1
|
Shrestha N, Weber PH, Burke SV, Wysocki WP, Duvall MR, Bujarski JJ. Next generation sequencing reveals packaging of host RNAs by brome mosaic virus. Virus Res 2018; 252:82-90. [PMID: 29753892 DOI: 10.1016/j.virusres.2018.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/05/2018] [Accepted: 05/09/2018] [Indexed: 12/28/2022]
Abstract
Although RNA viruses evolved the mechanisms of specific encapsidation, miss-packaging of cellular RNAs has been reported in such RNA virus systems as flock house virus or cucumber necrosis virus. To find out if brome mosaic virus (BMV), a tripartite RNA virus, can package cellular RNAs, BMV was propagated in barley and in Nicotiana benthamiana hosts, purified by cesium chloride (CsCl) gradient ultracentrifugation followed by nuclease treatment to remove any contaminating cellular (host) RNAs. The extracted virion RNA was then sequenced by using next-generation sequencing (NGS RNA-Seq) with the Illumina protocol. Bioinformatic analysis revealed the content of host RNAs ranging from 0.07% for BMV extracted from barley to 0.10% for the virus extracted from N. benthamiana. The viruses from two sources appeared to co-encapsidate different patterns of host-RNAs, including ribosomal RNAs (rRNAs), messenger RNAs (mRNAs) but also mitochondrial and plastid RNAs and, interestingly, transposable elements, both transposons and retrotransposons. Our data reveal that BMV virions can carry host RNAs, having a potential to mediate horizontal gene transfer (HGT) in plants.
Collapse
Affiliation(s)
- N Shrestha
- Department of Biological Sciences and Plant Molecular and Bioinformatics Center, Northern Illinois University, DeKalb, IL 60115, USA
| | - P H Weber
- Department of Biological Sciences and Plant Molecular and Bioinformatics Center, Northern Illinois University, DeKalb, IL 60115, USA.
| | - S V Burke
- Department of Biological Sciences and Plant Molecular and Bioinformatics Center, Northern Illinois University, DeKalb, IL 60115, USA
| | - W P Wysocki
- Department of Biological Sciences and Plant Molecular and Bioinformatics Center, Northern Illinois University, DeKalb, IL 60115, USA.
| | - M R Duvall
- Department of Biological Sciences and Plant Molecular and Bioinformatics Center, Northern Illinois University, DeKalb, IL 60115, USA
| | - J J Bujarski
- Department of Biological Sciences and Plant Molecular and Bioinformatics Center, Northern Illinois University, DeKalb, IL 60115, USA; Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| |
Collapse
|
2
|
Garcia-Ruiz H, Diaz A, Ahlquist P. Intermolecular RNA Recombination Occurs at Different Frequencies in Alternate Forms of Brome Mosaic Virus RNA Replication Compartments. Viruses 2018; 10:v10030131. [PMID: 29543718 PMCID: PMC5869524 DOI: 10.3390/v10030131] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 01/27/2023] Open
Abstract
Positive-strand RNA viruses replicate their genomes in membrane-bound replication compartments. Brome mosaic virus (BMV) replicates in vesicular invaginations of the endoplasmic reticulum membrane. BMV has served as a productive model system to study processes like virus-host interactions, RNA replication and recombination. Here we present multiple lines of evidence showing that the structure of the viral RNA replication compartments plays a fundamental role and that recruitment of parental RNAs to a common replication compartment is a limiting step in intermolecular RNA recombination. We show that a previously defined requirement for an RNA recruitment element on both parental RNAs is not to function as a preferred crossover site, but in order for individual RNAs to be recruited into the replication compartments. Moreover, modulating the form of the replication compartments from spherular vesicles (spherules) to more expansive membrane layers increased intermolecular RNA recombination frequency by 200- to 1000-fold. We propose that intermolecular RNA recombination requires parental RNAs to be recruited into replication compartments as monomers, and that recruitment of multiple RNAs into a contiguous space is much more common for layers than for spherules. These results could explain differences in recombination frequencies between viruses that replicate in association with smaller spherules versus larger double-membrane vesicles and convoluted membranes.
Collapse
Affiliation(s)
- Hernan Garcia-Ruiz
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706, USA.
- Nebraska Center for Virology, Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68503, USA.
| | - Arturo Diaz
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706, USA.
- Department of Biology, La Sierra University, Riverside, CA 92515, USA.
| | - Paul Ahlquist
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706, USA.
