1
|
Wu Q, Zhong L, Wei D, Zhang W, Hong J, Kang Y, Chen K, Huang Y, Zheng Q, Xu M, Zeng MS, Zeng YX, Xia N, Zhao Q, Krummenacher C, Chen Y, Zhang X. Neutralizing antibodies against EBV gp42 show potent in vivo protection and define novel epitopes. Emerg Microbes Infect 2023; 12:2245920. [PMID: 37542379 PMCID: PMC10443957 DOI: 10.1080/22221751.2023.2245920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/23/2023] [Accepted: 08/03/2023] [Indexed: 08/06/2023]
Abstract
Epstein-Barr virus (EBV) is the first reported human oncogenic virus and infects more than 95% of the human population worldwide. EBV latent infection in B lymphocytes is essential for viral persistence. Glycoprotein gp42 is an indispensable member of the triggering complex for EBV entry into B cells. The C-type lectin domain (CTLD) of gp42 plays a key role in receptor binding and is the major target of neutralizing antibodies. Here, we isolated two rabbit antibodies, 1A7 and 6G7, targeting gp42 CTLD with potent neutralizing activity against B cell infection. Antibody 6G7 efficiently protects humanized mice from lethal EBV challenge and EBV-induced lymphoma. Neutralizing epitopes targeted by antibodies 1A7 and 6G7 are distinct and novel. Antibody 6G7 blocks gp42 binding to B cell surface and both 1A7 and 6G7 inhibit membrane fusion with B cells. Furthermore, 1A7- and 6G7-like antibodies in immunized sera are major contributors to B cell neutralization. This study demonstrates that anti-gp42 neutralizing antibodies are effective in inhibiting EBV infection and sheds light on the design of gp42-based vaccines and therapeutics.
Collapse
Affiliation(s)
- Qian Wu
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Life Sciences, School of Public Health, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, People’s Republic of China
| | - Ling Zhong
- College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Dongmei Wei
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Life Sciences, School of Public Health, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, People’s Republic of China
| | - Wanlin Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Junping Hong
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Life Sciences, School of Public Health, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, People’s Republic of China
| | - Yinfeng Kang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Kaiyun Chen
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Life Sciences, School of Public Health, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, People’s Republic of China
| | - Yang Huang
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Life Sciences, School of Public Health, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, People’s Republic of China
| | - Qingbing Zheng
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Life Sciences, School of Public Health, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, People’s Republic of China
| | - Miao Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yi-Xin Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Life Sciences, School of Public Health, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, People’s Republic of China
| | - Qinjian Zhao
- College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Claude Krummenacher
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ, USA
| | - Yixin Chen
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Life Sciences, School of Public Health, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, People’s Republic of China
| | - Xiao Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
2
|
Antibody Generation and Immunogenicity Analysis of EBV gp42 N-Terminal Region. Viruses 2021; 13:v13122380. [PMID: 34960650 PMCID: PMC8707153 DOI: 10.3390/v13122380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/16/2021] [Accepted: 11/26/2021] [Indexed: 01/21/2023] Open
Abstract
Epstein–Barr virus (EBV) is the first reported oncogenic virus and infects more than 90% of adults worldwide. EBV can establish a latent infection in B lymphocytes which is essential for persistence and transmission. Glycoprotein gp42 is an indispensable member of the triggering complex for EBV entry into a B cell. The N-terminal region of gp42 plays a key role in binding to gH/gL and triggering subsequent membrane fusion. However, no antibody has been reported to recognize this region and the immunogenicity of gp42 N-domain remains unknown. In the present study, we have generated a panel of nine mAbs against the gp42 N-terminal region (six mAbs to gp42-44-61aa and three mAbs to gp42-67-81aa). These mAbs show excellent binding activity and recognize different key residues locating on the gp42 N-domain. Among the nine mAbs, 4H7, 4H8 and 11G10 cross-react with rhLCV-gp42 while other mAbs specifically recognize EBV-gp42. Our newly obtained mAbs provide a useful tool for investigating the gp42 function and viral infection mechanism of γ-Herpesvirus. Furthermore, we assess the immunogenicity of the gp42 N-terminal region using the HBc149 particle as a carrier protein. The chimeric VLPs can induce high antibody titers and elicit neutralizing humoral responses to block EBV infection. More rational and effective designs are required to promote the gp42-N terminal region to become an epitope-based vaccine.
