disassembly of similar icosahedral viruses. Plant and animal small non-enveloped viruses are composed of a capsid shell that encloses the genome. One of the multiple functions played by the capsid is to protect the genome against host defenses and to withstand environmental aggressions, such as dehydration. This highly specialized capsule selectively recognizes and binds to the target tissue infected by the virus. In the viral cycle, the ultimate function of the capsid is to release the genome. Observations of many viruses demonstrate that the pH of the medium can trigger genome release. Nevertheless, the mechanism underlying this process at the atomic level is poorly understood. In this work, we computationally modeled the mechanism by which the capsid senses environmental pH and the destabilization process that permits genome release. Our calculations predict that a cavity that traverses the capsid functions as a hydrophobic gate, a feature already observed in membrane ion channels. Moreover, our results predict that this cavity behaves as a proton diode because the proton transit can only occur from the capsid interior to the exterior. In turn, our calculations describe a cascade of events that could explain the destabilization and dismantling of an insect virus, but this description could also apply to many vertebrate viruses.
Collapse
Affiliation(s)
- Juan Francisco Viso
- Departamento de Física (DF), Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
- DF-UNS, Grupo de Biofísica, Instituto de Física del Sur (IFISUR, UNS/CONICET), Bahía Blanca, Argentina
| | - Patricia Belelli
- DF-UNS, Grupo de Materiales y Sistemas Catalíticos (GRUMASICA), IFISUR, Bahía Blanca, Argentina
| | - Matías Machado
- Grupo de Simulaciones Biomoleculares, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Humberto González
- Grupo de Simulaciones Biomoleculares, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Sergio Pantano
- Grupo de Simulaciones Biomoleculares, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - María Julia Amundarain
- Departamento de Física (DF), Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
- DF-UNS, Grupo de Biofísica, Instituto de Física del Sur (IFISUR, UNS/CONICET), Bahía Blanca, Argentina
| | - Fernando Zamarreño
- Departamento de Física (DF), Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
- DF-UNS, Grupo de Biofísica, Instituto de Física del Sur (IFISUR, UNS/CONICET), Bahía Blanca, Argentina
| | - Maria Marta Branda
- Departamento de Física (DF), Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
- DF-UNS, Grupo de Materiales y Sistemas Catalíticos (GRUMASICA), IFISUR, Bahía Blanca, Argentina
| | - Diego M. A. Guérin
- Instituto Biofisika (UPV/EHU, CSIC), Department of Biochemistry and Molecular Biology, University of the Basque Country (EHU), Barrio Sarriena S/N, Leioa, Vizcaya, Spain
- * E-mail: (MDC); (DMAG)
| | - Marcelo D. Costabel
- Departamento de Física (DF), Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
- DF-UNS, Grupo de Biofísica, Instituto de Física del Sur (IFISUR, UNS/CONICET), Bahía Blanca, Argentina
- * E-mail: (MDC); (DMAG)
| |
Collapse
|
14
|
Martín-González N, Guérin Darvas SM, Durana A, Marti GA, Guérin DMA, de Pablo PJ. Exploring the role of genome and structural ions in preventing viral capsid collapse during dehydration. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:104001. [PMID: 29350623 PMCID: PMC7104708 DOI: 10.1088/1361-648x/aaa944] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/12/2018] [Accepted: 01/19/2018] [Indexed: 06/07/2023]
Abstract
Even though viruses evolve mainly in liquid milieu, their horizontal transmission routes often include episodes of dry environment. Along their life cycle, some insect viruses, such as viruses from the Dicistroviridae family, withstand dehydrated conditions with presently unknown consequences to their structural stability. Here, we use atomic force microscopy to monitor the structural changes of viral particles of Triatoma virus (TrV) after desiccation. Our results demonstrate that TrV capsids preserve their genome inside, conserving their height after exposure to dehydrating conditions, which is in stark contrast with other viruses that expel their genome when desiccated. Moreover, empty capsids (without genome) resulted in collapsed particles after desiccation. We also explored the role of structural ions in the dehydration process of the virions (capsid containing genome) by chelating the accessible cations from the external solvent milieu. We observed that ion suppression helps to keep the virus height upon desiccation. Our results show that under drying conditions, the genome of TrV prevents the capsid from collapsing during dehydration, while the structural ions are responsible for promoting solvent exchange through the virion wall.
Collapse
Affiliation(s)
- Natalia Martín-González
- Departamento de Física de la Materia Condensada C-III and Instituto de Física de la Materia Condensada (IFIMAC), Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain
| | - Sofía M Guérin Darvas
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Barrio Sarriena S/N, 48940, Leioa, Vizcaya, Spain
| | - Aritz Durana
- Instituto Biofisika (IBF, UPV/EHU, CSIC), Parque Científico de la UPV/EHU, Barrio Sarriena S/N, 48940, Leioa, Vizcaya, Spain
- Fundación Biofísica Bizkaia, Edificio Biblioteca Central UPV/EHU, Bº Sarriena S/N, 48940, Leioa, Vizcaya, Spain
| | - Gerardo A Marti
- Centro de Estudios Parasitológicos y de Vectores (CEPAVE-CCT-La Plata-CONICET-UNLP), Boulevard 120 e/61 y 62, 1900 La Plata, Argentina
| | - Diego M A Guérin
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Barrio Sarriena S/N, 48940, Leioa, Vizcaya, Spain
- Instituto Biofisika (IBF, UPV/EHU, CSIC), Parque Científico de la UPV/EHU, Barrio Sarriena S/N, 48940, Leioa, Vizcaya, Spain
| | - Pedro J de Pablo
- Departamento de Física de la Materia Condensada C-III and Instituto de Física de la Materia Condensada (IFIMAC), Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain
| |
Collapse
|
15
|
Martín-González N, Ortega-Esteban A, Moreno-Madrid F, Llauró A, Hernando-Pérez M, de Pablo PJ. Atomic Force Microscopy of Protein Shells: Virus Capsids and Beyond. Methods Mol Biol 2018; 1665:281-296. [PMID: 28940075 DOI: 10.1007/978-1-4939-7271-5_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In Atomic Force Microscopy (AFM) the probe is a nanometric tip located at the end of a microcantilever which palpates the specimen under study as a blind person uses a white cane. In this way AFM allows obtaining nanometric resolution images of individual protein shells, such as viruses, in liquid milieu. Beyond imaging, AFM also enables the manipulation of single protein cages, and the characterization a variety physicochemical properties able of inducing any measurable mechanical perturbation to the microcantilever that holds the tip. In this chapter we start revising some recipes for adsorbing protein shells on surfaces. Then we describe several AFM approaches to study individual protein cages, ranging from imaging to spectroscopic methodologies devoted to extracting physical information, such as mechanical and electrostatic properties.
