1
|
Treerat P, de Mattos C, Burnside M, Zhang H, Zhu Y, Zou Z, Anderson D, Wu H, Merritt J, Kreth J. Ribosomal-processing cysteine protease homolog modulates Streptococcus mutans glucan production and interkingdom interactions. J Bacteriol 2024; 206:e0010424. [PMID: 38899897 PMCID: PMC11270869 DOI: 10.1128/jb.00104-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/02/2024] [Indexed: 06/21/2024] Open
Abstract
Glucan-dependent biofilm formation is a crucial process in the establishment of Streptococcus mutans as a cariogenic oral microbe. The process of glucan formation has been investigated in great detail, with glycosyltransferases GtfB, GtfC, and GtfD shown to be indispensable for the synthesis of glucans from sucrose. Glucan production can be visualized during biofilm formation through fluorescent labeling, and its abundance, as well as the effect of glucans on general biofilm architecture, is a common phenotype to study S. mutans virulence regulation. Here, we describe an entirely new phenotype associated with glucan production, caused by a mutation in the open reading frame SMU_848, which is located in an operon encoding ribosome-associated proteins. This mutation led to the excess production and accumulation of glucan-containing droplets on the surface of biofilms formed on agar plates after prolonged incubation. While not characterized in S. mutans, SMU_848 shows homology to the phage-related ribosomal protease Prp, essential in cleaving off the N-terminal extension of ribosomal protein L27 for functional ribosome assembly in Staphylococcus aureus. We present a further characterization of SMU_848/Prp, demonstrating that the deletion of this gene leads to significant changes in S. mutans gtfBC expression. Surprisingly, it also profoundly impacts the interkingdom interaction between S. mutans and Candida albicans, a relevant dual-species interaction implicated in severe early childhood caries. The presented data support a potential broader role for SMU_848/Prp, possibly extending its functionality beyond the ribosomal network to influence important ecological processes. IMPORTANCE Streptococcus mutans is an important member of the oral biofilm and is implicated in the initiation of caries. One of the main virulence mechanisms is the glucan-dependent formation of biofilms. We identified a new player in the regulation of glucan production, SMU_848, which is part of an operon that also encodes for ribosomal proteins L27 and L21. A mutation in SMU_848, which encodes a phage-related ribosomal protease Prp, leads to a significant accumulation of glucan-containing droplets on S. mutans biofilms, a previously unknown phenotype. Further investigations expanded our knowledge about the role of SMU_848 beyond its role in glucan production, including significant involvement in interkingdom interactions, thus potentially playing a global role in the virulence regulation of S. mutans.
Collapse
Affiliation(s)
- Puthayalai Treerat
- Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, Oregon, USA
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Camilla de Mattos
- Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, Oregon, USA
| | - Molly Burnside
- Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, Oregon, USA
| | - Hua Zhang
- Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, Oregon, USA
| | - Yanting Zhu
- Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, Oregon, USA
| | - Zhengzhong Zou
- Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, Oregon, USA
| | - David Anderson
- Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, Oregon, USA
| | - Hui Wu
- Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, Oregon, USA
| | - Justin Merritt
- Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, Oregon, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, Oregon Health & Science University (OHSU), Portland, Oregon, USA
| | - Jens Kreth
- Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, Oregon, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, Oregon Health & Science University (OHSU), Portland, Oregon, USA
| |
Collapse
|
2
|
Boyd CM, Subramanian S, Dunham DT, Parent KN, Seed KD. A Vibrio cholerae viral satellite maximizes its spread and inhibits phage by remodeling hijacked phage coat proteins into small capsids. eLife 2024; 12:RP87611. [PMID: 38206122 PMCID: PMC10945586 DOI: 10.7554/elife.87611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024] Open
Abstract
Phage satellites commonly remodel capsids they hijack from the phages they parasitize, but only a few mechanisms regulating the change in capsid size have been reported. Here, we investigated how a satellite from Vibrio cholerae, phage-inducible chromosomal island-like element (PLE), remodels the capsid it has been predicted to steal from the phage ICP1 (Netter et al., 2021). We identified that a PLE-encoded protein, TcaP, is both necessary and sufficient to form small capsids during ICP1 infection. Interestingly, we found that PLE is dependent on small capsids for efficient transduction of its genome, making it the first satellite to have this requirement. ICP1 isolates that escaped TcaP-mediated remodeling acquired substitutions in the coat protein, suggesting an interaction between these two proteins. With a procapsid-like particle (PLP) assembly platform in Escherichia coli, we demonstrated that TcaP is a bona fide scaffold that regulates the assembly of small capsids. Further, we studied the structure of PLE PLPs using cryogenic electron microscopy and found that TcaP is an external scaffold that is functionally and somewhat structurally similar to the external scaffold, Sid, encoded by the unrelated satellite P4 (Kizziah et al., 2020). Finally, we showed that TcaP is largely conserved across PLEs. Together, these data support a model in which TcaP directs the assembly of small capsids comprised of ICP1 coat proteins, which inhibits the complete packaging of the ICP1 genome and permits more efficient packaging of replicated PLE genomes.
