1
|
Qin M, Chen W, Li Z, Wang L, Ma L, Geng J, Zhang Y, Zhao J, Zeng Y. Role of IFNLR1 gene in PRRSV infection of PAM cells. J Vet Sci 2021; 22:e39. [PMID: 34056880 PMCID: PMC8170216 DOI: 10.4142/jvs.2021.22.e39] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/11/2021] [Accepted: 04/15/2021] [Indexed: 01/01/2023] Open
Abstract
Background Interferon lambda receptor 1 (IFNLR1) is a type II cytokine receptor that clings to interleukins IL-28A, IL29B, and IL-29 referred to as type III IFNs (IFN-λs). IFN-λs act through the JAK-STAT signaling pathway to exert antiviral effects related to preventing and curing an infection. Although the immune function of IFN-λs in virus invasion has been described, the molecular mechanism of IFNLR1 in that process is unclear. Objectives The purpose of this study was to elucidate the role of IFNLR1 in the pathogenesis and treatment of porcine reproductive and respiratory syndrome virus (PRRSV). Methods The effects of IFNLR1 on the proliferation of porcine alveolar macrophages (PAMs) during PRRSV infection were investigated using interference and overexpression methods. Results In this study, the expressions of the IFNLR1 gene in the liver, large intestine, small intestine, kidney, and lung tissues of Dapulian pigs were significantly higher than those in Landrace pigs. It was determined that porcine IFNLR1 overexpression suppresses PRRSV replication. The qRT-PCR results revealed that overexpression of IFNLR1 upregulated antiviral and IFN-stimulated genes. IFNLR1 overexpression inhibits the proliferation of PAMs and upregulation of p-STAT1. By contrast, knockdown of IFNLR1 expression promotes PAMs proliferation. The G0/G1 phase proportion in IFNLR1-overexpressing cells increased, and the opposite change was observed in IFNLR1-underexpressing cells. After inhibition of the JAK/STAT signaling pathway, the G2/M phase proportion in the IFNLR1-overexpressing cells showed a significant increasing trend. In conclusion, overexpression of IFNLR1 induces activation of the JAK/STAT pathway, thereby inhibiting the proliferation of PAMs infected with PRRSV. Conclusion Expression of the IFNLR1 gene has an important regulatory role in PRRSV-infected PAMs, indicating it has potential as a molecular target in developing a new strategy for the treatment of PRRSV.
Collapse
Affiliation(s)
- Ming Qin
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai' an City, Shandong Province 271018, China
| | - Wei Chen
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai' an City, Shandong Province 271018, China
| | - Zhixin Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai' an City, Shandong Province 271018, China
| | - Lixue Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai' an City, Shandong Province 271018, China
| | - Lixia Ma
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai' an City, Shandong Province 271018, China
| | - Jinhong Geng
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai' an City, Shandong Province 271018, China
| | - Yu Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai' an City, Shandong Province 271018, China
| | - Jing Zhao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai' an City, Shandong Province 271018, China
| | - Yongqing Zeng
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai' an City, Shandong Province 271018, China.
| |
Collapse
|
2
|
Tweedy JG, Escriva E, Topf M, Gompels UA. Analyses of Tissue Culture Adaptation of Human Herpesvirus-6A by Whole Genome Deep Sequencing Redefines the Reference Sequence and Identifies Virus Entry Complex Changes. Viruses 2017; 10:v10010016. [PMID: 29301233 PMCID: PMC5795429 DOI: 10.3390/v10010016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/23/2017] [Accepted: 12/26/2017] [Indexed: 11/18/2022] Open
Abstract
Tissue-culture adaptation of viruses can modulate infection. Laboratory passage and bacterial artificial chromosome (BAC)mid cloning of human cytomegalovirus, HCMV, resulted in genomic deletions and rearrangements altering genes encoding the virus entry complex, which affected cellular tropism, virulence, and vaccine development. Here, we analyse these effects on the reference genome for related betaherpesviruses, Roseolovirus, human herpesvirus 6A (HHV-6A) strain U1102. This virus is also naturally “cloned” by germline subtelomeric chromosomal-integration in approximately 1% of human populations, and accurate references are key to understanding pathological relationships between exogenous and endogenous virus. Using whole genome next-generation deep-sequencing Illumina-based methods, we compared the original isolate to tissue-culture passaged and the BACmid-cloned virus. This re-defined the reference genome showing 32 corrections and 5 polymorphisms. Furthermore, minor variant analyses of passaged and BACmid virus identified emerging populations of a further 32 single nucleotide polymorphisms (SNPs) in 10 loci, half non-synonymous indicating cell-culture selection. Analyses of the BAC-virus genome showed deletion of the BAC cassette via loxP recombination removing green fluorescent protein (GFP)-based selection. As shown for HCMV culture effects, select HHV-6A SNPs mapped to genes encoding mediators of virus cellular entry, including virus envelope glycoprotein genes gB and the gH/gL complex. Comparative models suggest stabilisation of the post-fusion conformation. These SNPs are essential to consider in vaccine-design, antimicrobial-resistance, and pathogenesis.