Collapse
Affiliation(s)
- Natalia Martín-González
- Departamento de Física de la Materia Condensada, C-3, Universidad Autónoma de Madrid, Ctra. de Colmenar Viejo, Km 15, 28049, Madrid, Spain
| | - Alvaro Ortega-Esteban
- Departamento de Física de la Materia Condensada, C-3, Universidad Autónoma de Madrid, Ctra. de Colmenar Viejo, Km 15, 28049, Madrid, Spain
| | - F Moreno-Madrid
- Departamento de Física de la Materia Condensada, C-3, Universidad Autónoma de Madrid, Ctra. de Colmenar Viejo, Km 15, 28049, Madrid, Spain
| | - Aida Llauró
- Department of Physiology & Biophysics, University of Washington, Seattle, WA, 98195, USA
| | - Mercedes Hernando-Pérez
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049, Madrid, Spain
| | - Pedro J de Pablo
- Departamento de Física de la Materia Condensada, C-3, Universidad Autónoma de Madrid, Ctra. de Colmenar Viejo, Km 15, 28049, Madrid, Spain. .,Solid Condensed Matter Institute IFIMAC, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| |
Collapse
|
16
|
Susevich ML, Metz GE, Marti GA, Echeverría MG. Dicistroviridae: A new viral purification technique. Rev Argent Microbiol 2017; 49:311-314. [PMID: 28888671 DOI: 10.1016/j.ram.2017.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 03/10/2017] [Accepted: 04/30/2017] [Indexed: 11/27/2022] Open
Abstract
The family Dicistroviridae comprises three genera and about twenty species of RNA virus, most of them with health or agricultural importance. The Triatoma virus (TrV) is the only entomopathogenic virus identified in triatomine bugs up to the present. TrV replicates within the intestinal epithelial cells, causing high mortality rate and delayed development of the molt of these bugs. TrV has been proposed as a biological control agent for vectors of Chagas disease. Viral particles were purified from feces of 1, 5 and 10 insects from an experimental colony of Triatoma infestans infected with TrV. Viral concentration and infectivity were corroborated using polyacrylamide gels and RT-PCR, respectively. In this work we report a method of viral purification that allows to reduce necessary reagents and time, using a very small amount of fecal matter.
Collapse
Affiliation(s)
- María L Susevich
- Centro de Estudios Parasitológicos y de Vectores (CEPAVE-CCT-La Plata-CONICET-UNLP), Boulevard 120 entre 61 y 62, 1900 La Plata, Argentina; CONICET (CCT-La Plata), La Plata, Argentina; Virology, Faculty of Veterinary Sciences, National University of La Plata, La Plata, Argentina.
| | - Germán E Metz
- CONICET (CCT-La Plata), La Plata, Argentina; Virology, Faculty of Veterinary Sciences, National University of La Plata, La Plata, Argentina
| | - Gerardo A Marti
- Centro de Estudios Parasitológicos y de Vectores (CEPAVE-CCT-La Plata-CONICET-UNLP), Boulevard 120 entre 61 y 62, 1900 La Plata, Argentina; CONICET (CCT-La Plata), La Plata, Argentina; Virology, Faculty of Veterinary Sciences, National University of La Plata, La Plata, Argentina
| | - María G Echeverría
- CONICET (CCT-La Plata), La Plata, Argentina; Virology, Faculty of Veterinary Sciences, National University of La Plata, La Plata, Argentina
| |
Collapse
|
17
|
de Pablo PJ. Atomic force microscopy of virus shells. Semin Cell Dev Biol 2017; 73:199-208. [PMID: 28851598 DOI: 10.1016/j.semcdb.2017.08.039] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/14/2017] [Accepted: 08/18/2017] [Indexed: 11/29/2022]
Abstract
Microscopes are used to characterize small specimens with the help of probes, such as photons and electrons in optical and electron microscopies, respectively. In atomic force microscopy (AFM) the probe is a nanometric tip located at the end of a microcantilever which palpates the specimen under study as a blind person manages a white cane to explore the surrounding. In this way, AFM allows obtaining nanometric resolution images of individual protein shells, such as viruses, in liquid milieu. Beyond imaging, AFM also enables the manipulation of single protein cages, and the characterization of every physico-chemical property able of inducing any measurable mechanical perturbation to the microcantilever that holds the tip. Here we describe several AFM approaches to study individual protein cages, including imaging and spectroscopic methodologies for extracting mechanical and electrostatic properties. In addition, AFM allows discovering and testing the self-healing capabilities of protein cages because occasionally they may recover fractures induced by the AFM tip. Beyond the protein shells, AFM also is able of exploring the genome inside, obtaining, for instance, the condensation state of dsDNA and measuring its diffusion when the protein cage breaks.
Collapse
Affiliation(s)
- Pedro J de Pablo
- Departamento de Física de la Materia Condensada and Solid Condensed Matter Institute IFIMAC, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| |
Collapse
|
18
|
Fernández-Presas AM, Padilla-Noriega L, Becker I, Robert L, Jiménez JA, Solano S, Delgado J, Tato P, Molinari JL. Enveloped and non-enveloped viral-like particles in Trypanosoma cruzi epimastigotes. Rev Inst Med Trop Sao Paulo 2017; 59:e46. [PMID: 28793017 PMCID: PMC5553942 DOI: 10.1590/s1678-9946201759046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/22/2017] [Indexed: 11/30/2022] Open
Abstract
Electron microscopy is routinely used to identify viral infections in protozoan
parasites. These viruses have been described as non-enveloped and icosahedral
structures with a diameter of 30-60 nm. Most of them are classified within the
non-segmented dsRNA Totiviridae family. We observed virus-like
particles (VLPs) through transmission electron microscopy in the cytoplasm of
Trypanosoma cruzi epimastigotes grown in cultures. Clusters of
electrodense enveloped VLPs having a diameter of 48 nm were also observed. These
clusters appear to have been released from distended Golgi cisternae. Furthermore, a
paracrystalline array of electrodense, non-enveloped VLPs (with a diameter of 32 nm)
were found in distended Golgi cisternae or as smaller clusters at a distance from the
RE or Golgi. We cannot rule out that the 48 nm enveloped VLPs belong to the ssRNA
Flaviviridae family because they are within its size range. The
localization of enveloped VLPs is consistent with the replication strategy of these
viruses that transit through the Golgi to be released at the cell surface. Due to the
size and shape of the 32 nm non-enveloped VLPs, we propose that they belong to the
dsRNA Totiviridae family. This is the first description of
cytoplasmic enveloped and non-enveloped VLPs in T. cruzi
epimastigotes.