Collapse
Affiliation(s)
- Caroline M Boyd
- Department of Plant and Microbial Biology, Seed Lab, University of California, BerkeleyBerkeleyUnited States
| | - Sundharraman Subramanian
- Department of Biochemistry and Molecular Biology, Parent Lab, Michigan State UniversityEast LansingUnited States
| | - Drew T Dunham
- Department of Plant and Microbial Biology, Seed Lab, University of California, BerkeleyBerkeleyUnited States
| | - Kristin N Parent
- Department of Biochemistry and Molecular Biology, Parent Lab, Michigan State UniversityEast LansingUnited States
| | - Kimberley D Seed
- Department of Plant and Microbial Biology, Seed Lab, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
3
|
Chapman JE, George SE, Wolz C, Olson ME. Biofilms: A developmental niche for vancomycin-intermediate Staphylococcus aureus. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 117:105545. [PMID: 38160879 DOI: 10.1016/j.meegid.2023.105545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/14/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Staphylococcus aureus are gram-positive bacteria responsible for a wide array of diseases, ranging from skin and soft tissue infections to more chronic illnesses such as toxic shock syndrome, osteomyelitis, and endocarditis. Vancomycin is currently one of the most effective antibiotics available in treating patients infected with methicillin-resistant S. aureus (MRSA), however the emergence of vancomycin-resistant S. aureus (VRSA), and more commonly vancomycin-intermediate S. aureus (VISA), threaten the future efficacy of vancomycin. Intermediate resistance to vancomycin occurs due to mutations within the loci of Staphylococcal genes involved in cell wall formation such as rpoB, graS, and yycG. We hypothesized the VISA phenotype may also arise as a result of the natural stress occurring within S. aureus biofilms, and that this phenomenon is mediated by the RecA/SOS response. Wildtype and recA null mutant/lexAG94E strains of S. aureus biofilms were established in biofilm microtiter assays or planktonic cultures with or without the addition of sub-inhibitory concentrations of vancomycin (0.063 mg/l - 0.25 mg/L ciprofloxacin, 0.5 mg/l vancomycin). Efficiency of plating techniques were used to quantify the subpopulation of biofilm-derived S. aureus cells that developed vancomycin-intermediate resistance. The results indicated that a greater subpopulation of cells from wildtype biofilms (4.16 × 102 CFUs) emerged from intermediate-resistant concentrations of vancomycin (4 μg/ml) compared with the planktonic counterpart (1.53 × 101 CFUs). Wildtype biofilms (4.16 × 102 CFUs) also exhibited greater resistance to intermediate-resistant concentrations of vancomycin compared with strains deficient in the recA null mutant (8.15 × 101 CFUs) and lexA genes (8.00 × 101 CFUs). While the VISA phenotype would be an unintended consequence of genetic diversity and potentially gene transfer in the biofilm setting, it demonstrates that mutations occurring within biofilms allow for S. aureus to adapt to new environments, including the presence of widely used antibiotics.
Collapse
Affiliation(s)
- Jenelle E Chapman
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, USA
| | - Shilpa E George
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Germany
| | - Christiane Wolz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Germany
| | - Michael E Olson
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, USA.
| |
Collapse
|
4
|
Banh DV, Roberts CG, Morales-Amador A, Berryhill BA, Chaudhry W, Levin BR, Brady SF, Marraffini LA. Bacterial cGAS senses a viral RNA to initiate immunity. Nature 2023; 623:1001-1008. [PMID: 37968393 PMCID: PMC10686824 DOI: 10.1038/s41586-023-06743-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 10/12/2023] [Indexed: 11/17/2023]
Abstract
Cyclic oligonucleotide-based antiphage signalling systems (CBASS) protect prokaryotes from viral (phage) attack through the production of cyclic oligonucleotides, which activate effector proteins that trigger the death of the infected host1,2. How bacterial cyclases recognize phage infection is not known. Here we show that staphylococcal phages produce a structured RNA transcribed from the terminase subunit genes, termed CBASS-activating bacteriophage RNA (cabRNA), which binds to a positively charged surface of the CdnE03 cyclase and promotes the synthesis of the cyclic dinucleotide cGAMP to activate the CBASS immune response. Phages that escape the CBASS defence harbour mutations that lead to the generation of a longer form of the cabRNA that cannot activate CdnE03. As the mammalian cyclase OAS1 also binds viral double-stranded RNA during the interferon response, our results reveal a conserved mechanism for the activation of innate antiviral defence pathways.
Collapse
Affiliation(s)
- Dalton V Banh
- Laboratory of Bacteriology, The Rockefeller University, New York, NY, USA
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
| | - Cameron G Roberts
- Laboratory of Bacteriology, The Rockefeller University, New York, NY, USA
| | - Adrian Morales-Amador
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, New York, NY, USA
| | | | - Waqas Chaudhry
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Bruce R Levin
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Sean F Brady
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, New York, NY, USA
| | - Luciano A Marraffini
- Laboratory of Bacteriology, The Rockefeller University, New York, NY, USA.