Collapse
|
3
|
Berenstein AJ, Lorenzetti MA, Preciado MV. Recombination rates along the entire Epstein Barr virus genome display a highly heterogeneous landscape. INFECTION GENETICS AND EVOLUTION 2018; 65:96-103. [PMID: 30031929 DOI: 10.1016/j.meegid.2018.07.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/10/2018] [Accepted: 07/18/2018] [Indexed: 12/30/2022]
Abstract
Epstein Barr virus (EBV) has a large DNA genome assumed to be stable, but also subject to mutational processes such as nucleotide substitution and recombination, the latter explored to a lesser extent. Moreover, differences in the extent of recombination events across herpes sub-families were recently reported. Given the relevance of recombination in viral evolution and its possible impact in pathogenesis, we aimed to fully characterize and quantify its extension in all available EBV complete genome by assessing global and local recombination rate values (⍴/bp). Our results provide the first EBV recombination map based on recombination rates assessment, both at a global and gene by gene level, where the mean value for the entire genome was 0.035 (HPDI 0.020-0.062) ⍴/bp. We quantified how this evolutionary process changes along the EBV genome, and proved it to be non-homogeneous, since regulatory regions depicted the lowest recombination rate values while repetitive regions the highest signal. Moreover, GC content rich regions seem not to be linked to high recombination rates as previously reported. At an intragenic level, four genes (EBNA3C, EBNA3B, BRRF2 and BBLF2-BBLF3) presented a recombination rate above genome average. We specifically quantified the signal strength among different recombination-initiators previously described features and concluded that those which elicited the greatest amount of changes in ⍴/bp, TGGAG and CCCAG, were two well characterized recombination inducing motifs in eukaryotic cells. Strikingly, although TGGAG was not the most frequently detected DNA motif across the EBV genome (697 hits), it still induced a significantly greater proportion of initiation events (0.025 events/hits) than other more represented motifs, p-value = 0.04; one tailed proportion test. Present results support the idea that diversity and evolution of herpesviruses are impacted by mechanisms, such as recombination, which extends beyond the usual consideration of point mutations.
Collapse
Affiliation(s)
- Ariel José Berenstein
- Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP), CONICET-GCBA, Laboratorio de Biología Molecular, División Patología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Mario Alejandro Lorenzetti
- Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP), CONICET-GCBA, Laboratorio de Biología Molecular, División Patología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - María Victoria Preciado
- Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP), CONICET-GCBA, Laboratorio de Biología Molecular, División Patología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina.
| |
Collapse
|
4
|
The Cytoplasmic Tail Domain of Epstein-Barr Virus gH Regulates Membrane Fusion Activity through Altering gH Binding to gp42 and Epithelial Cell Attachment. mBio 2016; 7:mBio.01871-16. [PMID: 27935841 PMCID: PMC5111410 DOI: 10.1128/mbio.01871-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Epstein-Barr virus (EBV) is associated with infectious mononucleosis and a variety of cancers as well as lymphoproliferative disorders in immunocompromised patients. EBV mediates viral entry into epithelial and B cells using fusion machinery composed of four glycoproteins: gB, the gH/gL complex, and gp42. gB and gH/gL are required for both epithelial and B cell fusion. The specific role of gH/gL in fusion has been the most elusive among the required herpesvirus entry glycoproteins. Previous mutational studies have focused on the ectodomain of EBV gH and not on the gH cytoplasmic tail domain (CTD). In this study, we chose to examine the function of the gH CTD by making serial gH truncation mutants as well as amino acid substitution mutants to determine the importance of the gH CTD in epithelial and B cell fusion. Truncation of 8 amino acids (aa 698 to 706) of the gH CTD resulted in diminished fusion activity using a virus-free syncytium formation assay and fusion assay. The importance of the amino acid composition of the gH CTD was also investigated by amino acid substitutions that altered the hydrophobicity or hydrophilicity of the CTD. These mutations also resulted in diminished fusion activity. Interestingly, some of the gH CTD truncation mutants and hydrophilic tail substitution mutants lost the ability to bind to gp42 and epithelial cells. In summary, our studies indicate that the gH CTD is an important functional domain. Infection with Epstein-Barr virus (EBV) causes diseases ranging from the fairly benign infectious mononucleosis to life-threatening cancer. Entry into target cells is the first step for viral infection and is important for EBV to cause disease. Understanding the EBV entry mechanism is useful for the development of infection inhibitors and developing EBV vaccine approaches. Epithelial and B cells are the main target cells for EBV infection. The essential glycoproteins for EBV entry include gB, gH/gL, and gp42. We characterized the function of the EBV gH C-terminal cytoplasmic tail domain (CTD) in fusion using a panel of gH CTD truncation or substitution mutants. We found that the gH CTD regulates fusion by altering gp42 and epithelial cell attachment. Our studies may lead to a better understanding of EBV fusion and entry, which may result in novel therapies that target the EBV entry step.