Collapse
Affiliation(s)
- Joshua G Tweedy
- Department of Pathogen Molecular Biology, London School of Hygiene & Tropical Medicine, University of London, London WC1E 7HT, UK.
| | - Eric Escriva
- Department of Pathogen Molecular Biology, London School of Hygiene & Tropical Medicine, University of London, London WC1E 7HT, UK.
- Institute for Structural and Molecular Biology, Department Biology, Birkbeck College University of London, London WC1E 7HX, UK.
| | - Maya Topf
- Institute for Structural and Molecular Biology, Department Biology, Birkbeck College University of London, London WC1E 7HX, UK.
| | - Ursula A Gompels
- Department of Pathogen Molecular Biology, London School of Hygiene & Tropical Medicine, University of London, London WC1E 7HT, UK.
| |
Collapse
|
3
|
Chromosomal integration of HHV-6A during non-productive viral infection. Sci Rep 2017; 7:512. [PMID: 28360414 PMCID: PMC5428774 DOI: 10.1038/s41598-017-00658-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 03/07/2017] [Indexed: 11/28/2022] Open
Abstract
Human herpesvirus 6A (HHV-6A) and 6B (HHV-6B) are two different species of betaherpesviruses that integrate into sub-telomeric ends of human chromosomes, for which different prevalence rates of integration have been reported. It has been demonstrated that integrated viral genome is stable and is fully retained. However, study of chromosomally integrated viral genome in individuals carrying inherited HHV-6 (iciHHV-6) showed unexpected number of viral DR copies. Hence, we created an in vitro infection model and studied retention of full or partial viral genome over a period of time. We observed an exceptional event where cells retained viral direct repeats (DRs) alone in the absence of the full viral genome. Finally, we found evidence for non-telomeric integration of HHV-6A DR in both cultured cells and in an iciHHV-6 individual. Our results shed light on several novel features of HHV-6A chromosomal integration and provide valuable information for future screening techniques.
Collapse
|
4
|
Zhang E, Cotton VE, Hidalgo-Bravo A, Huang Y, Bell AJ, Jarrett RF, Wilkie GS, Davison AJ, Nacheva EP, Siebert R, Majid A, Kelpanides I, Jayne S, Dyer MJ, Royle NJ. HHV-8-unrelated primary effusion-like lymphoma associated with clonal loss of inherited chromosomally-integrated human herpesvirus-6A from the telomere of chromosome 19q. Sci Rep 2016; 6:22730. [PMID: 26947392 PMCID: PMC4779988 DOI: 10.1038/srep22730] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 02/18/2016] [Indexed: 12/26/2022] Open
Abstract
Primary effusion lymphomas (PEL) are associated with human herpesvirus-8 (HHV-8) and usually occur in immunocompromised individuals. However, there are numerous reports of HHV-8-unrelated PEL-like lymphomas with unknown aetiology. Here we characterize an HHV-8-unrelated PEL-like lymphoma in an elderly woman who was negative for human immunodeficiency viruses 1 and 2, and hepatitis B and C. The woman was, however, a carrier of an inherited-chromosomally-integrated human herpesvirus-6A (iciHHV-6A) genome in one 19q telomere. The iciHHV-6A genome was complete in blood DNA, encoding a full set of protein-coding genes. Interestingly, the entire iciHHV-6A genome was absent from the HHV-8-unrelated-PEL-like lymphoma cells despite retention of both copies of chromosome 19. The somatic loss of the 19q-iciHHV-6A genome occurred very early during lymphoma development and we propose it occurred via telomere-loop formation and excision to release a circular viral genome that was subsequently lost. Whether release of the HHV-6A genome from the telomere contributed to lymphomagenesis, or was coincidental, remains unclear but this event may have deregulated the expression of HHV-6A or 19q genes or else disrupted telomere function. To establish the frequency and importance of iciHHV-6 loss from telomeres, the HHV-6 copy number should be assessed in tumours that arise in iciHHV-6 carriers.
