1
|
Tulaeva I, Cornelius C, Zieglmayer P, Zieglmayer R, Schmutz R, Lemell P, Weber M, Focke-Tejkl M, Karaulov A, Henning R, Valenta R. Quantification, epitope mapping and genotype cross-reactivity of hepatitis B preS-specific antibodies in subjects vaccinated with different dosage regimens of BM32. EBioMedicine 2020; 59:102953. [PMID: 32855110 PMCID: PMC7502672 DOI: 10.1016/j.ebiom.2020.102953] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 02/06/2023] Open
Abstract
Background Chronic hepatitis B virus (HBV) infections are a global health problem. There is a need for therapeutic strategies blocking continuous infection of liver cells. The grass pollen allergy vaccine BM32 containing the preS domain of the large HBV surface protein (LHBs) as immunogenic carrier induced IgG antibodies in human subjects inhibiting HBV infection in vitro. Aim of this study was the quantification, epitope mapping and investigation of HBV genotype cross-reactivity of preS-specific antibodies in subjects treated with different dosage regimens of BM32 Methods Hundred twenty eight grass pollen allergic patients received in a double-blind, placebo-controlled trial five monthly injections of placebo (aluminum hydroxide, n= 34) or different courses of BM32 (2 placebo + 3 BM32, n= 33; 1 placebo + 4 BM32, n= 30; 5 BM32, n= 31). Recombinant Escherichia coli-expressed preS was purified. Overlapping peptides spanning preS and the receptor-binding sites from consensus sequences of genotypes A–H were synthesized and purified. Isotype (IgM, IgG, IgA, IgE) and IgG subclass (IgG1-IgG4) responses to preS and peptides were determined by ELISA at baseline, one and four months after the last injection. IgG1 and IgG4 subclass concentrations specific for preS and the receptor-binding site were measured by quantitative ELISA. Findings Five monthly injections induced the highest levels of preS-specific IgG consisting mainly of IgG1 and IgG4, with a sum of median preS-specific IgG1 and IgG4 concentrations of >135 μg/ml reaching up to 1.8 mg/ml. More than 20% of preS-specific IgG was directed against the receptor-binding site. BM32-induced IgG cross-reacted with the receptor-binding domains from all eight HBV genotypes A-H. Interpretation BM32 induces high levels of IgG1 and IgG4 antibodies against the receptor binding sites of all eight HBV genotypes and hence might be suitable for therapeutic HBV vaccination. Funding This study was supported by the PhD program IAI (KPW01212FW), by Viravaxx AG and by the Danube-ARC funded by the Government of Lower Austria. Rudolf Valenta is a recipient of a Megagrant of the Government of the Russian Federation, grant No 14.W03.31.0024.
Collapse
Affiliation(s)
- Inna Tulaeva
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, WähringerGürtel 18-20, 3Q, A-1090 Vienna, Austria; Department of Clinical Immunology and Allergology, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Carolin Cornelius
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, WähringerGürtel 18-20, 3Q, A-1090 Vienna, Austria
| | | | | | | | | | - Milena Weber
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, WähringerGürtel 18-20, 3Q, A-1090 Vienna, Austria
| | - Margarete Focke-Tejkl
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, WähringerGürtel 18-20, 3Q, A-1090 Vienna, Austria
| | - Alexander Karaulov
- Department of Clinical Immunology and Allergology, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | | | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, WähringerGürtel 18-20, 3Q, A-1090 Vienna, Austria; Department of Clinical Immunology and Allergology, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation; NRC Institute of Immunology FMBA of Russia, Moscow, Russian Federation; Karl Landsteiner University of Health Sciences, Krems, Austria.
| |
Collapse
|
2
|
Bourgine M, Crabe S, Lobaina Y, Guillen G, Aguilar JC, Michel ML. Nasal route favors the induction of CD4 + T cell responses in the liver of HBV-carrier mice immunized with a recombinant hepatitis B surface- and core-based therapeutic vaccine. Antiviral Res 2018; 153:23-32. [PMID: 29510155 DOI: 10.1016/j.antiviral.2018.02.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/24/2018] [Accepted: 02/28/2018] [Indexed: 12/23/2022]
Abstract
Immunization routes and number of doses remain largely unexplored in therapeutic vaccination. The aim of the present work is to evaluate their impact on immune responses in naïve and hepatitis B virus (HBV)-carrier mouse models following immunization with a non-adjuvanted recombinant vaccine comprising the hepatitis B surface (HBsAg) and core (HBcAg) antigens. Mice were immunized either by intranasal (i.n.), subcutaneous (s.c.) or simultaneous (i.n. + s.c.) routes. Humoral immunity was detected in all the animal models with the induction of a potent antibody (Ab) response against HBcAg, which was stronger than the anti-HBs response. In the HBV-carrier mouse model, the anti-HBs response was predominantly subtype-specific and preferentially induced by the i.n. route. However, the Ab titers were not sufficient to clear the high concentration of HBsAg present in the sera of these mice. The i.n. route was the most efficacious at inducing cellular immune responses, in particular CD4+ T cells. In naïve mice, cellular responses in spleen were strong and mainly due to CD4+ T cells whereas the CD8+ T-cell response was low. In HBV-carrier mice, high frequencies of HBs-specific CD4+ T cells secreting interferon (IFN)-γ, interleukin (IL)-2 and tumor necrosis factor (TNF)-α were found in liver only after i.n. immunization. Increased frequencies of CD4+ T cells expressing the integrin CD49a in liver suggest a role of nasal route in the cellular homing process. Multiple dose schedules appear to be a prerequisite for protein-based immunization in order to overcome immunotolerance in HBV-carrier mice. These findings provide new avenues for further preclinical and clinical development.