Collapse
|
5
|
Membrane anchoring of Epstein-Barr virus gp42 inhibits fusion with B cells even with increased flexibility allowed by engineered spacers. mBio 2015; 6:mBio.02285-14. [PMID: 25564465 PMCID: PMC4313908 DOI: 10.1128/mbio.02285-14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED We recently described the architecture of the Epstein-Barr virus (EBV) fusion-triggering complex consisting of the EBV B cell receptor human leukocyte antigen (HLA) class II and the EBV-encoded proteins gp42 and gH/gL. The architecture of this structure positioned the main body of gp42, comprising the C-type lectin domain (CTLD), away from the membrane and distant from where the membrane-bound form of gp42 might be tethered. gp42 is a type II membrane glycoprotein, with functional gp42 formed by cleavage near the gp42 amino-terminal transmembrane domain. This cleavage results in an approximately 50-amino-acid unstructured region that is responsible for binding gH/gL with nanomolar affinity. Our previous studies had shown that membrane-bound gp42 is not functional in B cell fusion. To investigate whether we could restore gp42 function by extending it from the membrane, we introduced one, two, and four structured immunoglobulin-like domains from muscle protein titin into a membrane-bound form of gp42 and tested function in binding to gHgL and HLA class II and function in fusion. We hypothesized that cleavage of gp42 generates a soluble functional form that relieves steric hindrance imposed on gHgL by membrane-bound gp42. All of the linker mutants had a dominant-negative effect on gp42 function, indicating that gp42 fusion function could not be restored simply by the addition of one to four titin domains. IMPORTANCE Epstein-Barr virus (EBV) is associated with numerous diseases from benign mononucleosis to Burkitt's and Hodgkin's lymphoma, nasopharyngeal and gastric carcinoma, and lymphoproliferative disorders in patients with immune dysfunction resulting from immune suppression. Among the glycoproteins important for fusion, gp42, along with gH/gL, determines EBV tropism between epithelial and B cells. The function of gp42 is dependent on N-terminal cleavage, since membrane-bound gp42 cannot mediate fusion. We further investigated whether insertion of a linker into membrane-bound gp42 would relieve steric hindrance imposed on membrane-bound gp42 and restore fusion function. However, adding one, two, or four structured immunoglobulin-like domains to membrane gp42 did not restore fusion activity, indicating that the architecture and membrane orientation of the B cell fusion-triggering complex of EBV may be easily perturbed and that gp42 cleavage is essential for B cell fusion.
Collapse
|
6
|
Sathiyamoorthy K, Jiang J, Hu YX, Rowe CL, Möhl BS, Chen J, Jiang W, Mellins ED, Longnecker R, Zhou ZH, Jardetzky TS. Assembly and architecture of the EBV B cell entry triggering complex. PLoS Pathog 2014; 10:e1004309. [PMID: 25144748 PMCID: PMC4140853 DOI: 10.1371/journal.ppat.1004309] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 07/01/2014] [Indexed: 11/18/2022] Open
Abstract
Epstein-Barr Virus (EBV) is an enveloped double-stranded DNA virus of the gammaherpesvirinae sub-family that predominantly infects humans through epithelial cells and B cells. Three EBV glycoproteins, gH, gL and gp42, form a complex that targets EBV infection of B cells. Human leukocyte antigen (HLA) class II molecules expressed on B cells serve as the receptor for gp42, triggering membrane fusion and virus entry. The mechanistic role of gHgL in herpesvirus entry has been largely unresolved, but it is thought to regulate the activation of the virally-encoded gB protein, which acts as the primary fusogen. Here we study the assembly and function of the reconstituted B cell entry complex comprised of gHgL, gp42 and HLA class II. The structure from negative-stain electron microscopy provides a detailed snapshot of an intermediate state in EBV entry and highlights the potential for the triggering complex to bring the two membrane bilayers into proximity. Furthermore, gHgL interacts with a previously identified, functionally important hydrophobic pocket on gp42, defining the overall architecture of the complex and playing a critical role in membrane fusion activation. We propose a macroscopic model of the initiating events in EBV B cell fusion centered on the formation of the triggering complex in the context of both viral and host membranes. This model suggests how the triggering complex may bridge the two membrane bilayers, orienting critical regions of the N- and C- terminal ends of gHgL to promote the activation of gB and efficient membrane fusion.