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
5
|
Papudeshi B, Vega AA, Souza C, Giles SK, Mallawaarachchi V, Roach MJ, An M, Jacobson N, McNair K, Mora MF, Pastrana K, Boling L, Leigh C, Harker C, Plewa WS, Grigson SR, Bouras G, Decewicz P, Luque A, Droit L, Handley SA, Wang D, Segall AM, Dinsdale EA, Edwards RA. Host interactions of novel Crassvirales species belonging to multiple families infecting bacterial host, Bacteroides cellulosilyticus WH2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.05.531146. [PMID: 36945541 PMCID: PMC10028833 DOI: 10.1101/2023.03.05.531146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Bacteroides, the prominent bacteria in the human gut, play a crucial role in degrading complex polysaccharides. Their abundance is influenced by phages belonging to the Crassvirales order. Despite identifying over 600 Crassvirales genomes computationally, only few have been successfully isolated. Continued efforts in isolation of more Crassvirales genomes can provide insights into phage-host-evolution and infection mechanisms. We focused on wastewater samples, as potential sources of phages infecting various Bacteroides hosts. Sequencing, assembly, and characterization of isolated phages revealed 14 complete genomes belonging to three novel Crassvirales species infecting Bacteroides cellulosilyticus WH2. These species, Kehishuvirus sp. 'tikkala' strain Bc01, Kolpuevirus sp. 'frurule' strain Bc03, and 'Rudgehvirus jaberico' strain Bc11, spanned two families, and three genera, displaying a broad range of virion productions. Upon testing all successfully cultured Crassvirales species and their respective bacterial hosts, we discovered that they do not exhibit co-evolutionary patterns with their bacterial hosts. Furthermore, we observed variations in gene similarity, with greater shared similarity observed within genera. However, despite belonging to different genera, the three novel species shared a unique structural gene that encodes the tail spike protein. When investigating the relationship between this gene and host interaction, we discovered evidence of purifying selection, indicating its functional importance. Moreover, our analysis demonstrated that this tail spike protein binds to the TonB-dependent receptors present on the bacterial host surface. Combining these observations, our findings provide insights into phage-host interactions and present three Crassvirales species as an ideal system for controlled infectivity experiments on one of the most dominant members of the human enteric virome. Impact statement Bacteriophages play a crucial role in shaping microbial communities within the human gut. Among the most dominant bacteriophages in the human gut microbiome are Crassvirales phages, which infect Bacteroides. Despite being widely distributed, only a few Crassvirales genomes have been isolated, leading to a limited understanding of their biology, ecology, and evolution. This study isolated and characterized three novel Crassvirales genomes belonging to two different families, and three genera, but infecting one bacterial host, Bacteroides cellulosilyticus WH2. Notably, the observation confirmed the phages are not co-evolving with their bacterial hosts, rather have a shared ability to exploit similar features in their bacterial host. Additionally, the identification of a critical viral protein undergoing purifying selection and interacting with the bacterial receptors opens doors to targeted therapies against bacterial infections. Given Bacteroides role in polysaccharide degradation in the human gut, our findings advance our understanding of the phage-host interactions and could have important implications for the development of phage-based therapies. These discoveries may hold implications for improving gut health and metabolism to support overall well-being. Data summary The genomes used in this research are available on Sequence Read Archive (SRA) within the project, PRJNA737576. Bacteroides cellulosilyticus WH2, Kehishuvirus sp. 'tikkala' strain Bc01, Kolpuevirus sp. ' frurule' strain Bc03, and 'Rudgehvirus jaberico' strain Bc11 are all available on GenBank with accessions NZ_CP072251.1 ( B. cellulosilyticus WH2), QQ198717 (Bc01), QQ198718 (Bc03), and QQ198719 (Bc11), and we are working on making the strains available through ATCC. The 3D protein structures for the three Crassvirales genomes are available to download at doi.org/10.25451/flinders.21946034.
Collapse
Affiliation(s)
- Bhavya Papudeshi
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, SA, 5042, Australia
| | - Alejandro A. Vega
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Cole Souza
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Sarah K. Giles
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, SA, 5042, Australia
| | - Vijini Mallawaarachchi
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, SA, 5042, Australia
| | - Michael J. Roach
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, SA, 5042, Australia
| | - Michelle An
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Nicole Jacobson
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Katelyn McNair
- Computational Science Research Center, San Diego State University, 5500 Campanile Drive, San Diego, CA, 992182, USA
| | - Maria Fernanda Mora
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Karina Pastrana
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Lance Boling
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Christopher Leigh
- Adelaide Microscopy, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Clarice Harker
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, SA, 5042, Australia
| | - Will S. Plewa
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, SA, 5042, Australia
| | - Susanna R. Grigson
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, SA, 5042, Australia
| | - George Bouras
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Przemysław Decewicz
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, SA, 5042, Australia
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, 02-096, Poland
| | - Antoni Luque
- Department of Mathematics and Statistics, San Diego State University, 5500 Campanile Drive, San Diego, CA, 992182, USA
- Computational Science Research Center, San Diego State University, 5500 Campanile Drive, San Diego, CA, 992182, USA
| | - Lindsay Droit
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Scott A. Handley
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - David Wang
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Anca M. Segall
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Elizabeth A. Dinsdale
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, SA, 5042, Australia
| | - Robert A. Edwards
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, SA, 5042, Australia
| |
Collapse
|
6
|
Hotinger JA, Pendergrass HA, Peterson D, Wright HT, May AE. Phage-Related Ribosomal Protease (Prp) of Staphylococcus aureus: In Vitro Michaelis-Menten Kinetics, Screening for Inhibitors, and Crystal Structure of a Covalent Inhibition Product Complex. Biochemistry 2022; 61:1323-1336. [PMID: 35731716 DOI: 10.1021/acs.biochem.2c00010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Phage-related ribosomal proteases (Prps) are essential for the assembly and maturation of the ribosome in Firmicutes, including the human pathogens Staphylococcus aureus, Streptococcus pneumoniae, and Clostridium difficile. These bacterial proteases cleave off an N-terminal extension of a precursor of ribosomal protein L27, a processing step that is essential for the formation of functional ribosomes. This essential role of Prp in these pathogens has identified this protease as a potential antibiotic target. In this work, we determine the X-ray crystal structure of a covalent inhibition complex at 2.35 Å resolution, giving the first complete picture of the active site of a functional Prp. We also characterize the kinetic activity and screen for potential inhibitors of Prp. This work gives the most complete characterization of the structure and specificity of this novel class of proteases to date.