Collapse
Affiliation(s)
- Ana María Fernández-Presas
- Universidad Nacional Autónoma de México, Facultad de Medicina, Departamento de Microbiología y Parasitología, Mexico City, Mexico
| | - Luis Padilla-Noriega
- Universidad Nacional Autónoma de México, Facultad de Medicina, Departamento de Microbiología y Parasitología, Mexico City, Mexico.,Universidad Nacional Autónoma de México, Instituto de Investigaciones Biomédicas, Mexico City, Mexico
| | - Ingeborg Becker
- Universidad Nacional Autónoma de México, Facultad de Medicina, Unidad de Investigación en Medicina Experimental, Mexico City, Mexico
| | - Lilia Robert
- Universidad Nacional Autónoma de México, Facultad de Medicina, Departamento de Microbiología y Parasitología, Mexico City, Mexico
| | - José Agustín Jiménez
- Universidad Nacional Autónoma de México, Facultad de Medicina, Departamento de Microbiología y Parasitología, Mexico City, Mexico
| | - Sandra Solano
- Universidad Nacional Autónoma de México, Facultad de Medicina, Departamento de Microbiología y Parasitología, Mexico City, Mexico
| | - Jose Delgado
- Universidad Nacional Autónoma de México, Facultad de Medicina, Unidad de Investigación en Medicina Experimental, Mexico City, Mexico
| | - Patricia Tato
- Universidad Nacional Autónoma de México, Facultad de Medicina, Departamento de Microbiología y Parasitología, Mexico City, Mexico
| | - José Luis Molinari
- Universidad Nacional Autónoma de México, Instituto de Fisiología Celular, Departamento de Bioquímica y Biología Estructural, Mexico City, Mexico
| |
Collapse
|
19
|
Atomic force microscopy of virus shells. Biochem Soc Trans 2017; 45:499-511. [PMID: 28408490 DOI: 10.1042/bst20160316] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 02/16/2017] [Accepted: 02/17/2017] [Indexed: 11/17/2022]
Abstract
Microscopes are used to characterize small objects with the help of probes that interact with the specimen, such as photons and electrons in optical and electron microscopies, respectively. In atomic force microscopy (AFM), the probe is a nanometric tip located at the end of a microcantilever which palpates the specimen under study just as a blind person manages a walking stick. In this way, AFM allows obtaining nanometric resolution images of individual protein shells, such as viruses, in a liquid milieu. Beyond imaging, AFM also enables not only the manipulation of single protein cages, but also the characterization of every physicochemical property capable of inducing any measurable mechanical perturbation to the microcantilever that holds the tip. In the present revision, we start revising some recipes for adsorbing protein shells on surfaces. Then, we describe several AFM approaches to study individual protein cages, ranging from imaging to spectroscopic methodologies devoted to extracting physical information, such as mechanical and electrostatic properties. We also explain how a convenient combination of AFM and fluorescence methodologies entails monitoring genome release from individual viral shells during mechanical unpacking.
Collapse
|
20
|
Virion Structure of Black Queen Cell Virus, a Common Honeybee Pathogen. J Virol 2017; 91:JVI.02100-16. [PMID: 28077635 PMCID: PMC5331821 DOI: 10.1128/jvi.02100-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 12/21/2016] [Indexed: 01/06/2023] Open
Abstract
Viral diseases are a major threat to honeybee (Apis mellifera) populations worldwide and therefore an important factor in reliable crop pollination and food security. Black queen cell virus (BQCV) is the etiological agent of a fatal disease of honeybee queen larvae and pupae. The virus belongs to the genus Triatovirus from the family Dicistroviridae, which is part of the order Picornavirales. Here we present a crystal structure of BQCV determined to a resolution of 3.4 Å. The virion is formed by 60 copies of each of the major capsid proteins VP1, VP2, and VP3; however, there is no density corresponding to a 75-residue-long minor capsid protein VP4 encoded by the BQCV genome. We show that the VP4 subunits are present in the crystallized virions that are infectious. This aspect of the BQCV virion is similar to that of the previously characterized triatoma virus and supports the recent establishment of the separate genus Triatovirus within the family Dicistroviridae. The C terminus of VP1 and CD loops of capsid proteins VP1 and VP3 of BQCV form 34-Å-tall finger-like protrusions at the virion surface. The protrusions are larger than those of related dicistroviruses. IMPORTANCE The western honeybee is the most important pollinator of all, and it is required to sustain the agricultural production and biodiversity of wild flowering plants. However, honeybee populations worldwide are suffering from virus infections that cause colony losses. One of the most common, and least known, honeybee pathogens is black queen cell virus (BQCV), which at high titers causes queen larvae and pupae to turn black and die. Here we present the three-dimensional virion structure of BQCV, determined by X-ray crystallography. The structure of BQCV reveals large protrusions on the virion surface. Capsid protein VP1 of BQCV does not contain a hydrophobic pocket. Therefore, the BQCV virion structure provides evidence that capsid-binding antiviral compounds that can prevent the replication of vertebrate picornaviruses may be ineffective against honeybee virus infections.
Collapse
|
21
|
Cryo-electron Microscopy Study of the Genome Release of the Dicistrovirus Israeli Acute Bee Paralysis Virus. J Virol 2017; 91:JVI.02060-16. [PMID: 27928006 PMCID: PMC5286892 DOI: 10.1128/jvi.02060-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/21/2016] [Indexed: 01/09/2023] Open
Abstract
Viruses of the family Dicistroviridae can cause substantial economic damage by infecting agriculturally important insects. Israeli acute bee paralysis virus (IAPV) causes honeybee colony collapse disorder in the United States. High-resolution molecular details of the genome delivery mechanism of dicistroviruses are unknown. Here we present a cryo-electron microscopy analysis of IAPV virions induced to release their genomes in vitro. We determined structures of full IAPV virions primed to release their genomes to a resolution of 3.3 Å and of empty capsids to a resolution of 3.9 Å. We show that IAPV does not form expanded A particles before genome release as in the case of related enteroviruses of the family Picornaviridae. The structural changes observed in the empty IAPV particles include detachment of the VP4 minor capsid proteins from the inner face of the capsid and partial loss of the structure of the N-terminal arms of the VP2 capsid proteins. Unlike the case for many picornaviruses, the empty particles of IAPV are not expanded relative to the native virions and do not contain pores in their capsids that might serve as channels for genome release. Therefore, rearrangement of a unique region of the capsid is probably required for IAPV genome release.
IMPORTANCE Honeybee populations in Europe and North America are declining due to pressure from pathogens, including viruses. Israeli acute bee paralysis virus (IAPV), a member of the family Dicistroviridae, causes honeybee colony collapse disorder in the United States. The delivery of virus genomes into host cells is necessary for the initiation of infection. Here we present a structural cryo-electron microscopy analysis of IAPV particles induced to release their genomes. We show that genome release is not preceded by an expansion of IAPV virions as in the case of related picornaviruses that infect vertebrates. Furthermore, minor capsid proteins detach from the capsid upon genome release. The genome leaves behind empty particles that have compact protein shells.
Collapse
|
22
|
Honey Bee Deformed Wing Virus Structures Reveal that Conformational Changes Accompany Genome Release. J Virol 2017; 91:JVI.01795-16. [PMID: 27852845 DOI: 10.1128/jvi.01795-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/02/2016] [Indexed: 11/20/2022] Open
Abstract
The picornavirus-like deformed wing virus (DWV) has been directly linked to colony collapse; however, little is known about the mechanisms of host attachment or entry for DWV or its molecular and structural details. Here we report the three-dimensional (3-D) structures of DWV capsids isolated from infected honey bees, including the immature procapsid, the genome-filled virion, the putative entry intermediate (A-particle), and the empty capsid that remains after genome release. The capsids are decorated by large spikes around the 5-fold vertices. The 5-fold spikes had an open flower-like conformation for the procapsid and genome-filled capsids, whereas the putative A-particle and empty capsids that had released the genome had a closed tube-like spike conformation. Between the two conformations, the spikes undergo a significant hinge-like movement that we predicted using a Robetta model of the structure comprising the spike. We conclude that the spike structures likely serve a function during host entry, changing conformation to release the genome, and that the genome may escape from a 5-fold vertex to initiate infection. Finally, the structures illustrate that, similarly to picornaviruses, DWV forms alternate particle conformations implicated in assembly, host attachment, and RNA release. IMPORTANCE Honey bees are critical for global agriculture, but dramatic losses of entire hives have been reported in numerous countries since 2006. Deformed wing virus (DWV) and infestation with the ectoparasitic mite Varroa destructor have been linked to colony collapse disorder. DWV was purified from infected adult worker bees to pursue biochemical and structural studies that allowed the first glimpse into the conformational changes that may be required during transmission and genome release for DWV.