- Howard Hughes Medical Institute and Morgridge Institute for Research, University of Wisconsin-Madison, MadisonWI 53706, USA.
| |
Collapse
|
3
|
Kozieł E, Bujarski JJ, Otulak K. Molecular Biology of Prune Dwarf Virus-A Lesser Known Member of the Bromoviridae but a Vital Component in the Dynamic Virus-Host Cell Interaction Network. Int J Mol Sci 2017; 18:E2733. [PMID: 29258199 PMCID: PMC5751334 DOI: 10.3390/ijms18122733] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/21/2017] [Accepted: 12/13/2017] [Indexed: 12/29/2022] Open
Abstract
Prune dwarf virus (PDV) is one of the members of Bromoviridae family, genus Ilarvirus. Host components that participate in the regulation of viral replication or cell-to-cell movement via plasmodesmata are still unknown. In contrast, viral infections caused by some other Bromoviridae members are well characterized. Bromoviridae can be distinguished based on localization of their replication process in infected cells, cell-to-cell movement mechanisms, and plant-specific response reactions. Depending upon the genus, "genome activation" and viral replication are linked to various membranous structures ranging from endoplasmic reticulum, to tonoplast. In the case of PDV, there is still no evidence of natural resistance sources in the host plants susceptible to virus infection. Apparently, PDV has a great ability to overcome the natural defense responses in a wide spectrum of plant hosts. The first manifestations of PDV infection are specific cell membrane alterations, and the formation of replicase complexes that support PDV RNA replication inside the spherules. During each stage of its life cycle, the virus uses cell components to replicate and to spread in whole plants, within the largely suppressed cellular immunity environment. This work presents the above stages of the PDV life cycle in the context of current knowledge about other Bromoviridae members.
Collapse
Affiliation(s)
- Edmund Kozieł
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland.
| | - Józef J Bujarski
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA.
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland.
| | - Katarzyna Otulak
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland.
| |
Collapse
|
4
|
Kolondam B, Rao P, Sztuba-Solinska J, Weber PH, Dzianott A, Johns MA, Bujarski JJ. Co-infection with two strains of Brome mosaic bromovirus reveals common RNA recombination sites in different hosts. Virus Evol 2015; 1:vev021. [PMID: 27774290 PMCID: PMC5014487 DOI: 10.1093/ve/vev021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have previously reported intra-segmental crossovers in Brome mosaic virus (BMV) RNAs. In this work, we studied the homologous recombination of BMV RNA in three different hosts: barley (Hordeum vulgare), Chenopodium quinoa, and Nicotiana benthamiana that were co-infected with two strains of BMV: Russian (R) and Fescue (F). Our work aimed at (1) establishing the frequency of recombination, (2) mapping the recombination hot spots, and (3) addressing host effects. The F and R nucleotide sequences differ from each other at many translationally silent nucleotide substitutions. We exploited this natural variability to track the crossover sites. Sequencing of a large number of cDNA clones revealed multiple homologous crossovers in each BMV RNA segment, in both the whole plants and protoplasts. Some recombination hot spots mapped at similar locations in different hosts, suggesting a role for viral factors, but other sites depended on the host. Our results demonstrate the chimeric ('mosaic') nature of the BMV RNA genome.