Collapse
Affiliation(s)
- Julia A Hotinger
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Heather A Pendergrass
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Darrell Peterson
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - H Tonie Wright
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Aaron E May
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| |
Collapse
|
7
|
Shape shifter: redirection of prolate phage capsid assembly by staphylococcal pathogenicity islands. Nat Commun 2021; 12:6408. [PMID: 34737316 PMCID: PMC8569155 DOI: 10.1038/s41467-021-26759-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022] Open
Abstract
Staphylococcus aureus pathogenicity islands (SaPIs) are molecular parasites that hijack helper phages for their transfer. SaPIbov5, the prototypical member of a family of cos type SaPIs, redirects the assembly of ϕ12 helper capsids from prolate to isometric. This size and shape shift is dependent on the SaPIbov5-encoded protein Ccm, a homolog of the ϕ12 capsid protein (CP). Using cryo-electron microscopy, we have determined structures of prolate ϕ12 procapsids and isometric SaPIbov5 procapsids. ϕ12 procapsids have icosahedral end caps with Tend = 4 architecture and a Tmid = 14 cylindrical midsection, whereas SaPIbov5 procapsids have T = 4 icosahedral architecture. We built atomic models for CP and Ccm, and show that Ccm occupies the pentameric capsomers in the isometric SaPIbov5 procapsids, suggesting that preferential incorporation of Ccm pentamers prevents the cylindrical midsection from forming. Our results highlight that pirate elements have evolved diverse mechanisms to suppress phage multiplication, including the acquisition of phage capsid protein homologs. Phage-inducible chromosomal islands (PICIs) are a group of mobile genetic elements that hijack the replication and assembly machinery of helper bacteriophages. Here the authors describe a mechanism by which a group of PICIs from Staphylococcus aureus re-direct the assembly pathway of their helpers using a capsid protein homolog.
Collapse
|
8
|
Staphylococcus epidermidis Phages Transduce Antimicrobial Resistance Plasmids and Mobilize Chromosomal Islands. mSphere 2021; 6:6/3/e00223-21. [PMID: 33980677 PMCID: PMC8125051 DOI: 10.1128/msphere.00223-21] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Multidrug-resistant strains of S. epidermidis emerge in both nosocomial and livestock environments as the most important pathogens among coagulase-negative staphylococcal species. The study of transduction by phages is essential to understanding how virulence and antimicrobial resistance genes spread in originally commensal bacterial populations. Staphylococcus epidermidis is a leading opportunistic pathogen causing nosocomial infections that is notable for its ability to form a biofilm and for its high rates of antibiotic resistance. It serves as a reservoir of multiple antimicrobial resistance genes that spread among the staphylococcal population by horizontal gene transfer such as transduction. While phage-mediated transduction is well studied in Staphylococcus aureus, S. epidermidis transducing phages have not been described in detail yet. Here, we report the characteristics of four phages, 27, 48, 456, and 459, previously used for S. epidermidis phage typing, and the newly isolated phage E72, from a clinical S. epidermidis strain. The phages, classified in the family Siphoviridae and genus Phietavirus, exhibited an S. epidermidis-specific host range, and together they infected 49% of the 35 strains tested. A whole-genome comparison revealed evolutionary relatedness to transducing S. aureus phietaviruses. In accordance with this, all the tested phages were capable of transduction with high frequencies up to 10−4 among S. epidermidis strains from different clonal complexes. Plasmids with sizes from 4 to 19 kb encoding resistance to streptomycin, tetracycline, and chloramphenicol were transferred. We provide here the first evidence of a phage-inducible chromosomal island transfer in S. epidermidis. Similarly to S. aureus pathogenicity islands, the transfer was accompanied by phage capsid remodeling; however, the interfering protein encoded by the island was distinct. Our findings underline the role of S. epidermidis temperate phages in the evolution of S. epidermidis strains by horizontal gene transfer, which can also be utilized for S. epidermidis genetic studies. IMPORTANCE Multidrug-resistant strains of S. epidermidis emerge in both nosocomial and livestock environments as the most important pathogens among coagulase-negative staphylococcal species. The study of transduction by phages is essential to understanding how virulence and antimicrobial resistance genes spread in originally commensal bacterial populations. In this work, we provide a detailed description of transducing S. epidermidis phages. The high transduction frequencies of antimicrobial resistance plasmids and the first evidence of chromosomal island transfer emphasize the decisive role of S. epidermidis phages in attaining a higher pathogenic potential of host strains. To date, such importance has been attributed only to S. aureus phages, not to those of coagulase-negative staphylococci. This study also proved that the described transducing bacteriophages represent valuable genetic modification tools in S. epidermidis strains where other methods for gene transfer fail.