Collapse
|
23
|
Sánchez-Eugenia R, Durana A, López-Marijuan I, Marti GA, Guérin DMA. X-ray structure of Triatoma virus empty capsid: insights into the mechanism of uncoating and RNA release in dicistroviruses. J Gen Virol 2016; 97:2769-2779. [DOI: 10.1099/jgv.0.000580] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Rubén Sánchez-Eugenia
- Instituto Biofisika (CSIC, UPV/EHU), Barrio Sarriena S/N, 48940 Leioa, Bizkaia, Spain
| | - Aritz Durana
- Instituto Biofisika (CSIC, UPV/EHU), Barrio Sarriena S/N, 48940 Leioa, Bizkaia, Spain
- Fundación Biofísica Bizkaia, Barrio Sarriena S/N, 48940 Leioa, Bizkaia, Spain
| | - Ibai López-Marijuan
- Instituto Biofisika (CSIC, UPV/EHU), Barrio Sarriena S/N, 48940 Leioa, Bizkaia, Spain
- Fundación Biofísica Bizkaia, Barrio Sarriena S/N, 48940 Leioa, Bizkaia, Spain
| | - Gerardo A. Marti
- Centro de Estudios Parasitológicos y de Vectores (CEPAVE-CCT-La Plata-CONICET-UNLP), Boulevard 120 e/61 y 62, 1900 La Plata, Argentina
| | - Diego M. A. Guérin
- Instituto Biofisika (CSIC, UPV/EHU), Barrio Sarriena S/N, 48940 Leioa, Bizkaia, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU), Barrio Sarriena S/N, 48940 Leioa, Bizkaia, Spain
| |
Collapse
|
24
|
Virion Structure of Israeli Acute Bee Paralysis Virus. J Virol 2016; 90:8150-9. [PMID: 27384649 PMCID: PMC5008081 DOI: 10.1128/jvi.00854-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 06/24/2016] [Indexed: 01/10/2023] Open
Abstract
The pollination services provided by the western honeybee (Apis mellifera) are critical for agricultural production and the diversity of wild flowering plants. However, honeybees suffer from environmental pollution, habitat loss, and pathogens, including viruses that can cause fatal diseases. Israeli acute bee paralysis virus (IAPV), from the family Dicistroviridae, has been shown to cause colony collapse disorder in the United States. Here, we present the IAPV virion structure determined to a resolution of 4.0 Å and the structure of a pentamer of capsid protein protomers at a resolution of 2.7 Å. IAPV has major capsid proteins VP1 and VP3 with noncanonical jellyroll β-barrel folds composed of only seven instead of eight β-strands, as is the rule for proteins of other viruses with the same fold. The maturation of dicistroviruses is connected to the cleavage of precursor capsid protein VP0 into subunits VP3 and VP4. We show that a putative catalytic site formed by the residues Asp-Asp-Phe of VP1 is optimally positioned to perform the cleavage. Furthermore, unlike many picornaviruses, IAPV does not contain a hydrophobic pocket in capsid protein VP1 that could be targeted by capsid-binding antiviral compounds. IMPORTANCE Honeybee pollination is required for agricultural production and to sustain the biodiversity of wild flora. However, honeybee populations in Europe and North America are under pressure from pathogens, including viruses that cause colony losses. Viruses from the family Dicistroviridae can cause honeybee infections that are lethal, not only to individual honeybees, but to whole colonies. Here, we present the virion structure of an Aparavirus, Israeli acute bee paralysis virus (IAPV), a member of a complex of closely related viruses that are distributed worldwide. IAPV exhibits unique structural features not observed in other picorna-like viruses. Capsid protein VP1 of IAPV does not contain a hydrophobic pocket, implying that capsid-binding antiviral compounds that can prevent the replication of vertebrate picornaviruses may be ineffective against honeybee virus infections.
Collapse
|
25
|
Virion Structure of Iflavirus Slow Bee Paralysis Virus at 2.6-Angstrom Resolution. J Virol 2016; 90:7444-7455. [PMID: 27279610 PMCID: PMC4984619 DOI: 10.1128/jvi.00680-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 05/27/2016] [Indexed: 12/29/2022] Open
Abstract
The western honeybee (Apis mellifera) is the most important commercial insect pollinator. However, bees are under pressure from habitat loss, environmental stress, and pathogens, including viruses that can cause lethal epidemics. Slow bee paralysis virus (SBPV) belongs to the Iflaviridae family of nonenveloped single-stranded RNA viruses. Here we present the structure of the SBPV virion determined from two crystal forms to resolutions of 3.4 Å and 2.6 Å. The overall structure of the virion resembles that of picornaviruses, with the three major capsid proteins VP1 to 3 organized into a pseudo-T3 icosahedral capsid. However, the SBPV capsid protein VP3 contains a C-terminal globular domain that has not been observed in other viruses from the order Picornavirales. The protruding (P) domains form “crowns” on the virion surface around each 5-fold axis in one of the crystal forms. However, the P domains are shifted 36 Å toward the 3-fold axis in the other crystal form. Furthermore, the P domain contains the Ser-His-Asp triad within a surface patch of eight conserved residues that constitutes a putative catalytic or receptor-binding site. The movements of the domain might be required for efficient substrate cleavage or receptor binding during virus cell entry. In addition, capsid protein VP2 contains an RGD sequence that is exposed on the virion surface, indicating that integrins might be cellular receptors of SBPV.
IMPORTANCE Pollination by honeybees is needed to sustain agricultural productivity as well as the biodiversity of wild flora. However, honeybee populations in Europe and North America have been declining since the 1950s. Honeybee viruses from the Iflaviridae family are among the major causes of honeybee colony mortality. We determined the virion structure of an Iflavirus, slow bee paralysis virus (SBPV). SBPV exhibits unique structural features not observed in other picorna-like viruses. The SBPV capsid protein VP3 has a large C-terminal domain, five of which form highly prominent protruding “crowns” on the virion surface. However, the domains can change their positions depending on the conditions of the environment. The domain includes a putative catalytic or receptor binding site that might be important for SBPV cell entry.
