1
|
Malik S, Nehra K, Mann A, Jagdish R, Rana JS. Characterization and synergy studies of Caudoviricete Escherichia phage FS2B infecting multi-drug resistant uropathogenic Escherichia coli isolates. Int Microbiol 2024; 27:155-166. [PMID: 37247084 DOI: 10.1007/s10123-023-00381-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 05/30/2023]
Abstract
Escherichia coli is one of the most common causes of urinary tract infections. However, a recent upsurge in antibiotic resistance among uropathogenic E. coli (UPEC) strains has provided an impetus to explore alternative antibacterial compounds to encounter this major issue. In this study, a lytic phage against multi-drug-resistant (MDR) UPEC strains was isolated and characterized. The isolated Escherichia phage FS2B of class Caudoviricetes exhibited high lytic activity, high burst size, and a small adsorption and latent time. The phage also exhibited a broad host range and inactivated 69.8% of the collected clinical, and 64.8% of the identified MDR UPEC strains. Further, whole genome sequencing revealed that the phage was 77,407 bp long, having a dsDNA with 124 coding regions. Annotation studies confirmed that the phage carried all the genes associated with lytic life cycle and all lysogeny related genes were absent in the genome. Further, synergism studies of the phage FS2B with antibiotics demonstrated a positive synergistic association among them. The present study therefore concluded that the phage FS2B possesses an immense potential to serve as a novel candidate for treatment of MDR UPEC strains.
Collapse
Affiliation(s)
- Shikha Malik
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science & Technology, Murthal, 131039, Sonipat, Haryana, India
| | - Kiran Nehra
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science & Technology, Murthal, 131039, Sonipat, Haryana, India.
| | - Avantika Mann
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science & Technology, Murthal, 131039, Sonipat, Haryana, India
| | - Renu Jagdish
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science & Technology, Murthal, 131039, Sonipat, Haryana, India
| | - J S Rana
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science & Technology, Murthal, 131039, Sonipat, Haryana, India
| |
Collapse
|
2
|
Jamdagni P, Nehra K, Rana J, Temple LM. Complete Genome Annotation Data of Mycobacteriophages Prann and LeoAvram: New Members of the Family Siphoviridae. Data Brief 2023; 48:109104. [PMID: 37089202 PMCID: PMC10120287 DOI: 10.1016/j.dib.2023.109104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023] Open
Abstract
Two novel mycobacteriophages (Prann and LeoAvram) belonging to the family Siphoviridae were isolated from soil samples of Northern India. Genomic DNA of both the phages was extracted, and further sequenced using Illumina technology. Complete genome annotation of both the isolates was performed using DNA Master. Prann and LeoAvram had linear genomes of 68398bp and 47079bp, respectively, with G+C contents of 60-70%. A total of 99 and 75 ORFs were predicted in Prann and LeoAvram, respectively. Based on sequence similarity to known phage proteins, functions were assigned to 44 and 53 genes, respectively. These proteins could be classified into five major groups, viz., phage structural proteins, proteins for recombination, lytic enzymes, proteins involved in DNA / RNA metabolism, and in regulation. Mycobacterium smegmatis was used in this work as a safe surrogate for Mycobacterium tuberculosis, the causative agent for tuberculosis, a major infectious disease worldwide with developing antibiotic resistance. This is the first report of M. smegmatis phages from Northern India.
Collapse
Affiliation(s)
- Pragati Jamdagni
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal - 131039, Sonipat, Haryana, India
| | - Kiran Nehra
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal - 131039, Sonipat, Haryana, India
- Corresponding author.
| | - J.S. Rana
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal - 131039, Sonipat, Haryana, India
| | - Louise M. Temple
- School of Integrated Sciences, James Madison University, Harrisonburg, Virginia, USA
| |
Collapse
|
3
|
Stanton CR, Rice DTF, Beer M, Batinovic S, Petrovski S. Isolation and Characterisation of the Bundooravirus Genus and Phylogenetic Investigation of the Salasmaviridae Bacteriophages. Viruses 2021; 13:1557. [PMID: 34452423 PMCID: PMC8402886 DOI: 10.3390/v13081557] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 01/21/2023] Open
Abstract
Bacillus is a highly diverse genus containing over 200 species that can be problematic in both industrial and medical settings. This is mainly attributed to Bacillus sp. being intrinsically resistant to an array of antimicrobial compounds, hence alternative treatment options are needed. In this study, two bacteriophages, PumA1 and PumA2 were isolated and characterized. Genome nucleotide analysis identified the two phages as novel at the DNA sequence level but contained proteins similar to phi29 and other related phages. Whole genome phylogenetic investigation of 34 phi29-like phages resulted in the formation of seven clusters that aligned with recent ICTV classifications. PumA1 and PumA2 share high genetic mosaicism and form a genus with another phage named WhyPhy, more recently isolated from the United States of America. The three phages within this cluster are the only candidates to infect B. pumilus. Sequence analysis of B. pumilus phage resistant mutants revealed that PumA1 and PumA2 require polymerized and peptidoglycan bound wall teichoic acid (WTA) for their infection. Bacteriophage classification is continuously evolving with the increasing phages' sequences in public databases. Understanding phage evolution by utilizing a combination of phylogenetic approaches provides invaluable information as phages become legitimate alternatives in both human health and industrial processes.