Collapse
|
9
|
Pilát Z, Jonáš A, Pilátová J, Klementová T, Bernatová S, Šiler M, Maňka T, Kizovský M, Růžička F, Pantůček R, Neugebauer U, Samek O, Zemánek P. Analysis of Bacteriophage-Host Interaction by Raman Tweezers. Anal Chem 2020; 92:12304-12311. [PMID: 32815709 DOI: 10.1021/acs.analchem.0c01963] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacteriophages, or "phages" for short, are viruses that replicate in bacteria. The therapeutic and biotechnological potential of phages and their lytic enzymes is of interest for their ability to selectively destroy pathogenic bacteria, including antibiotic-resistant strains. Introduction of phage preparations into medicine, biotechnology, and food industry requires a thorough characterization of phage-host interaction on a molecular level. We employed Raman tweezers to analyze the phage-host interaction of Staphylococcus aureus strain FS159 with a virulent phage JK2 (=812K1/420) of the Myoviridae family and a temperate phage 80α of the Siphoviridae family. We analyzed the timeline of phage-induced molecular changes in infected host cells. We reliably detected the presence of replicating phages in bacterial cells within 5 min after infection. Our results lay the foundations for building a Raman-based diagnostic instrument capable of real-time, in vivo, in situ, nondestructive characterization of the phage-host relationship on the level of individual cells, which has the potential of importantly contributing to the development of phage therapy and enzybiotics.
Collapse
Affiliation(s)
- Zdeněk Pilát
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Czech Academy of Sciences, Královopolská 147, 612 64 Brno, Czech Republic
| | - Alexandr Jonáš
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Czech Academy of Sciences, Královopolská 147, 612 64 Brno, Czech Republic
| | - Jana Pilátová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic
| | - Tereza Klementová
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Czech Academy of Sciences, Královopolská 147, 612 64 Brno, Czech Republic
| | - Silvie Bernatová
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Czech Academy of Sciences, Královopolská 147, 612 64 Brno, Czech Republic
| | - Martin Šiler
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Czech Academy of Sciences, Královopolská 147, 612 64 Brno, Czech Republic
| | - Tadeáš Maňka
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Czech Academy of Sciences, Královopolská 147, 612 64 Brno, Czech Republic
| | - Martin Kizovský
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Czech Academy of Sciences, Královopolská 147, 612 64 Brno, Czech Republic
| | - Filip Růžička
- Department of Microbiology, Faculty of Medicine, Masaryk University and St. Anne's Faculty Hospital, Pekařská 53, 656 91 Brno, Czech Republic
| | - Roman Pantůček
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Ute Neugebauer
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany.,Leibniz Institute of Photonic Technology (Leibniz-IPHT), Albert-Einstein-Str. 9, D-07745 Jena, Germany
| | - Ota Samek
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Czech Academy of Sciences, Královopolská 147, 612 64 Brno, Czech Republic
| | - Pavel Zemánek
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Czech Academy of Sciences, Královopolská 147, 612 64 Brno, Czech Republic
| |
Collapse
|
10
|
The gp44 Ejection Protein of Staphylococcus aureus Bacteriophage 80α Binds to the Ends of the Genome and Protects It from Degradation. Viruses 2020; 12:v12050563. [PMID: 32443723 PMCID: PMC7290940 DOI: 10.3390/v12050563] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 01/21/2023] Open
Abstract
Bacteriophage 80α is a representative of a class of temperate phages that infect Staphylococcus aureus and other Gram-positive bacteria. Many of these phages carry genes encoding toxins and other virulence factors. This phage, 80α, is also involved in high-frequency mobilization of S. aureus pathogenicity islands (SaPIs), mobile genetic elements that carry virulence factor genes. Bacteriophage 80α encodes a minor capsid protein, gp44, between the genes for the portal protein and major capsid protein. Gp44 is essential for a productive infection by 80α but not for transduction of SaPIs or plasmids. We previously demonstrated that gp44 is an ejection protein that acts to promote progression to the lytic cycle upon infection and suggested that the protein might act as an anti-repressor of CI in the lytic–lysogenic switch. However, an 80α Δ44 mutant also exhibited a reduced rate of lysogeny. Here, we show that gp44 is a non-specific DNA binding protein with affinity for the blunt ends of linear DNA. Our data suggest a model in which gp44 promotes circularization of the genome after injection into the host cell, a key initial step both for lytic growth and for the establishment of lysogeny.