Collapse
|
26
|
Ceccarelli S, Balsalobre A, Susevich ML, Echeverria MG, Gorla DE, Marti GA. Modelling the potential geographic distribution of triatomines infected by Triatoma virus in the southern cone of South America. Parasit Vectors 2015; 8:153. [PMID: 25881183 PMCID: PMC4367828 DOI: 10.1186/s13071-015-0761-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 02/20/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Triatoma virus (TrV) is the only entomopathogenous virus identified in triatomines. We estimated the potential geographic distribution of triatomine species naturally infected by TrV, using remotely sensed and meteorological environmental variables, to predict new potential areas where triatomines infected with TrV may be found. METHODS Detection of TrV infection in samples was performed with RT-PCR. Ecological niche models (ENM) were constructed using the MaxEnt software. We used 42 environmental variables derived from remotely sensed imagery (AVHRR) and 19 bioclimatic variables (Bioclim). The MaxEnt Jackknife procedure was used to minimize the number of environmental variables that showed an influence on final models. The goodness of fit of the model predictions was evaluated by the mean area under the curve (AUC). RESULTS We obtained 37 samples of 7 species of triatomines naturally infected with TrV. Of the TrV positive samples, 32% were from sylvatic habitat, 46% came from peridomicile habitats and 22% from domicile habitats. Five of the seven infected species were found only in the sylvatic habitat, one species only in the domicile and only Triatoma infestans was found in the three habitats. The MaxEnt model estimated with the Bioclim dataset identified five environmental variables as best predictors: temperature annual range, mean diurnal range, mean temperature of coldest quarter, temperature seasonality and annual mean temperature. The model using the AVHRR dataset identified six environmental variables: minimum Land Surface Temperature (LST), minimum Middle Infrared Radiation (MIR), LST annual amplitude, MIR annual amplitude annual, LST variance and MIR variance. The potential geographic distribution of triatomine species infected by TrV coincides with the Chaco and the Monte ecoregions either modelled by AVHRR or Bioclim environmental datasets. CONCLUSIONS Our results show that the conditions of the Dry Chaco ecoregion in Argentina are favourable for the infection of triatomine species with TrV, and open the possibility of its use as a potential agent for the biological control of peridomestic and/or sylvatic triatomine species. Results identify areas of potential occurrence that should be verified in the field.
Collapse
Affiliation(s)
- Soledad Ceccarelli
- Centro de Estudios Parasitológicos y de Vectores (CEPAVE-CCT-La Plata-CONICET - UNLP), Boulevard 120 e/61 y 62, 1900, La Plata, Argentina.
| | - Agustín Balsalobre
- Centro de Estudios Parasitológicos y de Vectores (CEPAVE-CCT-La Plata-CONICET - UNLP), Boulevard 120 e/61 y 62, 1900, La Plata, Argentina.
| | - María Laura Susevich
- Centro de Estudios Parasitológicos y de Vectores (CEPAVE-CCT-La Plata-CONICET - UNLP), Boulevard 120 e/61 y 62, 1900, La Plata, Argentina.
| | - María Gabriela Echeverria
- Cátedra de Virología, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, (CONICET), La Plata, Buenos Aires, Argentina.
| | - David Eladio Gorla
- Centro Regional de Investigaciones Científicas y Transferencia Tecnológica (CRILAR - CONICET), La Rioja, Argentina.
| | - Gerardo Aníbal Marti
- Centro de Estudios Parasitológicos y de Vectores (CEPAVE-CCT-La Plata-CONICET - UNLP), Boulevard 120 e/61 y 62, 1900, La Plata, Argentina.
| |
Collapse
|
27
|
Triatoma virus recombinant VP4 protein induces membrane permeability through dynamic pores. J Virol 2015; 89:4645-54. [PMID: 25673713 DOI: 10.1128/jvi.00011-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
UNLABELLED In naked viruses, membrane breaching is a key step that must be performed for genome transfer into the target cells. Despite its importance, the mechanisms behind this process remain poorly understood. The small protein VP4, encoded by the genomes of most viruses of the order Picornavirales, has been shown to be involved in membrane alterations. Here we analyzed the permeabilization activity of the natively nonmyristoylated VP4 protein from triatoma virus (TrV), a virus belonging to the Dicistroviridae family within the Picornavirales order. The VP4 protein was produced as a C-terminal maltose binding protein (MBP) fusion to achieve its successful expression. This recombinant VP4 protein is able to produce membrane permeabilization in model membranes in a membrane composition-dependent manner. The induced permeability was also influenced by the pH, being greater at higher pH values. We demonstrate that the permeabilization activity elicited by the protein occurs through discrete pores that are inserted on the membrane. Sizing experiments using fluorescent dextrans, cryo-electron microscopy imaging, and other, additional techniques showed that recombinant VP4 forms heterogeneous proteolipidic pores rather than common proteinaceous channels. These results suggest that the VP4 protein may be involved in the membrane alterations required for genome transfer or cell entry steps during dicistrovirus infection. IMPORTANCE During viral infection, viruses need to overcome the membrane barrier in order to enter the cell and replicate their genome. In nonenveloped viruses membrane fusion is not possible, and hence, other mechanisms are implemented. Among other proteins, like the capsid-forming proteins and the proteins required for viral replication, several viruses of the order Picornaviridae contain a small protein called VP4 that has been shown to be involved in membrane alterations. Here we show that the triatoma virus VP4 protein is able to produce membrane permeabilization in model membranes by the formation of heterogeneous dynamic pores. These pores formed by VP4 may be involved in the genome transfer or cell entry steps during viral infection.
Collapse
|
28
|
Querido JFB, Echeverría MG, Marti GA, Costa RM, Susevich ML, Rabinovich JE, Copa A, Montaño NA, Garcia L, Cordova M, Torrico F, Sánchez-Eugenia R, Sánchez-Magraner L, Muñiz-Trabudua X, López-Marijuan I, Rozas-Dennis GS, Diosque P, de Castro AM, Robello C, Rodríguez JS, Altcheh J, Salazar-Schettino PM, Bucio MI, Espinoza B, Guérin DMA, Silva MS. Seroprevalence of Triatoma virus (Dicistroviridae: Cripaviridae) antibodies in Chagas disease patients. Parasit Vectors 2015; 8:29. [PMID: 25595198 PMCID: PMC4351825 DOI: 10.1186/s13071-015-0632-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 12/31/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chagas disease is caused by Trypanosoma cruzi, and humans acquire the parasite by exposure to contaminated feces from hematophagous insect vectors known as triatomines. Triatoma virus (TrV) is the sole viral pathogen of triatomines, and is transmitted among insects through the fecal-oral route and, as it happens with T. cruzi, the infected insects release the virus when defecating during or after blood uptake. METHODS In this work, we analysed the occurrence of anti-TrV antibodies in human sera from Chagas disease endemic and non-endemic countries, and developed a mathematical model to estimate the transmission probability of TrV from insects to man, which ranged between 0.00053 and 0.0015. RESULTS Our results confirm that people with Chagas disease living in Bolivia, Argentina and Mexico have been exposed to TrV, and that TrV is unable to replicate in human hosts. CONCLUSIONS We presented the first experimental evidence of antibodies against TrV structural proteins in human sera.