Collapse
Affiliation(s)
- Cassandra R. Stanton
- Department of Physiology, Anatomy & Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (C.R.S.); (D.T.F.R.); (S.B.)
| | - Daniel T. F. Rice
- Department of Physiology, Anatomy & Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (C.R.S.); (D.T.F.R.); (S.B.)
| | - Michael Beer
- Department of Defence Science and Technology, Port Melbourne, VIC 3207, Australia;
| | - Steven Batinovic
- Department of Physiology, Anatomy & Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (C.R.S.); (D.T.F.R.); (S.B.)
| | - Steve Petrovski
- Department of Physiology, Anatomy & Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (C.R.S.); (D.T.F.R.); (S.B.)
| |
Collapse
|
4
|
Bacteriophage cocktail and phage antibiotic synergism as promising alternatives to conventional antibiotics for the control of multi-drug-resistant uropathogenic Escherichia coli. Virus Res 2021; 302:198496. [PMID: 34182014 DOI: 10.1016/j.virusres.2021.198496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/16/2021] [Accepted: 06/20/2021] [Indexed: 11/21/2022]
Abstract
Infections related to antibiotic resistant bacteria are accelerating on a global scale, and hence to encounter this problem in case of urinary tract infections; bacteriophages were isolated for biocontrol of multi-drug resistant (MDR) uropathogenic Escherichia coli (UPECs) isolates. Four lytic phages were purified, characterized, and evaluated for their effectiveness in the form of cocktail and in synergy with antibiotics. Morphological features and other life cycle specifications of phages revealed that two phages Escherichia phage FS11 and Escherichia phage FS17 belonged to Myoviridae and the other two phages Escherichia phage PS8 and Escherichia phage PS6 belonged to Siphoviridae family of order Caudovirales. One step growth curve analysis demonstrated that phage FS11 and phage FS17 had latent time of 24 min and 26 min, and a burst size of ~121 and 98 phage particles/ cell respectively; while for phage PS8 and phage PS6, the latent time was 42 min and 35 min, and the burst size was 87 and 78 particles/ cell, respectively; depicting the lytic nature of phages. The use of all four phages together in the form of a cocktail resulted into a considerable enhancement in the lytic ability; the phage cocktail lysed 86.7% of the clinical isolates, compared to lysis in the range of 50%-66% by individual phages. Studies on in vitro evaluation of phage-antibiotic combinations revealed synergism between antibiotics and the phage cocktail (phage PS6 and phage FS17), wherein the phage cocktail was observed to efficiently inhibit the strains in the presence of sub-lethal doses of antibiotics. The study thus concludes that the use of multiple phages and phage-antibiotic combinations could prove beneficial in the era of rapidly increasing drug-resistant strains.
Collapse
|
5
|
Fu X, Gong L, Liu Y, Lai Q, Li G, Shao Z. Bacillus pumilus Group Comparative Genomics: Toward Pangenome Features, Diversity, and Marine Environmental Adaptation. Front Microbiol 2021; 12:571212. [PMID: 34025591 PMCID: PMC8139322 DOI: 10.3389/fmicb.2021.571212] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 04/12/2021] [Indexed: 11/13/2022] Open
Abstract
Background Members of the Bacillus pumilus group (abbreviated as the Bp group) are quite diverse and ubiquitous in marine environments, but little is known about correlation with their terrestrial counterparts. In this study, 16 marine strains that we had isolated before were sequenced and comparative genome analyses were performed with a total of 52 Bp group strains. The analyses included 20 marine isolates (which included the 16 new strains) and 32 terrestrial isolates, and their evolutionary relationships, differentiation, and environmental adaptation. Results Phylogenomic analysis revealed that the marine Bp group strains were grouped into three species: B. pumilus, B. altitudinis and B. safensis. All the three share a common ancestor. However, members of B. altitudinis were observed to cluster independently, separating from the other two, thus diverging from the others. Consistent with the universal nature of genes involved in the functioning of the translational machinery, the genes related to translation were enriched in the core genome. Functional genomic analyses revealed that the marine-derived and the terrestrial strains showed differences in certain hypothetical proteins, transcriptional regulators, K+ transporter (TrK) and ABC transporters. However, species differences showed the precedence of environmental adaptation discrepancies. In each species, land specific genes were found with possible functions that likely facilitate survival in diverse terrestrial niches, while marine bacteria were enriched with genes of unknown functions and those related to transcription, phage defense, DNA recombination and repair. Conclusion Our results indicated that the Bp isolates show distinct genomic features even as they share a common core. The marine and land isolates did not evolve independently; the transition between marine and non-marine habitats might have occurred multiple times. The lineage exhibited a priority effect over the niche in driving their dispersal. Certain intra-species niche specific genes could be related to a strains adaptation to its respective marine or terrestrial environment(s). In summary, this report describes the systematic evolution of 52 Bp group strains and will facilitate future studies toward understanding their ecological role and adaptation to marine and/or terrestrial environments.
Collapse
Affiliation(s)
- Xiaoteng Fu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China.,State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen, China.,Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen, China
| | - Linfeng Gong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China.,State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen, China.,Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen, China
| | - Yang Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qiliang Lai
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China.,State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen, China.,Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen, China
| | - Guangyu Li
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China.,State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen, China.,Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen, China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China.,State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen, China.,Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| |
Collapse
|
6
|
Sofy AR, El-Dougdoug NK, Refaey EE, Dawoud RA, Hmed AA. Characterization and Full Genome Sequence of Novel KPP-5 Lytic Phage against Klebsiella pneumoniae Responsible for Recalcitrant Infection. Biomedicines 2021; 9:342. [PMID: 33800632 PMCID: PMC8066614 DOI: 10.3390/biomedicines9040342] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 01/21/2023] Open
Abstract
Klebsiella pneumoniae is a hazardous opportunistic pathogen that is involved in many serious human diseases and is considered to be an important foodborne pathogen found in many food types. Multidrug resistance (MDR) K. pneumoniae strains have recently spread and increased, making bacteriophage therapy an effective alternative to multiple drug-resistant pathogens. As a consequence, this research was conducted to describe the genome and basic biological characteristics of a novel phage capable of lysing MDR K. pneumoniae isolated from food samples in Egypt. The host range revealed that KPP-5 phage had potent lytic activity and was able to infect all selected MDR K. pneumoniae strains from different sources. Electron microscopy images showed that KPP-5 lytic phage was a podovirus morphology. The one-step growth curve exhibited that KPP-5 phage had a relatively short latent period of 25 min, and the burst size was about 236 PFU/infected cells. In addition, KPP-5 phage showed high stability at different temperatures and pH levels. KPP-5 phage has a linear dsDNA genome with a length of 38,245 bp with a GC content of 50.8% and 40 predicted open reading frames (ORFs). Comparative genomics and phylogenetic analyses showed that KPP-5 is most closely associated with the Teetrevirus genus in the Autographviridae family. No tRNA genes have been identified in the KPP-5 phage genome. In addition, phage-borne virulence genes or drug resistance genes were not present, suggesting that KPP-5 could be used safely as a phage biocontrol agent.