Collapse
Affiliation(s)
- Maryline Bourgine
- Unité de Virologie Moléculaire et Vaccinologie, Institut Pasteur, Paris, France.
| | | | - Yadira Lobaina
- Vaccine Division, Biomedical Research Department, Center for Genetic Engineering and Biotechnology, Havana City, Cuba
| | - Gerardo Guillen
- Vaccine Division, Biomedical Research Department, Center for Genetic Engineering and Biotechnology, Havana City, Cuba
| | - Julio Cesar Aguilar
- Vaccine Division, Biomedical Research Department, Center for Genetic Engineering and Biotechnology, Havana City, Cuba
| | | |
Collapse
|
3
|
Maini MK, Pallett LJ. Defective T-cell immunity in hepatitis B virus infection: why therapeutic vaccination needs a helping hand. Lancet Gastroenterol Hepatol 2018; 3:192-202. [PMID: 29870733 DOI: 10.1016/s2468-1253(18)30007-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/18/2017] [Accepted: 09/22/2017] [Indexed: 12/11/2022]
Abstract
Hepatitis B virus (HBV) remains a major cause of morbidity and mortality worldwide. Treatments that can induce functional cure in patients chronically infected with this hepatotropic, non-cytopathic virus are desperately needed. Attempts to use therapeutic vaccines to expand the weak antiviral T-cell response and induce sustained immunity have been unsuccessful. However, exciting progress has been made in defining the molecular defects that must be overcome to harness T-cell immunity. A large arsenal of immunotherapeutic agents and direct-acting antivirals targeting multiple steps of the viral lifecycle is emerging. In this Review, we discuss how to translate the new insights into T-cell manipulation, combined with better understanding of patient heterogeneity, into optimisation of therapeutic vaccines against HBV. We review the opportunities and risks involved in boosting endogenous T-cell responses using combinations of next generation therapeutic vaccines and immunotherapy agents.
Collapse
Affiliation(s)
- Mala K Maini
- Division of Infection and Immunity and Institute of Immunity and Transplantation, University College London, London, UK.
| | - Laura J Pallett
- Division of Infection and Immunity and Institute of Immunity and Transplantation, University College London, London, UK
| |
Collapse
|
4
|
Lobaina Mato Y, Aguilar Rubido J, Guillén Nieto G. ABX203, a novel therapeutic vaccine for chronic hepatitis B patients. ACTA ACUST UNITED AC 2016. [DOI: 10.18786/2072-0505-2016-44-6-713-718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Zhang E, Kosinska A, Lu M, Yan H, Roggendorf M. Current status of immunomodulatory therapy in chronic hepatitis B, fifty years after discovery of the virus: Search for the "magic bullet" to kill cccDNA. Antiviral Res 2015; 123:193-203. [PMID: 26476376 DOI: 10.1016/j.antiviral.2015.10.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/09/2015] [Accepted: 10/09/2015] [Indexed: 12/12/2022]
Abstract
Chronic hepatitis B (CHB) is currently treated with IFN-α and nucleos(t)ide analogues, which have many clinical benefits, but there is no ultimate cure. The major problem consists in the persistence of cccDNA in infected hepatocytes. Because no antiviral drug has been evaluated which significantly reduces copies of cccDNA, cytolytic and noncytolytic approaches are needed. Effective virus-specific T- and B-cell responses remain crucial in eliminating cccDNA-carrying hepatocytes and for the long-term control of HBV infection. Reduction of viremia by antiviral drugs provides a window for reconstitution of an HBV-specific immune response. Preclinical studies in mice and woodchucks have shown that immunostimulatory strategies, such as prime-boost vaccination and PD-1 blockade, can boost a weak virus-specific T cell response and lead to effective control of HBV infection. Based on data obtained in our preclinical studies, the combination of antiviral drugs and immunomodulators may control HBV viremia during a patient's drug-off period. In this article, we review current immune-modulatory approaches for the treatment of chronic hepatitis B and the elimination of cccDNA in preclinical models. This article forms part of a symposium in Antiviral Research on "An unfinished story: from the discovery of the Australia antigen to the development of new curative therapies for hepatitis".