Collapse
Affiliation(s)
- Jailson F B Querido
- Centre for Malaria and Tropical Diseases, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal.
| | - María G Echeverría
- Cátedra de Virología, Facultad de Ciencias Veterinarias Universidad Nacional de La Plata (UNLP-CONICET), La Plata, Argentina.
| | - Gerardo A Marti
- Centro de Estudios Parasitológicos y de Vectores (CEPAVE-CCT- La Plata -CONICET - UNLP), La Plata, Argentina.
| | - Rita Medina Costa
- Centre for Malaria and Tropical Diseases, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal.
| | - María L Susevich
- Cátedra de Virología, Facultad de Ciencias Veterinarias Universidad Nacional de La Plata (UNLP-CONICET), La Plata, Argentina.
| | - Jorge E Rabinovich
- Centro de Estudios Parasitológicos y de Vectores (CEPAVE-CCT- La Plata -CONICET - UNLP), La Plata, Argentina.
| | - Aydee Copa
- Laboratorio de Biología Molecular IIBISMED, Facultad de Medicina, Universidad Mayor de San Simón, Cochabamba, Bolivia.
| | - Nair A Montaño
- Laboratorio de Biología Molecular IIBISMED, Facultad de Medicina, Universidad Mayor de San Simón, Cochabamba, Bolivia.
| | - Lineth Garcia
- Laboratorio de Biología Molecular IIBISMED, Facultad de Medicina, Universidad Mayor de San Simón, Cochabamba, Bolivia.
| | - Marisol Cordova
- Facultad de Medicina, Universidad Mayor de San Simón, Cochabamba, Bolivia.
| | - Faustino Torrico
- Facultad de Medicina, Universidad Mayor de San Simón, Cochabamba, Bolivia.
| | | | | | | | | | - Gabriela S Rozas-Dennis
- Departamento de Biología, Bioquímica y Farmacia, and Grupo Biofísica, Departamento de Física, Universidad Nacional del Sur, Bahía Blanca, Argentina.
| | - Patricio Diosque
- Unidad de Epidemiología Molecular del Instituto de Patología Experimental, Facultad de Ciencias de la Salud, Universidad Nacional de Salta, Salta, Argentina.
| | - Ana M de Castro
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiania, Brazil.
| | - Carlos Robello
- Unidad de Biología Molecular Instituto Pasteur de Montevideo, Mataojo 2020, CP11400, Montevideo, Uruguay.
| | | | - Jaime Altcheh
- Parasitologia-Chagas, Hospital de Niños R. Gutierrez, Buenos Aires, Argentina.
| | - Paz M Salazar-Schettino
- Departamento de Microbiología y Parasitología, Facultad de Medicina (LBP-DMP-FM), Universidad Nacional Autónoma de México, Mexico City, DF, México.
| | - Marta I Bucio
- Departamento de Microbiología y Parasitología, Facultad de Medicina (LBP-DMP-FM), Universidad Nacional Autónoma de México, Mexico City, DF, México.
| | - Bertha Espinoza
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Autónoma de México, Mexico City, DF, México.
| | - Diego M A Guérin
- Unidad de Biofísica (UBF, CSIC, UPV-EHU), Leioa, Bizkaia, Spain. .,Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco (EHU/UPV), Bizkaia, Spain.
| | - Marcelo Sousa Silva
- Centre for Malaria and Tropical Diseases, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal. .,Programa de Pós-graduação em Bioquímica, Departamento Bioquímica, Universidade Federal do Rio Grande do Norte, Natal, Brazil.
| |
Collapse
|
29
|
Susevich ML, Marti GA, Metz GE, Echeverría MG. First study of different insect cells to triatoma virus infection. Curr Microbiol 2014; 70:470-5. [PMID: 25481388 DOI: 10.1007/s00284-014-0746-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 10/23/2014] [Indexed: 11/27/2022]
Abstract
The use of viruses for biological control is a new option to be considered. The family Dicistroviridae, which affects only invertebrates, is one of the families that have been proposed for this purpose. The Triatoma virus (TrV), a member of this family, affects triatomine transmitters of Chagas disease, which is endemic in Latin America but also expanding its worldwide distribution. To this end, we attempted virus replication in Diptera, Aedes albopictus (clone C6/36) and Lepidoptera Spodoptera frugiperda (SF9, SF21) and High Five (H5) cell lines. The methodologies used were transfection process, direct inoculation (purified virus), and inoculation of purified virus with trypsin. Results were confirmed by SDS-PAGE, Western blotting, RT-PCR, electron microscopy, and immunofluorescence. According to the results obtained, further analysis of susceptibility/infection of H5 cells to TrV required to be studied.
Collapse
Affiliation(s)
- María Laura Susevich
- Centro de Estudios Parasitológicos y de Vectores (CEPAVE-CCT-La Plata-CONICET-UNLP), 2 #584, 1900, La Plata, Argentina
| | | | | | | |
Collapse
|
30
|
Sánchez-Eugenia R, Méndez F, Querido JFB, Silva MS, Guérin DMA, Rodríguez JF. Triatoma virus structural polyprotein expression, processing and assembly into virus-like particles. J Gen Virol 2014; 96:64-73. [PMID: 25304655 DOI: 10.1099/vir.0.071639-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In contrast to the current wealth of structural information concerning dicistrovirus particle structure, very little is known about their morphogenetic pathways. Here, we describe the expression of the two ORFs encoded by the Triatoma virus (TrV) genome. TrV, a member of the Cripavirus genus of the Dicistroviridae family, infects blood-sucking insects belonging to the Triatominae subfamily that act as vectors for the transmission of Trypanosoma cruzi, the aetiological agent of the Chagas disease. We have established a baculovirus-based model for the expression of the NS (non-structural) and P1 (structural) polyproteins. A preliminary characterization of the proteolytic processing of both polyprotein precursors has been performed using this system. We show that the proteolytic processing of the P1 polyprotein is strictly dependent upon the coexpression of the NS polyprotein, and that NS/P1 coexpression leads to the assembly of virus-like particles (VLPs) exhibiting a morphology and a protein composition akin to natural TrV empty capsids. Remarkably, the unprocessed P1 polypeptide assembles into quasi-spherical structures conspicuously larger than VLPs produced in NS/P1-coexpressing cells, likely representing a previously undescribed morphogenetic intermediate. This intermediate has not been found in members of the related Picornaviridae family currently used as a model for dicistrovirus studies, thus suggesting the existence of major differences in the assembly pathways of these two virus groups.