Collapse
Affiliation(s)
- Ahmed R. Sofy
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (E.E.R.); (A.A.H.)
| | - Noha K. El-Dougdoug
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha 13518, Egypt;
| | - Ehab E. Refaey
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (E.E.R.); (A.A.H.)
| | - Rehab A. Dawoud
- Virus and Phytoplasma Research Department, Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt;
- Department of Biology, Faculty of Science, Jazan University, Box 114, Jazan 45142, Saudi Arabia
| | - Ahmed A. Hmed
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (E.E.R.); (A.A.H.)
| |
Collapse
|
7
|
Genome Annotations of Two Bacillus Phages, Tomato and BaseballField. Microbiol Resour Announc 2021; 10:10/1/e01196-20. [PMID: 33414332 PMCID: PMC8407708 DOI: 10.1128/mra.01196-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Tomato and Baseball Field are Bacillus bacteriophages that were isolated and annotated by students in the Howard Hughes Medical Institute Phage Hunters program. Tomato has a unique truncation of the tape measure gene that is not found in other closely related C1 Bacillus phages. Baseball Field is a strictly lytic phage with a compact genome of 26 kb. Tomato and BaseballField are Bacillus bacteriophages that were isolated and annotated by students in the Howard Hughes Medical Institute Phage Hunters program. Tomato has a unique truncation of the tape measure gene that is not found in other closely related C1 Bacillus phages. BaseballField is a strictly lytic phage with a compact genome of 26 kb.
Collapse
|
8
|
Isolation and characterization of the novel Pseudomonas stutzeri bacteriophage 8P. Arch Virol 2021; 166:601-606. [PMID: 33392816 DOI: 10.1007/s00705-020-04912-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/23/2020] [Indexed: 10/22/2022]
Abstract
Bacteriophage 8P was isolated with a Pseudomonas stutzeri strain isolated from an oil reservoir as its host bacterium. The phage genome comprises 63,753 base pairs with a G+C content of 64.35. The phage encodes 63 predicted proteins, and 27 of them were functionally assigned. No tRNA genes were found. Comparative genomics analysis showed that 8P displayed some relatedness to F116-like phages (78% identity, 20% query coverage). The genome has very low sequence similarity to the other phage genomes in the GenBank database and Viral Sequence Database. Based on whole-genome analysis and transmission electron microscopy imaging, 8P is proposed to be a member of a new species in the genus Hollowayvirus, family Podoviridae.
Collapse
|
9
|
Spruit CM, Wicklund A, Wan X, Skurnik M, Pajunen MI. Discovery of Three Toxic Proteins of Klebsiella Phage fHe-Kpn01. Viruses 2020; 12:E544. [PMID: 32429141 PMCID: PMC7291057 DOI: 10.3390/v12050544] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 01/09/2023] Open
Abstract
The lytic phage, fHe-Kpn01 was isolated from sewage water using an extended-spectrum beta-lactamase-producing strain of Klebsiella pneumoniae as a host. The genome is 43,329 bp in size and contains direct terminal repeats of 222 bp. The genome contains 56 predicted genes, of which proteomics analysis detected 29 different proteins in purified phage particles. Comparison of fHe-Kpn01 to other phages, both morphologically and genetically, indicated that the phage belongs to the family Podoviridae and genus Drulisvirus. Because fHe-Kpn01 is strictly lytic and does not carry any known resistance or virulence genes, it is suitable for phage therapy. It has, however, a narrow host range since it infected only three of the 72 tested K. pneumoniae strains, two of which were of capsule type KL62. After annotation of the predicted genes based on the similarity to genes of known function and proteomics results on the virion-associated proteins, 22 gene products remained annotated as hypothetical proteins of unknown function (HPUF). These fHe-Kpn01 HPUFs were screened for their toxicity in Escherichia coli. Three of the HPUFs, encoded by the genes g10, g22, and g38, were confirmed to be toxic.
Collapse
Affiliation(s)
- Cindy M. Spruit
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; (C.M.S.); (A.W.); (X.W.); (M.S.)
- Laboratory of Microbiology, Wageningen University and Research, 6708 WE Wageningen, The Netherlands
| | - Anu Wicklund
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; (C.M.S.); (A.W.); (X.W.); (M.S.)
- Division of Clinical Microbiology, HUSLAB, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
| | - Xing Wan
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; (C.M.S.); (A.W.); (X.W.); (M.S.)
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, 00790 Helsinki, Finland
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; (C.M.S.); (A.W.); (X.W.); (M.S.)
- Division of Clinical Microbiology, HUSLAB, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
| | - Maria I. Pajunen
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; (C.M.S.); (A.W.); (X.W.); (M.S.)
| |
Collapse
|
10
|
Miller M, Deiulio A, Holland C, Douthitt C, McMahon J, Wiersma-Koch H, Turechek WW, D'Elia T. Complete genome sequence of Xanthomonas phage RiverRider, a novel N4-like bacteriophage that infects the strawberry pathogen Xanthomonas fragariae. Arch Virol 2020; 165:1481-1484. [PMID: 32246284 DOI: 10.1007/s00705-020-04614-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/10/2020] [Indexed: 12/28/2022]
Abstract
Xanthomonas phage RiverRider is a novel N4-like bacteriophage and the first phage isolated from the plant pathogen Xanthomonas fragariae. Electron microscopy revealed a Podoviridae morphology consisting of isometric heads and short noncontractile tails. The complete genome of RiverRider is 76,355 bp in length, with 90 open reading frames and seven tRNAs. The genome is characteristic of N4-like bacteriophages in both content and organization, having predicted proteins characterized into the functional groups of transcription, DNA metabolism, DNA replication, lysis, lysis inhibition, structure and DNA packaging. Amino acid sequence comparisons for proteins in these categories showed highest similarities to well-characterized N4-like bacteriophages isolated from Achromobacter xylosoxidans and Erwinia amylovora. However, the tail fiber proteins of RiverRider are clearly distinct from those of other N4-like phages. RiverRider was able to infect seven different strains of X. fragariae and none of the other species of Xanthomonas tested.