Collapse
Affiliation(s)
- Ejuan Zhang
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Anna Kosinska
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany
| | - Mengji Lu
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Huimin Yan
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Michael Roggendorf
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany; Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
6
|
Li J, Ge J, Ren S, Zhou T, Sun Y, Sun H, Gu Y, Huang H, Xu Z, Chen X, Xu X, Zhuang X, Song C, Jia F, Xu A, Yin X, Du SX. Hepatitis B surface antigen (HBsAg) and core antigen (HBcAg) combine CpG oligodeoxynucletides as a novel therapeutic vaccine for chronic hepatitis B infection. Vaccine 2015; 33:4247-54. [PMID: 25858855 DOI: 10.1016/j.vaccine.2015.03.079] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 03/16/2015] [Accepted: 03/24/2015] [Indexed: 12/12/2022]
Abstract
Hepatitis B virus infection is a non-cytopathic hepatotropic virus which can lead to chronic liver disease and hepatocellular carcinoma. Traditional therapies fail to provide sustained control of viral replication and liver damage in most patients. As an alternative strategy, immunotherapeutic approaches have shown promising efficacy in the treatment of chronic hepatitis B patients. Here, we investigated the efficacy of a novel therapeutic vaccine formulation consisting of two HBV antigens, HBsAg and HBcAg, and CpG adjuvant. This vaccine formulation elicits forceful humoral responses directed against HBsAg/HBcAg, and promotes a Th1/Th2 balance response against HBsAg and a Th1-biased response against HBcAg in both C57BL/6 and HBV transgenic mice. Vigorous cellular immune response was also detected in HBV transgenic mice, for a significantly higher number of HBs/HBc-specific IFN-γ secreting CD4+ and CD8+ T cells was generated. Moreover, vaccinated mice elicited significantly intense in vivo CTL attack, reduced serum HBsAg level without causing liver damage in HBV transgenic mice. In summary, this study demonstrates a novel therapeutic vaccine with the potential to elicit vigorous humoral and cellular response, overcoming tolerance in HBV transgenic mice.
Collapse
Affiliation(s)
- Jianqiang Li
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, Nanjing 210042, China.
| | - Jun Ge
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, Nanjing 210042, China
| | - Sulin Ren
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, Nanjing 210042, China
| | - Tong Zhou
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, Nanjing 210042, China
| | - Ying Sun
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, Nanjing 210042, China
| | - Honglin Sun
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, Nanjing 210042, China
| | - Yue Gu
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, Nanjing 210042, China
| | - Hongying Huang
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, Nanjing 210042, China
| | - Zhenxing Xu
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, Nanjing 210042, China
| | - Xiaoxiao Chen
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, Nanjing 210042, China
| | - Xiaowei Xu
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, Nanjing 210042, China; State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoqian Zhuang
- Jiangsu Simcere Pharmaceutical R&D Co., Ltd., Nanjing 210042, China
| | - Cuiling Song
- Jiangsu Simcere Pharmaceutical R&D Co., Ltd., Nanjing 210042, China
| | - Fangmiao Jia
- Jiangsu Simcere Pharmaceutical R&D Co., Ltd., Nanjing 210042, China
| | - Aiguo Xu
- Jiangsu Simcere Pharmaceutical R&D Co., Ltd., Nanjing 210042, China
| | - Xiaojin Yin
- Jiangsu Simcere Pharmaceutical R&D Co., Ltd., Nanjing 210042, China
| | - Sean X Du
- Jiangsu Simcere Pharmaceutical R&D Co., Ltd., Nanjing 210042, China
| |
Collapse
|
7
|
Therapeutic vaccines in treating chronic hepatitis B: the end of the beginning or the beginning of the end? Med Microbiol Immunol 2014; 204:121-9. [DOI: 10.1007/s00430-014-0381-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 09/15/2014] [Indexed: 12/13/2022]
|
8
|
Wang L, Zou ZQ, Liu CX, Liu XZ. Immunotherapeutic interventions in chronic hepatitis B virus infection: a review. J Immunol Methods 2014; 407:1-8. [PMID: 24747918 DOI: 10.1016/j.jim.2014.04.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 02/20/2014] [Accepted: 04/02/2014] [Indexed: 12/13/2022]
Abstract
Chronic hepatitis B virus (HBV) infection is a public health challenge worldwide. Antiviral agents (nucleos(t)ide analogues, NAs) and immune-based therapies (IFN-α or Pegylated-IFN-α) are two therapeutic approaches available currently against chronic hepatitis B (CHB). However, these approaches are associated with the development of acquired drug resistance or poor response rates and are accompanied by numerous side effects. Furthermore, due to defective innate and adaptive immune responses, HBV cannot be effectively controlled or completely eliminated, which may ultimately result in liver decompensation and hepatocelluar carcinoma. The imperative for development of new approaches targeting CHB cannot be overstated. Various immunotherapeutic interventions have been tried as adjuvants to inhibit HBV replication. In this paper, we will review immunotherapeutic interventions in the treatment of CHB.