Collapse
|
11
|
Dokland T. Molecular Piracy: Redirection of Bacteriophage Capsid Assembly by Mobile Genetic Elements. Viruses 2019; 11:v11111003. [PMID: 31683607 PMCID: PMC6893505 DOI: 10.3390/v11111003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 01/21/2023] Open
Abstract
Horizontal transfer of mobile genetic elements (MGEs) is a key aspect of the evolution of bacterial pathogens. Transduction by bacteriophages is especially important in this process. Bacteriophages—which assemble a machinery for efficient encapsidation and transfer of genetic material—often transfer MGEs and other chromosomal DNA in a more-or-less nonspecific low-frequency process known as generalized transduction. However, some MGEs have evolved highly specific mechanisms to take advantage of bacteriophages for their own propagation and high-frequency transfer while strongly interfering with phage production—“molecular piracy”. These mechanisms include the ability to sense the presence of a phage entering lytic growth, specific recognition and packaging of MGE genomes into phage capsids, and the redirection of the phage assembly pathway to form capsids with a size more appropriate for the size of the MGE. This review focuses on the process of assembly redirection, which has evolved convergently in many different MGEs from across the bacterial universe. The diverse mechanisms that exist suggest that size redirection is an evolutionarily advantageous strategy for many MGEs.
Collapse
Affiliation(s)
- Terje Dokland
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35242, USA.
| |
Collapse
|
12
|
Villa TG, Feijoo-Siota L, Sánchez-Pérez A, Rama JLR, Sieiro C. Horizontal Gene Transfer in Bacteria, an Overview of the Mechanisms Involved. HORIZONTAL GENE TRANSFER 2019:3-76. [DOI: 10.1007/978-3-030-21862-1_1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
13
|
Kizziah JL, Manning KA, Dearborn AD, Wall EA, Klenow L, Hill RLL, Spilman MS, Stagg SM, Christie GE, Dokland T. Cleavage and Structural Transitions during Maturation of Staphylococcus aureus Bacteriophage 80α and SaPI1 Capsids. Viruses 2017; 9:v9120384. [PMID: 29258203 PMCID: PMC5744158 DOI: 10.3390/v9120384] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/08/2017] [Accepted: 12/15/2017] [Indexed: 12/21/2022] Open
Abstract
In the tailed bacteriophages, DNA is packaged into spherical procapsids, leading to expansion into angular, thin-walled mature capsids. In many cases, this maturation is accompanied by cleavage of the major capsid protein (CP) and other capsid-associated proteins, including the scaffolding protein (SP) that serves as a chaperone for the assembly process. Staphylococcus aureus bacteriophage 80α is capable of high frequency mobilization of mobile genetic elements called S. aureus pathogenicity islands (SaPIs), such as SaPI1. SaPI1 redirects the assembly pathway of 80α to form capsids that are smaller than those normally made by the phage alone. Both CP and SP of 80α are N-terminally processed by a host-encoded protease, Prp. We have analyzed phage mutants that express pre-cleaved or uncleavable versions of CP or SP, and show that the N-terminal sequence in SP is absolutely required for assembly, but does not need to be cleaved in order to produce viable capsids. Mutants with pre-cleaved or uncleavable CP display normal viability. We have used cryo-EM to solve the structures of mature capsids from an 80α mutant expressing uncleavable CP, and from wildtype SaPI1. Comparisons with structures of 80α and SaPI1 procapsids show that capsid maturation involves major conformational changes in CP, consistent with a release of the CP N-arm by SP. The hexamers reorganize during maturation to accommodate the different environments in the 80α and SaPI1 capsids.
Collapse
Affiliation(s)
- James L Kizziah
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Keith A Manning
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Altaira D Dearborn
- Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, The National Institutes of Health, Bethesda, MD 20892, USA.
| | - Erin A Wall
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA.
| | - Laura Klenow
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA.
| | - Rosanne L L Hill
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Michael S Spilman
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA.
| | - Scott M Stagg
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA.
| | - Gail E Christie
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA.
| | - Terje Dokland
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
14
|
Carpena N, Manning KA, Dokland T, Marina A, Penadés JR. Convergent evolution of pathogenicity islands in helper cos phage interference. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0505. [PMID: 27672154 PMCID: PMC5052747 DOI: 10.1098/rstb.2015.0505] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2016] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus aureus pathogenicity islands (SaPIs) are phage satellites that exploit the life cycle of their helper phages for their own benefit. Most SaPIs are packaged by their helper phages using a headful (pac) packaging mechanism. These SaPIs interfere with pac phage reproduction through a variety of strategies, including the redirection of phage capsid assembly to form small capsids, a process that depends on the expression of the SaPI-encoded cpmA and cpmB genes. Another SaPI subfamily is induced and packaged by cos-type phages, and although these cos SaPIs also block the life cycle of their inducing phages, the basis for this mechanism of interference remains to be deciphered. Here we have identified and characterized one mechanism by which the SaPIs interfere with cos phage reproduction. This mechanism depends on a SaPI-encoded gene, ccm, which encodes a protein involved in the production of small isometric capsids, compared with the prolate helper phage capsids. As the Ccm and CpmAB proteins are completely unrelated in sequence, this strategy represents a fascinating example of convergent evolution. Moreover, this result also indicates that the production of SaPI-sized particles is a widespread strategy of phage interference conserved during SaPI evolution. This article is part of the themed issue ‘The new bacteriology’.