Collapse
Affiliation(s)
- Morgan Miller
- Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, 901 S. Flagler Drive, P.O. Box 24708, West Palm Beach, FL, 33416, USA
| | - Alex Deiulio
- UF Interdisciplinary Center for Biotechnology Research, Gene Expression and Genotyping Core, 2033 Mowry Road, Gainesville, FL, 32610, USA
| | - Chris Holland
- Biology Department, Indian River State College, 3209 Virginia Ave., Fort Pierce, FL, 34981, USA
| | - Cayce Douthitt
- Biology Department, Indian River State College, 3209 Virginia Ave., Fort Pierce, FL, 34981, USA
| | - Jessica McMahon
- Biology Department, Indian River State College, 3209 Virginia Ave., Fort Pierce, FL, 34981, USA
| | - Helen Wiersma-Koch
- Biology Department, Indian River State College, 3209 Virginia Ave., Fort Pierce, FL, 34981, USA
| | - William W Turechek
- USDA, ARS, U.S. Horticultural Research Laboratory, 2001 South Rock Rd, Fort Pierce, FL, 34945, USA
| | - Tom D'Elia
- Biology Department, Indian River State College, 3209 Virginia Ave., Fort Pierce, FL, 34981, USA.
| |
Collapse
|
11
|
Kotowicz N, Bhardwaj R, Ferreira W, Hong H, Olender A, Ramirez J, Cutting S. Safety and probiotic evaluation of two Bacillus strains producing antioxidant compounds. Benef Microbes 2019; 10:759-771. [DOI: 10.3920/bm2019.0040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Bacillus species are becoming increasingly relevant for use as probiotics or feed additives where their heat stability can ensure survival in the food matrix or enable long-term storage at ambient temperature. Some Bacillus species are pigmented and in this study, we have examined two strains, one Bacillus pumilus (pigmented red) and the other Bacillus megaterium (pigmented yellow) for their safety for potential use in humans as dietary supplements. In addition, we have set out to determine if they might confer any potential health benefits. Both strains produce C30 carotenoids while the B. pumilus strain also produced large quantities of riboflavin equivalent to genetically modified Bacillus strains and most probably contributing to this strain’s pigmentation. Riboflavin’s and carotenoids are antioxidants, and we have evaluated the ability of vegetative cells and/or spores to influence populations of Faecalibacterium prausnitzii in the colon of mice. While both strains increased levels of F. prausnitzii, spores of the B. pumilus strain produced a significant increase in F. prausnitzii levels. If found to be reproducible in humans such an effect might, potentially, confer health benefits particularly for those suffering from inflammatory bowel disease.
Collapse
Affiliation(s)
- N. Kotowicz
- SporeGen Ltd., Bourne Labs, Egham, Surrey, TW20 OEX, United Kingdom
| | - R.K. Bhardwaj
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 OEX, United Kingdom
| | - W.T. Ferreira
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 OEX, United Kingdom
| | - H.A. Hong
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 OEX, United Kingdom
| | - A. Olender
- Department of Medical Microbiology, Medical University of Lublin, Chodzki 1 Street, Lublin, 20-093, Poland
| | - J. Ramirez
- Enviromedica, 2301 Scarbrough Drive, Suite 300, Austin, TX 78728, USA
| | - S.M. Cutting
- SporeGen Ltd., Bourne Labs, Egham, Surrey, TW20 OEX, United Kingdom
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 OEX, United Kingdom
| |
Collapse
|
12
|
Singh S, Godavarthi S, Kumar A, Sen R. A mycobacteriophage genomics approach to identify novel mycobacteriophage proteins with mycobactericidal properties. MICROBIOLOGY-SGM 2019; 165:722-736. [PMID: 31091188 DOI: 10.1099/mic.0.000810] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mycobacteriophages that are specific to mycobacteria are sources of various effector proteins that are capable of eliciting bactericidal responses. We describe a genomics approach in combination with bioinformatics to identify mycobacteriophage proteins that are toxic to mycobacteria upon expression. A genomic library comprising phage genome collections was screened for clones capable of killing Mycobacterium smegmatis strain mc2155. We identified four unique clones: clones 45 and 12N (from the mycobacteriophage D29) and clones 66 and 85 (from the mycobacteriophage Che12). The gene products from clones 66 and 45 were identified as Gp49 of the Che12 phage and Gp34 of the D29 phage, respectively. The gene products of the other two clones, 85 and 12N, utilized novel open reading frames (ORFs) coding for synthetic proteins. These four clones (clones 45, 66, 85 and 12N) caused growth defects in M. smegmatis and Mycobacterium bovis upon expression. Clones with Gp49 and Gp34 also induced growth defects in Escherichia coli, indicating that they target conserved host machineries. Their expression induced various morphological changes, indicating that they affected DNA replication and cell division steps. We predicted that Gp34 is a Xis protein that is required in phage DNA excision from the bacterial chromosome. Gp49 is predicted to have an HTH motif with DNA-bending/twisting properties. We suggest that this methodology is useful to identify new phage proteins with the desired properties without laboriously characterizing the individual phages. It is universal and could be applied to other bacteria-phage systems. We speculate that the existence of a virtually unlimited number of phages with unique gene products could offer a cheaper and less hazardous alternative to explore new antimicrobial molecules.