Collapse
Affiliation(s)
- Rubén Sánchez-Eugenia
- Unidad de Biofísica (CSIC, UPV/EHU), Barrio Sarriena S/N, 48940 Leioa, Bizkaia, Spain
| | - Fernando Méndez
- Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología-CSIC, Darwin 3, 28049 Madrid, Spain
| | - Jailson F B Querido
- Centro de Malária e Outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira, 100, 1349-008 Lisboa, Portugal.,Fundación Biofísica Bizkaia, Barrio Sarriena S/N, 48940 Leioa, Bizkaia, Spain.,Unidad de Biofísica (CSIC, UPV/EHU), Barrio Sarriena S/N, 48940 Leioa, Bizkaia, Spain
| | - Marcelo Sousa Silva
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Norte, Natal, Brazil.,Centro de Malária e Outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira, 100, 1349-008 Lisboa, Portugal
| | - Diego M A Guérin
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencia y Tecnología, Universidad del País Vasco (EHU), Barrio Sarriena S/N, 48940 Leioa, Bizkaia, Spain.,Unidad de Biofísica (CSIC, UPV/EHU), Barrio Sarriena S/N, 48940 Leioa, Bizkaia, Spain
| | - José F Rodríguez
- Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología-CSIC, Darwin 3, 28049 Madrid, Spain
| |
Collapse
|
31
|
Ren J, Cone A, Willmot R, Jones IM. Assembly of recombinant Israeli Acute Paralysis Virus capsids. PLoS One 2014; 9:e105943. [PMID: 25153716 PMCID: PMC4143317 DOI: 10.1371/journal.pone.0105943] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 07/31/2014] [Indexed: 01/30/2023] Open
Abstract
The dicistrovirus Israeli Acute Paralysis Virus (IAPV) has been implicated in the worldwide decline of honey bees. Studies of IAPV and many other bee viruses in pure culture are restricted by available isolates and permissive cell culture. Here we show that coupling the IAPV major structural precursor protein ORF2 to its cognate 3C-like processing enzyme results in processing of the precursor to the individual structural proteins in a number of insect cell lines following expression by a recombinant baculovirus. The efficiency of expression is influenced by the level of IAPV 3C protein and moderation of its activity is required for optimal expression. The mature IAPV structural proteins assembled into empty capsids that migrated as particles on sucrose velocity gradients and showed typical dicistrovirus like morphology when examined by electron microscopy. Monoclonal antibodies raised to recombinant capsids were configured into a diagnostic test specific for the presence of IAPV. Recombinant capsids for each of the many bee viruses within the picornavirus family may provide virus specific reagents for the on-going investigation of the causes of honeybee loss.
Collapse
Affiliation(s)
- Junyuan Ren
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Abigail Cone
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Rebecca Willmot
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Ian M. Jones
- School of Biological Sciences, University of Reading, Reading, United Kingdom
- * E-mail:
| |
Collapse
|
32
|
Susevich ML, Marti GA, Echeverría MG. First description of hemagglutination by a virus belonging to the family Dicistroviridae. Arch Virol 2013; 159:581-4. [PMID: 24100474 DOI: 10.1007/s00705-013-1865-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 08/27/2013] [Indexed: 11/29/2022]
Abstract
Triatoma virus is the only virus whose genome has been sequenced and studied in triatomines. It belongs to the family Dicistroviridae. In order to detect whether TrV has the ability to agglutinate erythrocytes of domestic and laboratory animals, we performed a hemagglutination assay. Positive hemagglutination was found for red blood cells of guinea pigs. The HA assay could be used as a titration method, at least for purified viral particles obtained from triatomine stool. This is the first record of hemagglutinating properties for Dicistroviridae.
Collapse
Affiliation(s)
- María Laura Susevich
- Centro de Estudios Parasitológicos y de Vectores (CEPAVE-CCT-La Plata-CONICET-UNLP), 2 #584, 1900, La Plata, Argentina
| | | | | |
Collapse
|
33
|
Squires G, Pous J, Agirre J, Rozas-Dennis GS, Costabel MD, Marti GA, Navaza J, Bressanelli S, Guérin DMA, Rey FA. Structure of the Triatoma virus capsid. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:1026-37. [PMID: 23695247 PMCID: PMC3663122 DOI: 10.1107/s0907444913004617] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 02/16/2013] [Indexed: 01/08/2023]
Abstract
The members of the Dicistroviridae family are non-enveloped positive-sense single-stranded RNA (+ssRNA) viruses pathogenic to beneficial arthropods as well as insect pests of medical importance. Triatoma virus (TrV), a member of this family, infects several species of triatomine insects (popularly named kissing bugs), which are vectors for human trypanosomiasis, more commonly known as Chagas disease. The potential use of dicistroviruses as biological control agents has drawn considerable attention in the past decade, and several viruses of this family have been identified, with their targets covering honey bees, aphids and field crickets, among others. Here, the crystal structure of the TrV capsid at 2.5 Å resolution is reported, showing that as expected it is very similar to that of Cricket paralysis virus (CrPV). Nevertheless, a number of distinguishing structural features support the introduction of a new genus (Triatovirus; type species TrV) under the Dicistroviridae family. The most striking differences are the absence of icosahedrally ordered VP4 within the infectious particle and the presence of prominent projections that surround the fivefold axis. Furthermore, the structure identifies a second putative autoproteolytic DDF motif in protein VP3, in addition to the conserved one in VP1 which is believed to be responsible for VP0 cleavage during capsid maturation. The potential meaning of these new findings is discussed.
Collapse
Affiliation(s)
- Gaëlle Squires
- Laboratoire de Virologie Moléculaire et Structurale, CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette CEDEX, France
| | - Joan Pous
- Laboratoire de Virologie Moléculaire et Structurale, CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette CEDEX, France
| | - Jon Agirre
- Fundación Biofísica Bizkaia, Barrio Sarriena S/N, 48940 Leioa, Bizkaia (FBB), Spain
- Unidad de Biofísica (UBF, CSIC, UPV/EHU), PO Box 644, 48080 Bilbao, Spain
| | - Gabriela S. Rozas-Dennis
- Departamento de Biología, Bioquímica y Farmacia, U.N.S., San Juan 670, (8000) Bahía Blanca, Argentina
- Departamento de Física, Grupo de Biofísica, U.N.S., Avenida Alem 1253, (8000) Bahía Blanca, Argentina
| | - Marcelo D. Costabel
- Departamento de Física, Grupo de Biofísica, U.N.S., Avenida Alem 1253, (8000) Bahía Blanca, Argentina
| | - Gerardo A. Marti
- Centro de Estudios Parasitológicos y de Vectores (CEPAVE-CCT, La Plata, CONICET-UNLP), Calle 2 No. 584, (1900) La Plata, Argentina
| | - Jorge Navaza
- Laboratoire de Virologie Moléculaire et Structurale, CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette CEDEX, France
| | - Stéphane Bressanelli
- Laboratoire de Virologie Moléculaire et Structurale, CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette CEDEX, France
| | - Diego M. A. Guérin
- Fundación Biofísica Bizkaia, Barrio Sarriena S/N, 48940 Leioa, Bizkaia (FBB), Spain
- Unidad de Biofísica (UBF, CSIC, UPV/EHU), PO Box 644, 48080 Bilbao, Spain
| | - Felix A. Rey
- Laboratoire de Virologie Moléculaire et Structurale, CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette CEDEX, France
| |
Collapse
|
34
|
Molecular techniques for dicistrovirus detection without RNA extraction or purification. BIOMED RESEARCH INTERNATIONAL 2013; 2013:218593. [PMID: 23710438 PMCID: PMC3654624 DOI: 10.1155/2013/218593] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/15/2013] [Accepted: 03/21/2013] [Indexed: 01/31/2023]
Abstract
Dicistroviridae is a new family of small, nonenveloped, and +ssRNA viruses pathogenic to both beneficial arthropods and insect pests as well. Triatoma virus (TrV), a dicistrovirus, is a pathogen of Triatoma infestans (Hemiptera: Reduviidae), one of the main vectors of Chagas disease. In this work, we report a single-step method to identify TrV, a dicistrovirus, isolated from fecal samples of triatomines. The identification method proved to be quite sensitive, even without the extraction and purification of RNA virus.