Collapse
Affiliation(s)
- Beivy Kolondam
- Department of Biological Sciences and Plant Molecular Biology Center, Northern Illinois University, DeKalb, IL 60115, USA and
| | - Parth Rao
- Department of Biological Sciences and Plant Molecular Biology Center, Northern Illinois University, DeKalb, IL 60115, USA and
| | - Joanna Sztuba-Solinska
- Department of Biological Sciences and Plant Molecular Biology Center, Northern Illinois University, DeKalb, IL 60115, USA and
| | - Philipp H Weber
- Department of Biological Sciences and Plant Molecular Biology Center, Northern Illinois University, DeKalb, IL 60115, USA and
| | - Aleksandra Dzianott
- Department of Biological Sciences and Plant Molecular Biology Center, Northern Illinois University, DeKalb, IL 60115, USA and
| | - Mitrick A Johns
- Department of Biological Sciences and Plant Molecular Biology Center, Northern Illinois University, DeKalb, IL 60115, USA and
| | - Jozef J Bujarski
- Department of Biological Sciences and Plant Molecular Biology Center, Northern Illinois University, DeKalb, IL 60115, USA and; Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| |
Collapse
|
5
|
Ramanna H, Ding XS, Nelson RS. Rationale for developing new virus vectors to analyze gene function in grasses through virus-induced gene silencing. Methods Mol Biol 2013; 975:15-32. [PMID: 23386292 DOI: 10.1007/978-1-62703-278-0_2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The exploding availability of genome and EST-based sequences from grasses requires a technology that allows rapid functional analysis of the multitude of genes that these resources provide. There are several techniques available to determine a gene's function. For gene knockdown studies, silencing through RNAi is a powerful tool. Gene silencing can be accomplished through stable transformation or transient expression of a fragment of a target gene sequence. Stable transformation in rice, maize, and a few other species, although routine, remains a relatively low-throughput process. Transformation in other grass species is difficult and labor-intensive. Therefore, transient gene silencing methods including Agrobacterium-mediated and virus-induced gene silencing (VIGS) have great potential for researchers studying gene function in grasses. VIGS in grasses already has been used to determine the function of genes during pathogen challenge and plant development. It also can be used in moderate-throughput reverse genetics screens to determine gene function. However, the number of viruses modified to serve as silencing vectors in grasses is limited, and the silencing phenotype induced by these vectors is not optimal: the phenotype being transient and with moderate penetration throughout the tissue. Here, we review the most recent information available for VIGS in grasses and summarize the strengths and weaknesses in current virus-grass host systems. We describe ways to improve current virus vectors and the potential of other grass-infecting viruses for VIGS studies. This work is necessary because VIGS for the foreseeable future remains a higher throughput and more rapid system to evaluate gene function than stable transformation.
Collapse
Affiliation(s)
- Hema Ramanna
- Plant Biology Division, The Samuel Roberts Noble Foundation Inc., Ardmore, OK, USA
| | | | | |
Collapse
|
6
|
Sztuba-Solińska J, Fanning SW, Horn JR, Bujarski JJ. Mutations in the coat protein-binding cis-acting RNA motifs debilitate RNA recombination of Brome mosaic virus. Virus Res 2012; 170:138-49. [PMID: 23079110 PMCID: PMC7114393 DOI: 10.1016/j.virusres.2012.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 10/04/2012] [Accepted: 10/05/2012] [Indexed: 12/14/2022]
Abstract
We have previously described the efficient homologous recombination system between 5' subgenomic RNA3a (sgRNA3a) and genomic RNA3 of Brome mosaic virus (BMV) in barley protoplasts (Sztuba-Solińska et al., 2011a). Here, we demonstrated that sequence alterations in the coat protein (CP)-binding cis-acting RNA motifs, the Bbox region (in the intercistronic RNA3 sequence) and the RNA3 packaging element (PE, in the movement protein ORF), reduced crossover frequencies in protoplasts. Additionally, the modification of Bbox-like element in the 5' UTR region strongly debilitated crossovers. Along the lines of these observations, RNA3 mutants not expressing CP or expressing mutated CPs also reduced recombination. A series of reciprocal transfections demonstrated a functional crosstalk between the Bbox and PE elements. Altogether, our data imply the role of CP in sgRNA3a-directed recombination by either facilitating the interaction of the RNA substrates and/or by creating roadblocks for the viral replicase.