Collapse
Affiliation(s)
- Shweta Singh
- Laboratory of Transcription, Center for DNA Fingerprinting and Diagnostics, Inner Ring Road, Uppal, Hyderabad-39, India
| | - Sapna Godavarthi
- Laboratory of Transcription, Center for DNA Fingerprinting and Diagnostics, Inner Ring Road, Uppal, Hyderabad-39, India
| | - Amit Kumar
- Laboratory of Transcription, Center for DNA Fingerprinting and Diagnostics, Inner Ring Road, Uppal, Hyderabad-39, India
| | - Ranjan Sen
- Laboratory of Transcription, Center for DNA Fingerprinting and Diagnostics, Inner Ring Road, Uppal, Hyderabad-39, India
| |
Collapse
|
13
|
Complete Genome Sequence of Bacillus amyloliquefaciens Bacteriophage Ray17. Microbiol Resour Announc 2019; 8:8/15/e00134-19. [PMID: 30975808 PMCID: PMC6460031 DOI: 10.1128/mra.00134-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Bacteria belonging to the genus Bacillus and their cognate viruses are easily found in the environment. Soil sampled from Rockingham County, VA, yielded the bacteriophage Ray17, which was isolated on Bacillus amyloliquefaciens. Bacteria belonging to the genus Bacillus and their cognate viruses are easily found in the environment. Soil sampled from Rockingham County, VA, yielded the bacteriophage Ray17, which was isolated on Bacillus amyloliquefaciens. Presented here is the complete genome sequence of the unique bacteriophage Ray17 with 43,733 bp and 75 predicted genes.
Collapse
|
14
|
Complete Genome Sequences of
Bacillus
Bacteriophages Wes44 and Carmen17. Microbiol Resour Announc 2019; 8:8/12/e01103-18. [PMID: 30938704 PMCID: PMC6430321 DOI: 10.1128/mra.01103-18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Wes44 and Carmen17 are siphoviruses that infect
Bacillus thuringiensis
DSM-350. Wes44 contains 42,248 base pairs and 54 predicted genes; Carmen17 contains 41,820 base pairs and 51 predicted genes.
Collapse
|
15
|
Genome Sequence of Bacillus Phage Saddex. Microbiol Resour Announc 2018; 7:MRA01044-18. [PMID: 30533646 PMCID: PMC6256669 DOI: 10.1128/mra.01044-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 08/28/2018] [Indexed: 11/20/2022] Open
Abstract
The complete genome of Bacillus phage Saddex was determined and annotated in this study. Saddex has distinct sections with similarities to other Bacillus phages, such as Kida, even though these phages were isolated more than 800 km apart by separate laboratories.
Collapse
|
16
|
Abstract
Bacillus spp. are ubiquitous Gram-positive microbes with many ecological and symbiotic interactions and can be pathogens. Phage Leo2 was found to infect a Bacillus pumilus strain isolated from soil. The sequence of phage Leo2 revealed 74 genes; 31% of the genes have associated functions, and 67% of coding regions are unidentified open reading frames.
Collapse
|
17
|
Complete Genome Sequence of Bacillus Phage Belinda from Grand Cayman Island. GENOME ANNOUNCEMENTS 2016; 4:4/5/e00571-16. [PMID: 27738022 PMCID: PMC5064095 DOI: 10.1128/genomea.00571-16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Soil from George Town, Grand Cayman Island, yielded the bacteriophage Belinda, isolated on Bacillus thuringiensis DSM 350. We present here the analysis of the complete genome sequence of 162,308 bp, with 298 predicted genes. The genome also contains three tRNA genes. Belinda belongs to the C1 cluster of Bacillus phages.
Collapse
|
18
|
Software-based analysis of bacteriophage genomes, physical ends, and packaging strategies. BMC Genomics 2016; 17:679. [PMID: 27561606 PMCID: PMC5000459 DOI: 10.1186/s12864-016-3018-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 08/13/2016] [Indexed: 11/17/2022] Open
Abstract
Background Phage genome analysis is a rapidly growing field. Recurrent obstacles include software access and usability, as well as genome sequences that vary in sequence orientation and/or start position. Here we describe modifications to the phage comparative genomics software program, Phamerator, provide public access to the code, and include instructions for creating custom Phamerator databases. We further report genomic analysis techniques to determine phage packaging strategies and identification of the physical ends of phage genomes. Results The original Phamerator code can be successfully modified and custom databases can be generated using the instructions we provide. Results of genome map comparisons within a custom database reveal obstacles in performing the comparisons if a published genome has an incorrect complementarity or an incorrect location of the first base of the genome, which are common issues in GenBank-downloaded sequence files. To address these issues, we review phage packaging strategies and provide results that demonstrate identification of the genome start location and orientation using raw sequencing data and software programs such as PAUSE and Consed to establish the location of the physical ends of the genome. These results include determination of exact direct terminal repeats (DTRs) or cohesive ends, or whether phages may use a headful packaging strategy. Phylogenetic analysis using ClustalO and phamily circles in Phamerator demonstrate that the large terminase gene can be used to identify the phage packaging strategy and thereby aide in identifying the physical ends of the genome. Conclusions Using available online code, the Phamerator program can be customized and utilized to generate databases with individually selected genomes. These databases can then provide fruitful information in the comparative analysis of phages. Researchers can identify packaging strategies and physical ends of phage genomes using raw data from high-throughput sequencing in conjunction with phylogenetic analyses of large terminase proteins and the use of custom Phamerator databases. We promote publication of phage genomes in an orientation consistent with the physical structure of the phage chromosome and provide guidance for determining this structure. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3018-2) contains supplementary material, which is available to authorized users.