Collapse
|
35
|
Snijder J, Uetrecht C, Rose RJ, Sanchez-Eugenia R, Marti GA, Agirre J, Guérin DMA, Wuite GJL, Heck AJR, Roos WH. Probing the biophysical interplay between a viral genome and its capsid. Nat Chem 2013; 5:502-9. [DOI: 10.1038/nchem.1627] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 03/15/2013] [Indexed: 11/09/2022]
|
36
|
Querido JFB, Agirre J, Marti GA, Guérin DMA, Silva MS. Inoculation of Triatoma virus (Dicistroviridae: Cripavirus) elicits a non-infective immune response in mice. Parasit Vectors 2013; 6:66. [PMID: 23497610 PMCID: PMC3605389 DOI: 10.1186/1756-3305-6-66] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 03/13/2013] [Indexed: 12/03/2022] Open
Abstract
Background Dicistroviridae is a new family of small, non-enveloped, +ssRNA viruses pathogenic to both beneficial arthropods and insect pests. Little is known about the dicistrovirus replication mechanism or gene function, and any knowledge on these subjects comes mainly from comparisons with mammalian viruses from the Picornaviridae family. Due to its peculiar genome organization and characteristics of the per os viral transmission route, dicistroviruses make good candidates for use as biopesticides. Triatoma virus (TrV) is a pathogen of Triatoma infestans (Hemiptera: Reduviidae), one of the main vectors of the human trypanosomiasis disease called Chagas disease. TrV was postulated as a potential control agent against Chagas’ vectors. Although there is no evidence that TrV nor other dicistroviruses replicate in species outside the Insecta class, the innocuousness of these viruses in humans and animals needs to be ascertained. Methods In this study, RT-PCR and ELISA were used to detect the infectivity of this virus in Mus musculus BALB/c mice. Results In this study we have observed that there is no significant difference in the ratio IgG2a/IgG1 in sera from animals inoculated with TrV when compared with non-inoculated animals or mice inoculated only with non-infective TrV protein capsids. Conclusions We conclude that, under our experimental conditions, TrV is unable to replicate in mice. This study constitutes the first test to evaluate the infectivity of a dicistrovirus in a vertebrate animal model.
Collapse
Affiliation(s)
- Jailson F B Querido
- Centre for Malaria and Tropical Diseases, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal
| | | | | | | | | |
Collapse
|
37
|
Agirre J, Goret G, LeGoff M, Sánchez-Eugenia R, Marti GA, Navaza J, Guérin DMA, Neumann E. Cryo-electron microscopy reconstructions of triatoma virus particles: a clue to unravel genome delivery and capsid disassembly. J Gen Virol 2013; 94:1058-1068. [PMID: 23288423 DOI: 10.1099/vir.0.048553-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Triatoma virus (TrV) is a member of the insect virus family Dicistroviridae and consists of a small, non-enveloped capsid that encloses its positive-sense ssRNA genome. Using cryo-transmission electron microscopy and three-dimensional reconstruction techniques combined with fitting of the available crystallographic models, this study analysed the capsids corresponding to mature and several RNA-empty TrV particles. After genome release, the resulting reconstruction of the empty capsids displayed no prominent conformational changes with respect to the full virion capsid. The results showed that RNA delivery led to empty capsids with an apparent overall intact protein shell and suggested that, in a subsequent step, empty capsids disassemble into small symmetrical particles. Contrary to what is observed upon genome release in mammalian picornaviruses, the empty TrV capsid maintained a protein shell thickness and size identical to that in full virions.
Collapse
Affiliation(s)
- J Agirre
- Fundación Biofísica Bizkaia, B° Sarriena S/N, 48940 Leioa, Bizkaia, Spain.,Unidad de Biofisica (CSIC, UPV/EHU), PO Box 644, E-48080 Bilbao, Spain
| | - G Goret
- IBS, Institut de Biologie Structurale Jean-Pierre Ebel, UMR 5075 CNRS-CEA-UJF, 41 rue Jules Horowitz, F-38027 Grenoble, France
| | - M LeGoff
- IBS, Institut de Biologie Structurale Jean-Pierre Ebel, UMR 5075 CNRS-CEA-UJF, 41 rue Jules Horowitz, F-38027 Grenoble, France
| | - R Sánchez-Eugenia
- Unidad de Biofisica (CSIC, UPV/EHU), PO Box 644, E-48080 Bilbao, Spain
| | - G A Marti
- Centro de Estudios Parasitológicos y de Vectores (CEPAVE-CCT-La Plata-CONICET-UNLP), 2#584 (1900) La Plata, Argentina
| | - J Navaza
- IBS, Institut de Biologie Structurale Jean-Pierre Ebel, UMR 5075 CNRS-CEA-UJF, 41 rue Jules Horowitz, F-38027 Grenoble, France
| | - D M A Guérin
- Fundación Biofísica Bizkaia, B° Sarriena S/N, 48940 Leioa, Bizkaia, Spain.,Unidad de Biofisica (CSIC, UPV/EHU), PO Box 644, E-48080 Bilbao, Spain
| | - E Neumann
- IBS, Institut de Biologie Structurale Jean-Pierre Ebel, UMR 5075 CNRS-CEA-UJF, 41 rue Jules Horowitz, F-38027 Grenoble, France
| |
Collapse
|
38
|
Alternative reading frame selection mediated by a tRNA-like domain of an internal ribosome entry site. Proc Natl Acad Sci U S A 2012; 109:E630-9. [PMID: 22247292 DOI: 10.1073/pnas.1111303109] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The dicistrovirus intergenic region internal ribosome entry site (IRES) utilizes a unique mechanism, involving P-site tRNA mimicry, to directly assemble 80S ribosomes and initiate translation at a specific non-AUG codon in the ribosomal A site. A subgroup of dicistrovirus genomes contains an additional stem-loop 5'-adjacent to the IRES and a short open reading frame (ORFx) that overlaps the viral structural polyprotein ORF (ORF2) in the +1 reading frame. Using mass spectrometry and extensive mutagenesis, we show that, besides directing ORF2 translation, the Israeli acute paralysis dicistrovirus IRES also directs ORFx translation. The latter is mediated by a UG base pair adjacent to the P-site tRNA-mimicking domain. An ORFx peptide was detected in virus-infected honey bees by multiple reaction monitoring mass spectrometry. Finally, the 5' stem-loop increases IRES activity and may couple translation of the two major ORFs of the virus. This study reveals a novel viral strategy in which a tRNA-like IRES directs precise, initiator Met-tRNA-independent translation of two overlapping ORFs.
Collapse
|