Collapse
Affiliation(s)
- Li Wang
- Infectious Disease Hospital of Yantai, Huanshan Road 62, Zhifu District, 264001, Yantai, Shandong, China.
| | - Zhi Qiang Zou
- Infectious Disease Hospital of Yantai, Huanshan Road 62, Zhifu District, 264001, Yantai, Shandong, China
| | - Cheng Xia Liu
- Digestive Department, Affiliated Hospital of Binzhou Medical College, Huanghe Second Road 661, 256603, Shandong, China
| | - Xiang Zhong Liu
- Infectious Disease Hospital of Yantai, Huanshan Road 62, Zhifu District, 264001, Yantai, Shandong, China
| |
Collapse
|
9
|
Boukhebza H, Dubois C, Koerper V, Evlachev A, Schlesinger Y, Menguy T, Silvestre N, Riedl P, Inchauspé G, Martin P. Comparative analysis of immunization schedules using a novel adenovirus-based immunotherapeutic targeting hepatitis B in naïve and tolerant mouse models. Vaccine 2014; 32:3256-63. [PMID: 24726690 DOI: 10.1016/j.vaccine.2014.03.089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/14/2014] [Accepted: 03/26/2014] [Indexed: 12/21/2022]
Abstract
Development of active targeted immunotherapeutics is a rapid developing field in the arena of chronic infectious diseases. The question of repeated, closely spaced administration of immunotherapeutics to achieve a rapid impact on the replicating agent is an important one. We analyzed here, using a prototype adenovirus-based immunotherapeutic encoding Core and Polymerase from the hepatitis B virus (Ad-HBV), the influence of closely spaced repeated immunizations on the level and quality of induced HBV-specific and vector-specific immune responses in various mouse models. Ad-HBV, whether injected once or multiple times, was able to induce HBV- and adeno-specific T cells both in HBV-free mice and in a HBV tolerant mouse model. Adenovirus-specific T cell responses and titers of neutralizing anti-Ad5 antibodies increased from time of the 3rd injection. Interestingly, single or multiple Ad-HBV injections resulted in detection of Polymerase-specific functional T cells in HBV tolerant mice. Overall no modulation of the levels of HBV-specific cytokine-producing (IFNγ/TNFα) and cytolytic T cells was observed following repeated administrations (3 or 6 weekly injections) when compared with levels detected after a single injection with the exception of two markers: 1. the proportion of HBV-specific IFNγ-producing cells bearing the CD27+/CD43+ phenotype appeared to be sustained in C57BL/6J mice following 6 weekly injections; 2. the percentage of IFNγ/TNFα Core-specific producing cells observed in spleens of HLA-A2 mice as well as of that specific of Polymerase observed in livers of HBV tolerant mice was maintained. In addition, percentage of HBV-specific T cells expressing PD-1 was not increased by multiple injections. Overall these data show that, under experimental conditions used, rapid, closely spaced administrations of an adenovirus-based HBV immunotherapeutics does not inhibit induced T-cell responses including in a HBV-tolerant environment.
Collapse
Affiliation(s)
- Houda Boukhebza
- TRANSGENE SA, 321 Avenue Jean Jaures, 69364 Lyon cedex 07, France
| | - Clarisse Dubois
- TRANSGENE SA, 321 Avenue Jean Jaures, 69364 Lyon cedex 07, France
| | - Véronique Koerper
- TRANSGENE SA, Boulevard Gonthier d'Andernach, 67405 Illkirch Graffenstaden, France
| | - Alexei Evlachev
- TRANSGENE SA, 321 Avenue Jean Jaures, 69364 Lyon cedex 07, France
| | - Yasmine Schlesinger
- TRANSGENE SA, Boulevard Gonthier d'Andernach, 67405 Illkirch Graffenstaden, France
| | - Thierry Menguy
- TRANSGENE SA, Boulevard Gonthier d'Andernach, 67405 Illkirch Graffenstaden, France
| | - Nathalie Silvestre
- TRANSGENE SA, Boulevard Gonthier d'Andernach, 67405 Illkirch Graffenstaden, France
| | - Petra Riedl
- ULM University, Klinik für Innere Medizin I, Albert Einstein Allee 23, 89081 Ulm, Germany
| | | | - Perrine Martin
- TRANSGENE SA, 321 Avenue Jean Jaures, 69364 Lyon cedex 07, France.
| |
Collapse
|