Collapse
|
19
|
Abstract
Bacillus cereus is an opportunistic foodborne pathogen. The phage vB_BceS-MY192 was isolated from B. cereus 192 in a cooked rice sample. The temperate phage belongs to the Siphoviridae family, Caudovirales order. Here we announce the phage genome sequence and its annotation, which may expand the understanding of B. cereus siphophages.
Collapse
|
20
|
Complete Genome Sequence of Bacillus megaterium Bacteriophage Eldridge. GENOME ANNOUNCEMENTS 2016; 4:4/2/e01728-15. [PMID: 27103735 PMCID: PMC4841150 DOI: 10.1128/genomea.01728-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this study the complete genome sequence of the unique bacteriophage Eldridge, isolated from soil using ITALIC! Bacillus megateriumas the host organism, was determined. Eldridge is a myovirus with a genome consisting of 242 genes and is unique when compared to phage sequences in GenBank.
Collapse
|
21
|
Genomic characterization and comparison of seven Myoviridae bacteriophage infecting Bacillus thuringiensis. Virology 2016; 489:243-51. [DOI: 10.1016/j.virol.2015.12.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 08/02/2015] [Accepted: 12/22/2015] [Indexed: 11/18/2022]
|
22
|
Temple L, Lewis L. Phage on the stage. BACTERIOPHAGE 2015; 5:e1062589. [PMID: 26442195 DOI: 10.1080/21597081.2015.1062589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/05/2015] [Accepted: 06/09/2015] [Indexed: 01/05/2023]
Abstract
The resurgence of interest in bacteriophages for use in combating antibiotic resistant bacteria is coincident with an urgent call for more effective science education practices, including hands-on learning opportunities. To address this issue, a number of solutions have been proposed, including a large educational experiment, begun in 2007 by the Howard Hughes Medical Institute and currently involving over 85 colleges and universities, which has students discovering unique phages, obtaining images, and purifying phage DNA. A subset of these phage genomes is sequenced and analyzed using bioinformatics tools. Papers describing individual phage discoveries and comparative genomic studies are being published regularly. The vast majority of students in the program are in their first year of college, a critical time in capturing their interest and retaining them as science majors. This viral discovery model is being adopted and modified by a wide variety of educational institutions using a number of different bacterial hosts. In the opinion of the authors, this program and others like it represent a model accessible to virtually any undergraduate setting. And because of these programs, bacteriophage enthusiasts (academics, health professionals, biotechnology companies) can look forward to more well prepared students entering their ranks and should anticipate many more potentially useful phages discovered and characterized.
Collapse
Affiliation(s)
- Louise Temple
- Department of Integrated Science & Technology; James Madison University ; Harrisonburg, VA USA ; Department of Biological Sciences; University of Mary Washington ; Fredericksburg, VA USA
| | - Lynn Lewis
- Department of Integrated Science & Technology; James Madison University ; Harrisonburg, VA USA ; Department of Biological Sciences; University of Mary Washington ; Fredericksburg, VA USA
| |
Collapse
|
23
|
Domingos DF, de Faria AF, de Souza Galaverna R, Eberlin MN, Greenfield P, Zucchi TD, Melo IS, Tran-Dinh N, Midgley D, de Oliveira VM. Genomic and chemical insights into biosurfactant production by the mangrove-derived strain Bacillus safensis CCMA-560. Appl Microbiol Biotechnol 2015; 99:3155-67. [PMID: 25586584 DOI: 10.1007/s00253-015-6377-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 12/23/2014] [Accepted: 12/31/2014] [Indexed: 11/25/2022]
Abstract
Many Bacillus species can produce biosurfactant, although most of the studies on lipopeptide production by this genus have been focused on Bacillus subtilis. Surfactants are broadly used in pharmaceutical, food and petroleum industry, and biological surfactant shows some advantages over the chemical surfactants, such as less toxicity, production from renewable, cheaper feedstocks and development of novel recombinant hyperproducer strains. This study is aimed to unveil the biosurfactant metabolic pathway and chemical composition in Bacillus safensis strain CCMA-560. The whole genome of the CCMA-560 strain was previously sequenced, and with the aid of bioinformatics tools, its biosurfactant metabolic pathway was compared to other pathways of closely related species. Fourier transform infrared (FTIR) and high-resolution TOF mass spectrometry (MS) were used to characterize the biosurfactant molecule. B. safensis CCMA-560 metabolic pathway is similar to other Bacillus species; however, some differences in amino acid incorporation were observed, and chemical analyses corroborated the genetic results. The strain CCMA-560 harbours two genes flanked by srfAC and srfAD not present in other Bacillus spp., which can be involved in the production of the analogue gramicidin. FTIR and MS showed that B. safensis CCMA-560 produces a mixture of at least four lipopeptides with seven amino acids incorporated and a fatty acid chain with 14 carbons, which makes this molecule similar to the biosurfactant of Bacillus pumilus, namely, pumilacidin. This is the first report on the biosurfactant production by B. safensis, encompassing the investigation of the metabolic pathway and chemical characterization of the biosurfactant molecule.