Collapse
Affiliation(s)
- Karthik Sathiyamoorthy
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Jiansen Jiang
- Department of Microbiology, Immunology & Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Yao Xiong Hu
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Cynthia L. Rowe
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Britta S. Möhl
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Jia Chen
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Wei Jiang
- Department of Pediatrics, Program in Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Elizabeth D. Mellins
- Department of Pediatrics, Program in Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Richard Longnecker
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Z. Hong Zhou
- Department of Microbiology, Immunology & Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Theodore S. Jardetzky
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
7
|
The large groove found in the gH/gL structure is an important functional domain for Epstein-Barr virus fusion. J Virol 2013; 87:3620-7. [PMID: 23325693 DOI: 10.1128/jvi.03245-12] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV) mediates viral entry into cells using four glycoproteins-gB, the gH/gL complex, and gp42-and fusion is cell type specific. gB and gH/gL are required for epithelial cell fusion; B cell fusion also requires gp42. To investigate functional domains within the gH/gL structure, we constructed site-directed EBV gH/gL mutants with alterations of residues located in a large groove that separates domain I (D-I) from domain II (D-II) within the gH/gL structure. We found that substitution of alanine for leucine 207 reduces both epithelial and B cell fusion and is accompanied by reduced gp42 binding. We also observed that substitution of alanine for arginine 152, histidine 154, or threonine 174 reduces fusion with epithelial cells but not with B cells. To test whether flexibility of the region between D-I and D-II of gH/gL could be important for membrane fusion activity and to allow potential interactions across the D-I/D-II groove, we mutated D-I amino acids V47, P48, and G49 to cysteine, allowing novel intersubunit disulfide bonds to form with the free C153 located in D-II. We found that the G49C mutant, predicted to bridge D-I and D-II with C153 of gH/gL, had normal B cell fusion activity but reduced epithelial cell fusion activity, which was partially restored by treatment with dithiothreitol. We conclude that structural rearrangements and/or interactions across the D-I/D-II groove of gH/gL are required for fusion with epithelial cells but not for fusion with B cells.
Collapse
|
8
|
The KGD motif of Epstein-Barr virus gH/gL is bifunctional, orchestrating infection of B cells and epithelial cells. mBio 2012; 3:mBio.00290-11. [PMID: 22215569 PMCID: PMC3251506 DOI: 10.1128/mbio.00290-11] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Epstein-Barr virus (EBV), a member of the herpesvirus family, is the causative agent of common human infections and specific malignancies. EBV entry into target cells, including B cells and epithelial cells, requires the interaction of multiple virus-encoded glycoproteins. Glycoproteins H and L (gH/gL) cooperate with glycoprotein B (gB) to mediate fusion of the viral envelope with target cell membranes. Both the gH/gL complex and gB are required for fusion, whereas glycoprotein 42 (gp42) acts as a tropism switch and is required for B cell infection and inhibits epithelial cell infection. Our previous studies identified a prominent KGD motif located on the surface of gH/gL. In the current study, we found that this motif serves as a bifunctional domain on the surface of gH/gL that directs EBV fusion of B cells and epithelial cells. Mutation of the KGD motif to AAA decreased fusion with both epithelial and B cells and reduced the binding of gH/gL to epithelial cells and to gp42. We also demonstrate that deletion of amino acids 62 to 66 of gp42 selectively reduces binding to wild-type gH/gL, but not the KGD mutant, suggesting that the KGD motif of gH/gL interacts with the N-terminal amino acids 62 to 66 of gp42. Epithelial and B cells are the major targets of Epstein-Barr virus (EBV) infection in the human host. EBV utilizes different glycoprotein complexes to enter these cell types. For B cell fusion, EBV uses complexes containing gp42, gH/gL, and gB, whereas just gH/gL and gB are required for epithelial cell fusion. In the current study, a bifunctional domain consisting of a prominent KGD motif on the surface of the gH/gL structure was identified; this domain affects interactions with gp42 or epithelial receptors, ultimately dictating with which cell type virus-induced fusion can occur. These studies will lead to a better understanding of the mechanism of EBV-induced membrane fusion and herpesvirus-induced membrane fusion in general.
Collapse
|