Collapse
Affiliation(s)
- Joanna Sztuba-Solińska
- Plant Molecular Biology Center and the Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA
| | | | | | | |
Collapse
|
7
|
Wang B, Zhang Z, Yin Z, Feng C, Wang Q. Novel and potential application of cryopreservation to plant genetic transformation. Biotechnol Adv 2012; 30:604-12. [DOI: 10.1016/j.biotechadv.2011.10.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Revised: 10/09/2011] [Accepted: 10/25/2011] [Indexed: 12/15/2022]
|
8
|
Kwon SJ, Rao ALN. Emergence of distinct brome mosaic virus recombinants is determined by the polarity of the inoculum RNA. J Virol 2012; 86:5204-20. [PMID: 22357282 PMCID: PMC3347362 DOI: 10.1128/jvi.00351-12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 02/14/2012] [Indexed: 12/22/2022] Open
Abstract
Despite overwhelming interest in the impact exerted by recombination during evolution of RNA viruses, the relative contribution of the polarity of inoculum templates remains poorly understood. Here, by agroinfiltrating Nicotiana benthamiana leaves, we show that brome mosaic virus (BMV) replicase is competent to initiate positive-strand [(+)-strand] synthesis on an ectopically expressed RNA3 negative strand [(-) strand] and faithfully complete the replication cycle. Consequently, we sought to examine the role of RNA polarity in BMV recombination by expressing a series of replication-defective mutants of BMV RNA3 in (+) or (-) polarity. Temporal analysis of progeny sequences revealed that the genetic makeup of the primary recombinant pool is determined by the polarity of the inoculum template. When the polarity of the inoculum template was (+), the recombinant pool that accumulated during early phases of replication was a mixture of nonhomologous recombinants. These are longer than the inoculum template length, and a nascent 3' untranslated region (UTR) of wild-type (WT) RNA1 or RNA2 was added to the input mutant RNA3 3' UTR due to end-to-end template switching by BMV replicase during (-)-strand synthesis. In contrast, when the polarity of the inoculum was (-), the progeny contained a pool of native-length homologous recombinants generated by template switching of BMV replicase with a nascent UTR from WT RNA1 or RNA2 during (+)-strand synthesis. Repair of a point mutation caused by polymerase error occurred only when the polarity of the inoculum template was (+). These results contribute to the explanation of the functional role of RNA polarity in recombination mediated by copy choice mechanisms.
Collapse
Affiliation(s)
- Sun-Jung Kwon
- Department of Plant Pathology & Microbiology, University of California, Riverside, California, USA
| | | |
Collapse
|
9
|
Sztuba-Solińska J, Stollar V, Bujarski JJ. Subgenomic messenger RNAs: mastering regulation of (+)-strand RNA virus life cycle. Virology 2011; 412:245-55. [PMID: 21377709 PMCID: PMC7111999 DOI: 10.1016/j.virol.2011.02.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 12/14/2010] [Accepted: 02/04/2011] [Indexed: 12/12/2022]
Abstract
Many (+)-strand RNA viruses use subgenomic (SG) RNAs as messengers for protein expression, or to regulate their viral life cycle. Three different mechanisms have been described for the synthesis of SG RNAs. The first mechanism involves internal initiation on a (−)-strand RNA template and requires an internal SGP promoter. The second mechanism makes a prematurely terminated (−)-strand RNA which is used as template to make the SG RNA. The third mechanism uses discontinuous RNA synthesis while making the (−)-strand RNA templates. Most SG RNAs are translated into structural proteins or proteins related to pathogenesis: however other SG RNAs regulate the transition between translation and replication, function as riboregulators of replication or translation, or support RNA–RNA recombination. In this review we discuss these functions of SG RNAs and how they influence viral replication, translation and recombination.
Collapse
Affiliation(s)
- Joanna Sztuba-Solińska
- Plant Molecular Biology Center and the Department of Biological Sciences, Northern Illinois University, De Kalb, IL 60115, USA
| | | | | |
Collapse
|
10
|
Sztuba-Solińska J, Urbanowicz A, Figlerowicz M, Bujarski JJ. RNA-RNA recombination in plant virus replication and evolution. ANNUAL REVIEW OF PHYTOPATHOLOGY 2011; 49:415-43. [PMID: 21529157 DOI: 10.1146/annurev-phyto-072910-095351] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
RNA-RNA recombination is one of the strongest forces shaping the genomes of plant RNA viruses. The detection of recombination is a challenging task that prompted the development of both in vitro and in vivo experimental systems. In the divided genome of Brome mosaic virus system, both inter- and intrasegmental crossovers are described. Other systems utilize satellite or defective interfering RNAs (DI-RNAs) of Turnip crinkle virus, Tomato bushy stunt virus, Cucumber necrosis virus, and Potato virus X. These assays identified the mechanistic details of the recombination process, revealing the role of RNA structure and proteins in the replicase-mediated copy-choice mechanism. In copy choice, the polymerase and the nascent RNA chain from which it is synthesized switch from one RNA template to another. RNA recombination was found to mediate the rearrangement of viral genes, the repair of deleterious mutations, and the acquisition of nonself sequences influencing the phylogenetics of viral taxa. The evidence for recombination, not only between related viruses but also among distantly related viruses, and even with host RNAs, suggests that plant viruses unabashedly test recombination with any genetic material at hand.
Collapse
Affiliation(s)
- Joanna Sztuba-Solińska
- Plant Molecular Biology Center, Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois 60115, USA
| | | | | | | |
Collapse
|