Collapse
Affiliation(s)
- Daniela Ferreira Domingos
- Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas (UNICAMP), Av. Alexandre Cazelatto, 999, Campinas, SP, 13148-218, Brazil,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Yuan Y, Peng Q, Wu D, Kou Z, Wu Y, Liu P, Gao M. Effects of actin-like proteins encoded by two Bacillus pumilus phages on unstable lysogeny, revealed by genomic analysis. Appl Environ Microbiol 2015; 81:339-50. [PMID: 25344242 PMCID: PMC4272706 DOI: 10.1128/aem.02889-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 10/20/2014] [Indexed: 12/16/2022] Open
Abstract
We characterized two newly isolated myoviruses, Bp8p-C and Bp8p-T, infecting the ginger rhizome rot disease pathogen Bacillus pumilus GR8. The plaque of Bp8p-T exhibited a clear center with a turbid rim, suggesting that Bp8p-T could transform into latent phage. Lysogeny assays showed that both the two phages could form latent states, while Bp8p-T could form latent phage at a higher frequency and stability than Bp8p-C. The genomes of Bp8p-C and Bp8p-T were 151,417 and 151,419 bp, respectively; both encoded 212 putative proteins, and only differed by three nucleotides. Moreover, owing to this difference, Bp8p-C encoded a truncated, putative actin-like plasmid segregation protein Gp27-C. Functional analysis of protein Gp27 showed that Gp27-T encoded by Bp8p-T exhibited higher ATPase activity and assembly ability than Gp27-C. The results indicate that the difference in Gp27 affected the phage lysogenic ability. Structural proteome analysis of Bp8p-C virion resulted in the identification of 14 structural proteins, among which a pectin lyase-like protein, a putative poly-gamma-glutamate hydrolase, and three proteins with unknown function, were firstly identified as components of the phage virion. Both phages exhibited specific lytic ability to the host strain GR8. Bp8p-C showed better control effect on the pathogen in ginger rhizome slices than Bp8p-T, suggesting that Bp8p-C has a potential application in bio-control of ginger rhizome rot disease.
Collapse
Affiliation(s)
- Yihui Yuan
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Qin Peng
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Dandan Wu
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Zheng Kou
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Yan Wu
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Pengming Liu
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Meiying Gao
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| |
Collapse
|
25
|
Grose JH, Jensen GL, Burnett SH, Breakwell DP. Correction: genomic comparison of 93 Bacillus phages reveals 12 clusters, 14 singletons and remarkable diversity. BMC Genomics 2014; 15:1184. [PMID: 25547158 PMCID: PMC4464726 DOI: 10.1186/1471-2164-15-1184] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 12/04/2014] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The Bacillus genus of Firmicutes bacteria is ubiquitous in nature and includes one of the best characterized model organisms, B. subtilis, as well as medically significant human pathogens, the most notorious being B. anthracis and B. cereus. As the most abundant living entities on the planet, bacteriophages are known to heavily influence the ecology and evolution of their hosts, including providing virulence factors. Thus, the identification and analysis of Bacillus phages is critical to understanding the evolution of Bacillus species, including pathogenic strains. RESULTS Whole genome nucleotide and proteome comparison of the 83 extant, fully sequenced Bacillus phages revealed 10 distinct clusters, 24 subclusters and 15 singleton phages. Host analysis of these clusters supports host boundaries at the subcluster level and suggests phages as vectors for genetic transfer within the Bacillus cereus group, with B. anthracis as a distant member. Analysis of the proteins conserved among these phages reveals enormous diversity and the uncharacterized nature of these phages, with a total of 4,442 protein families (phams) of which only 894 (20%) had a predicted function. In addition, 2,583 (58%) of phams were orphams (phams containing a single member). The most populated phams were those encoding proteins involved in DNA metabolism, virion structure and assembly, cell lysis, or host function. These included several genes that may contribute to the pathogenicity of Bacillus strains. CONCLUSIONS This analysis provides a basis for understanding and characterizing Bacillus and other related phages as well as their contributions to the evolution and pathogenicity of Bacillus cereus group bacteria. The presence of sparsely populated clusters, the high ratio of singletons to clusters, and the large number of uncharacterized, conserved proteins confirms the need for more Bacillus phage isolation in order to understand the full extent of their diversity as well as their impact on host evolution.
Collapse
Affiliation(s)
- Julianne H Grose
- Microbiology and Molecular Biology Department, Brigham Young University, Provo, UT, USA.
| | | | | | | |
Collapse
|
26
|
Adriaenssens EM, Edwards R, Nash JHE, Mahadevan P, Seto D, Ackermann HW, Lavigne R, Kropinski AM. Integration of genomic and proteomic analyses in the classification of the Siphoviridae family. Virology 2014; 477:144-154. [PMID: 25466308 DOI: 10.1016/j.virol.2014.10.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/08/2014] [Accepted: 10/17/2014] [Indexed: 11/26/2022]
Abstract
Using a variety of genomic (BLASTN, ClustalW) and proteomic (Phage Proteomic Tree, CoreGenes) tools we have tackled the taxonomic status of members of the largest bacteriophage family, the Siphoviridae. In all over 400 phages were examined and we were able to propose 39 new genera, comprising 216 phage species, and add 62 species to two previously defined genera (Phic3unalikevirus; L5likevirus) grouping, in total, 390 fully sequenced phage isolates. Many of the remainders are orphans which the Bacterial and Archaeal Viruses Subcommittee of the International Committee on Taxonomy of Viruses (ICTV) chooses not to ascribe genus status at the time being.
Collapse
Affiliation(s)
- Evelien M Adriaenssens
- Centre for Microbial Ecology and Genomics, Genomics Research Institute, University of Pretoria, Lynnwood Road, Pretoria 0028, South Africa
| | - Rob Edwards
- Geology, Mathematics, and Computer Science, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - John H E Nash
- Laboratory for Foodborne Zoonoses, Public Health Agency of Canada, 110 Stone Road West, Guelph, ON, Canada N1G 3W4
| | | | - Donald Seto
- Bioinformatics and Computational Biology Program, School of Systems Biology, George Mason University, 10900 University Blvd, Manassas, VA 20110, USA
| | - Hans-Wolfgang Ackermann
- Département de Microbiologie-infectiologie et immunologie, Faculté de médecine, Université Laval, Québec, QC, Canada G1K 7P4
| | - Rob Lavigne
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, KasteelparkArenberg 21 - b2462, Heverlee 3001, Belgium.
| | - Andrew M Kropinski
- Laboratory for Foodborne Zoonoses, Public Health Agency of Canada, 110 Stone Road West, Guelph, ON, Canada N1G 3W4; Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada N1G 2A1.
| |
Collapse
|
27
|
Abstract
Virology encompasses a broad spectrum of topics touching upon many aspects of our everyday lives. However, appreciation of this impact is too often restricted to those who have specialized training and participate in virology research. The Phage Hunters Integrating Research and Education (PHIRE) program and the This Week in Virology (TWiV) podcast seek to bring virology to new audiences through two different approaches—direct involvement of undergraduates in discovering and genomically characterizing bacteriophages (PHIRE) and clear, accessible, and free discussions among experts of all topics in virology (TWiV). Here we discuss these two high-impact programs, the audiences that they serve, their broader impacts, and their future potential.