Collapse
Affiliation(s)
- Nuria Carpena
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK Departamento de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad CEU Cardenal Herrera, 46113 Moncada, Valencia, Spain
| | - Keith A Manning
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Terje Dokland
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Alberto Marina
- Instituto de Biomedicina de Valencia (IBV-CSIC) and CIBER de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | - José R Penadés
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| |
Collapse
|
15
|
Dearborn AD, Wall EA, Kizziah JL, Klenow L, Parker LK, Manning KA, Spilman MS, Spear JM, Christie GE, Dokland T. Competing scaffolding proteins determine capsid size during mobilization of Staphylococcus aureus pathogenicity islands. eLife 2017; 6:30822. [PMID: 28984245 PMCID: PMC5644958 DOI: 10.7554/elife.30822] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/02/2017] [Indexed: 01/03/2023] Open
Abstract
Staphylococcus aureus pathogenicity islands (SaPIs), such as SaPI1, exploit specific helper bacteriophages, like 80α, for their high frequency mobilization, a process termed 'molecular piracy'. SaPI1 redirects the helper's assembly pathway to form small capsids that can only accommodate the smaller SaPI1 genome, but not a complete phage genome. SaPI1 encodes two proteins, CpmA and CpmB, that are responsible for this size redirection. We have determined the structures of the 80α and SaPI1 procapsids to near-atomic resolution by cryo-electron microscopy, and show that CpmB competes with the 80α scaffolding protein (SP) for a binding site on the capsid protein (CP), and works by altering the angle between capsomers. We probed these interactions genetically and identified second-site suppressors of lethal mutations in SP. Our structures show, for the first time, the detailed interactions between SP and CP in a bacteriophage, providing unique insights into macromolecular assembly processes.
Collapse
Affiliation(s)
- Altaira D Dearborn
- Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, United States
| | - Erin A Wall
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, United States
| | - James L Kizziah
- Department of Microbiology, University of Alabama, Birmingham, United States
| | - Laura Klenow
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, United States
| | - Laura K Parker
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, United States.,Department of Microbiology, University of Alabama, Birmingham, United States
| | - Keith A Manning
- Department of Microbiology, University of Alabama, Birmingham, United States
| | | | - John M Spear
- Biological Science Imaging Resource, Florida State University, Tallahassee, United States
| | - Gail E Christie
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, United States
| | - Terje Dokland
- Department of Microbiology, University of Alabama, Birmingham, United States
| |
Collapse
|
16
|
Wall EA, Johnson AL, Peterson DL, Christie GE. Structural modeling and functional analysis of the essential ribosomal processing protease Prp from Staphylococcus aureus. Mol Microbiol 2017; 104:520-532. [PMID: 28187498 DOI: 10.1111/mmi.13644] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2017] [Indexed: 12/19/2022]
Abstract
In Firmicutes and related bacteria, ribosomal large subunit protein L27 is encoded with a conserved N-terminal extension that is removed to expose residues critical for ribosome function. Bacteria encoding L27 with this N-terminal extension also encode a sequence-specific cysteine protease, Prp, which carries out this cleavage. In this work, we demonstrate that L27 variants with an un-cleavable N-terminal extension, or lacking the extension (pre-cleaved), are unable to complement an L27 deletion in Staphylococcus aureus. This indicates that N-terminal processing of L27 is not only essential but possibly has a regulatory role. Prp represents a new clade of previously uncharacterized cysteine proteases, and the dependence of S. aureus on L27 cleavage by Prp validates the enzyme as a target for potential antibiotic development. To better understand the mechanism of Prp activity, we analyzed Prp enzyme kinetics and substrate preference using a fluorogenic peptide cleavage assay. Molecular modeling and site-directed mutagenesis implicate several residues around the active site in catalysis and substrate binding, and support a structural model in which rearrangement of a flexible loop upon binding of the correct peptide substrate is required for the active site to assume the proper conformation. These findings lay the foundation for the development of antimicrobials that target this novel, essential pathway.
Collapse
Affiliation(s)
- Erin A Wall
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Adam L Johnson
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Darrell L Peterson
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Gail E Christie
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| |
Collapse
|
17
|
Penadés JR, Christie GE. The Phage-Inducible Chromosomal Islands: A Family of Highly Evolved Molecular Parasites. Annu Rev Virol 2016; 2:181-201. [PMID: 26958912 DOI: 10.1146/annurev-virology-031413-085446] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The phage-inducible chromosomal islands (PICIs) are a family of highly mobile genetic elements that contribute substantively to horizontal gene transfer, host adaptation, and virulence. Initially identified in Staphylococcus aureus, these elements are now thought to occur widely in gram-positive bacteria. They are molecular parasites that exploit certain temperate phages as helpers, using a variety of elegant strategies to manipulate the phage life cycle and promote their own spread, both intra- and intergenerically. At the same time, these PICI-encoded mechanisms severely interfere with helper phage reproduction, thereby enhancing survival of the bacterial population. In this review we discuss the genetics and the life cycle of these elements, with special emphasis on how they interact and interfere with the helper phage machinery for their own benefit. We also analyze the role that these elements play in driving bacterial and viral evolution.