Collapse
Affiliation(s)
- Graham F. Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Vincent Racaniello
- Department of Microbiology and Immunology, Columbia University, New York, NY 10032
| |
Collapse
|
28
|
Jordan TC, Burnett SH, Carson S, Caruso SM, Clase K, DeJong RJ, Dennehy JJ, Denver DR, Dunbar D, Elgin SCR, Findley AM, Gissendanner CR, Golebiewska UP, Guild N, Hartzog GA, Grillo WH, Hollowell GP, Hughes LE, Johnson A, King RA, Lewis LO, Li W, Rosenzweig F, Rubin MR, Saha MS, Sandoz J, Shaffer CD, Taylor B, Temple L, Vazquez E, Ware VC, Barker LP, Bradley KW, Jacobs-Sera D, Pope WH, Russell DA, Cresawn SG, Lopatto D, Bailey CP, Hatfull GF. A broadly implementable research course in phage discovery and genomics for first-year undergraduate students. mBio 2014; 5:e01051-13. [PMID: 24496795 DOI: 10.1128/mbio.01051-13.editor] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023] Open
Abstract
UNLABELLED Engaging large numbers of undergraduates in authentic scientific discovery is desirable but difficult to achieve. We have developed a general model in which faculty and teaching assistants from diverse academic institutions are trained to teach a research course for first-year undergraduate students focused on bacteriophage discovery and genomics. The course is situated within a broader scientific context aimed at understanding viral diversity, such that faculty and students are collaborators with established researchers in the field. The Howard Hughes Medical Institute (HHMI) Science Education Alliance Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES) course has been widely implemented and has been taken by over 4,800 students at 73 institutions. We show here that this alliance-sourced model not only substantially advances the field of phage genomics but also stimulates students' interest in science, positively influences academic achievement, and enhances persistence in science, technology, engineering, and mathematics (STEM) disciplines. Broad application of this model by integrating other research areas with large numbers of early-career undergraduate students has the potential to be transformative in science education and research training. IMPORTANCE Engagement of undergraduate students in scientific research at early stages in their careers presents an opportunity to excite students about science, technology, engineering, and mathematics (STEM) disciplines and promote continued interests in these areas. Many excellent course-based undergraduate research experiences have been developed, but scaling these to a broader impact with larger numbers of students is challenging. The Howard Hughes Medical Institute (HHMI) Science Education Alliance Phage Hunting Advancing Genomics and Evolutionary Science (SEA-PHAGES) program takes advantage of the huge size and diversity of the bacteriophage population to engage students in discovery of new viruses, genome annotation, and comparative genomics, with strong impacts on bacteriophage research, increased persistence in STEM fields, and student self-identification with learning gains, motivation, attitude, and career aspirations.
Collapse
|
29
|
A broadly implementable research course in phage discovery and genomics for first-year undergraduate students. mBio 2014; 5:e01051-13. [PMID: 24496795 PMCID: PMC3950523 DOI: 10.1128/mbio.01051-13] [Citation(s) in RCA: 336] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Engaging large numbers of undergraduates in authentic scientific discovery is desirable but difficult to achieve. We have developed a general model in which faculty and teaching assistants from diverse academic institutions are trained to teach a research course for first-year undergraduate students focused on bacteriophage discovery and genomics. The course is situated within a broader scientific context aimed at understanding viral diversity, such that faculty and students are collaborators with established researchers in the field. The Howard Hughes Medical Institute (HHMI) Science Education Alliance Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES) course has been widely implemented and has been taken by over 4,800 students at 73 institutions. We show here that this alliance-sourced model not only substantially advances the field of phage genomics but also stimulates students' interest in science, positively influences academic achievement, and enhances persistence in science, technology, engineering, and mathematics (STEM) disciplines. Broad application of this model by integrating other research areas with large numbers of early-career undergraduate students has the potential to be transformative in science education and research training. IMPORTANCE Engagement of undergraduate students in scientific research at early stages in their careers presents an opportunity to excite students about science, technology, engineering, and mathematics (STEM) disciplines and promote continued interests in these areas. Many excellent course-based undergraduate research experiences have been developed, but scaling these to a broader impact with larger numbers of students is challenging. The Howard Hughes Medical Institute (HHMI) Science Education Alliance Phage Hunting Advancing Genomics and Evolutionary Science (SEA-PHAGES) program takes advantage of the huge size and diversity of the bacteriophage population to engage students in discovery of new viruses, genome annotation, and comparative genomics, with strong impacts on bacteriophage research, increased persistence in STEM fields, and student self-identification with learning gains, motivation, attitude, and career aspirations.
Collapse
|
30
|
Abstract
Bacillus pumilus is primarily used in the agricultural industry to promote plant growth and provide resistance to bacterial and fungal plant diseases. It has recently, however, been shown to cause disease in humans. Here, we announce the complete genome of B. pumilus phage Riggi.
Collapse
|
31
|
Abstract
Phage Blastoid is a siphophage that infects Bacillus pumilus. B. pumilus is widely used in agriculture but has recently been linked to cases of food poisoning. Here, we report the complete genome of Blastoid and discuss unique genomic characteristics.
Collapse
|
32
|
Abstract
Bacillus pumilus is a Gram-positive bacterium widely used in agriculture both as an antifungal and as a growth-promoting symbiont. B. pumilus is rarely infectious but has recently been shown to infect humans. Here, we present the complete genome of B. pumilus phage Glittering, a potential biocontrol agent for B. pumilus.
Collapse
|