Collapse
Affiliation(s)
- José R Penadés
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8TA Glasgow, United Kingdom;
| | - Gail E Christie
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298;
| |
Collapse
|
18
|
Wall EA, Caufield JH, Lyons CE, Manning KA, Dokland T, Christie GE. Specific N-terminal cleavage of ribosomal protein L27 in Staphylococcus aureus and related bacteria. Mol Microbiol 2014; 95:258-69. [PMID: 25388641 DOI: 10.1111/mmi.12862] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2014] [Indexed: 11/30/2022]
Abstract
Ribosomal protein L27 is a component of the eubacterial large ribosomal subunit that has been shown to play a critical role in substrate stabilization during protein synthesis. This function is mediated by the L27 N-terminus, which protrudes into the peptidyl transferase center. In this report, we demonstrate that L27 in Staphylococcus aureus and other Firmicutes is encoded with an N-terminal extension that is not present in most Gram-negative organisms and is absent from mature ribosomes. We have identified a cysteine protease, conserved among bacteria containing the L27 N-terminal extension, which performs post-translational cleavage of L27. Ribosomal biology in eubacteria has largely been studied in the Gram-negative bacterium Escherichia coli; our findings indicate that there are aspects of the basic biology of the ribosome in S. aureus and other related bacteria that differ substantially from that of the E. coli ribosome. This research lays the foundation for the development of new therapeutic approaches that target this novel pathway.
Collapse
Affiliation(s)
- Erin A Wall
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | | | | | | | | | | |
Collapse
|
19
|
Quiles-Puchalt N, Martínez-Rubio R, Ram G, Lasa Í, Penadés JR. Unravelling bacteriophage ϕ11 requirements for packaging and transfer of mobile genetic elements inStaphylococcus aureus. Mol Microbiol 2014; 91:423-37. [DOI: 10.1111/mmi.12445] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Nuria Quiles-Puchalt
- Instituto de Biomedicina de Valencia (IBV-CSIC); 46010 Valencia Spain
- Centro de Investigación y Tecnología Animal; Instituto Valenciano de Investigaciones Agrarias (CITA-IVIA); 12400 Segorbe Castellón Spain
| | - Roser Martínez-Rubio
- Centro de Investigación y Tecnología Animal; Instituto Valenciano de Investigaciones Agrarias (CITA-IVIA); 12400 Segorbe Castellón Spain
- Cardenal Herrera-CEU University; 46113 Moncada Valencia Spain
| | - Geeta Ram
- Skirball Institute Program in Molecular Pathogenesis and Departments of Microbiology and Medicine; New York University Medical Center; New York NY 10016 USA
| | - Íñigo Lasa
- Instituto de Agrobiotecnología; CSIC-Universidad Pública de Navarra; 31006 Pamplona Navarra Spain
| | - José R. Penadés
- Instituto de Biomedicina de Valencia (IBV-CSIC); 46010 Valencia Spain
- Institute of Infection, Immunity and Inflammation; College of Medical; Veterinary and Life Sciences; University of Glasgow; Glasgow UK
| |
Collapse
|
20
|
Xia G, Wolz C. Phages of Staphylococcus aureus and their impact on host evolution. INFECTION GENETICS AND EVOLUTION 2013; 21:593-601. [PMID: 23660485 DOI: 10.1016/j.meegid.2013.04.022] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 03/25/2013] [Accepted: 04/18/2013] [Indexed: 01/01/2023]
Abstract
Most of the dissimilarity between Staphylococcus aureus strains is due to the presence of mobile genetic elements such as bacteriophages or pathogenicity islands. These elements provide the bacteria with additional genes that enable them to establish a new lifestyle that is often accompanied by a shift to increased pathogenicity or a jump to a new host. S. aureus phages may carry genes coding for diverse virulence factors such as Panton-Valentine leukocidin, staphylokinase, enterotoxins, chemotaxis-inhibitory proteins, or exfoliative toxins. Phages also mediate the transfer of pathogenicity islands in a highly coordinated manner and are the primary vehicle for the horizontal transfer of chromosomal and extra-chromosomal genes. Here, we summarise recent advances regarding phage classification, genome organisation and function of S. aureus phages with a particular emphasis on their role in the evolution of the bacterial host.
Collapse
Affiliation(s)
- Guoqing Xia
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Elfriede-Aulhornstrasse-6, 72076 Tübingen, Germany; German Center for Infection Research (DZIF), Tübingen, Germany
| | - Christiane Wolz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Elfriede-Aulhornstrasse-6, 72076 Tübingen, Germany.
| |
Collapse
|
21
|
Abstract
Molecular piracy is a biological phenomenon in which one replicon (the pirate) uses the structural proteins encoded by another replicon (the helper) to package its own genome and thus allow its propagation and spread. Such piracy is dependent on a complex web of interactions between the helper and the pirate that occur at several levels, from transcriptional control to macromolecular assembly. The best characterized examples of molecular piracy are from the E. coli P2/P4 system and the S. aureus SaPI pathogenicity island/helper system. In both of these cases, the pirate element is mobilized and packaged into phage-like transducing particles assembled from proteins supplied by a helper phage that belongs to the Caudovirales order of viruses (tailed, dsDNA bacteriophages). In this review we will summarize and compare the processes that are involved in molecular piracy in these two systems.
Collapse
Affiliation(s)
- Gail E. Christie
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, PO Box 980678, Richmond, VA 23298-0678, USA
| | - Terje Dokland
- Department of Microbiology, University of Alabama at Birmingham, 845 19th St South BBRB 311, Birmingham, AL 35294 USA
| |
Collapse
|