Collapse
Affiliation(s)
- Enjie Zhang
- Department of Genetics, University of Leicester, Leicester, LE1 7RH, UK
| | - Victoria E Cotton
- Department of Genetics, University of Leicester, Leicester, LE1 7RH, UK
| | | | - Yan Huang
- Department of Genetics, University of Leicester, Leicester, LE1 7RH, UK
| | - Adam J Bell
- MRC - University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Ruth F Jarrett
- MRC - University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Gavin S Wilkie
- MRC - University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Andrew J Davison
- MRC - University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Ellie P Nacheva
- Cytogenetics Laboratory, Royal Free London NHS Foundation Trust, London, NW3 2PF, UK
| | - Reiner Siebert
- Institute of Human Genetics, Christian-Albrechts-University Kiel &University Hospital Schleswig-Holstein, Campus Kiel, Schwanenweg 24, D-24105 Kiel, Germany
| | - Aneela Majid
- Ernest and Helen Scott Haematological Research Institute, Department of Cancer Studies, University of Leicester, Leicester, LE1 7RH, UK
| | - Inga Kelpanides
- Ernest and Helen Scott Haematological Research Institute, Department of Cancer Studies, University of Leicester, Leicester, LE1 7RH, UK
| | - Sandrine Jayne
- Ernest and Helen Scott Haematological Research Institute, Department of Cancer Studies, University of Leicester, Leicester, LE1 7RH, UK
| | - Martin J Dyer
- Ernest and Helen Scott Haematological Research Institute, Department of Cancer Studies, University of Leicester, Leicester, LE1 7RH, UK
| | - Nicola J Royle
- Department of Genetics, University of Leicester, Leicester, LE1 7RH, UK
| |
Collapse
|
5
|
Tweedy J, Spyrou MA, Pearson M, Lassner D, Kuhl U, Gompels UA. Complete Genome Sequence of Germline Chromosomally Integrated Human Herpesvirus 6A and Analyses Integration Sites Define a New Human Endogenous Virus with Potential to Reactivate as an Emerging Infection. Viruses 2016; 8:v8010019. [PMID: 26784220 PMCID: PMC4728579 DOI: 10.3390/v8010019] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/25/2015] [Accepted: 12/01/2015] [Indexed: 12/23/2022] Open
Abstract
Human herpesvirus-6A and B (HHV-6A, HHV-6B) have recently defined endogenous genomes, resulting from integration into the germline: chromosomally-integrated “CiHHV-6A/B”. These affect approximately 1.0% of human populations, giving potential for virus gene expression in every cell. We previously showed that CiHHV-6A was more divergent than CiHHV-6B by examining four genes in 44 European CiHHV-6A/B cardiac/haematology patients. There was evidence for gene expression/reactivation, implying functional non-defective genomes. To further define the relationship between HHV-6A and CiHHV-6A we used next-generation sequencing to characterize genomes from three CiHHV-6A cardiac patients. Comparisons to known exogenous HHV-6A showed CiHHV-6A genomes formed a separate clade; including all 85 non-interrupted genes and necessary cis-acting signals for reactivation as infectious virus. Greater single nucleotide polymorphism (SNP) density was defined in 16 genes and the direct repeats (DR) terminal regions. Using these SNPs, deep sequencing analyses demonstrated superinfection with exogenous HHV-6A in two of the CiHHV-6A patients with recurrent cardiac disease. Characterisation of the integration sites in twelve patients identified the human chromosome 17p subtelomere as a prevalent site, which had specific repeat structures and phylogenetically related CiHHV-6A coding sequences indicating common ancestral origins. Overall CiHHV-6A genomes were similar, but distinct from known exogenous HHV-6A virus, and have the capacity to reactivate as emerging virus infections.
Collapse
Affiliation(s)
- Joshua Tweedy
- Department of Pathogen Molecular Biology, London School of Hygiene & Tropical Medicine, University of London, London WC1E 7HT, UK.
| | - Maria Alexandra Spyrou
- Department of Pathogen Molecular Biology, London School of Hygiene & Tropical Medicine, University of London, London WC1E 7HT, UK.
| | - Max Pearson
- Department of Pathogen Molecular Biology, London School of Hygiene & Tropical Medicine, University of London, London WC1E 7HT, UK.
| | - Dirk Lassner
- Institute of Cardiac diagnostics (IKDT), Charite University, D-12203 Berlin, Germany.
| | - Uwe Kuhl
- Institute of Cardiac diagnostics (IKDT), Charite University, D-12203 Berlin, Germany.
| | - Ursula A Gompels
- Department of Pathogen Molecular Biology, London School of Hygiene & Tropical Medicine, University of London, London WC1E 7HT, UK.
| |
Collapse
|
6
|
Mori J, Kawabata A, Tang H, Tadagaki K, Mizuguchi H, Kuroda K, Mori Y. Human Herpesvirus-6 U14 Induces Cell-Cycle Arrest in G2/M Phase by Associating with a Cellular Protein, EDD. PLoS One 2015; 10:e0137420. [PMID: 26340541 PMCID: PMC4560387 DOI: 10.1371/journal.pone.0137420] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 08/17/2015] [Indexed: 11/19/2022] Open
Abstract
The human herpesvirus-6 (HHV-6) infection induces cell-cycle arrest. In this study, we found that the HHV-6-encoded U14 protein induced cell-cycle arrest at G2/M phase via an association with the cellular protein EDD, a mediator of DNA-damage signal transduction. In the early phase of HHV-6 infection, U14 colocalized with EDD dots in the nucleus, and similar colocalization was also observed in cells transfected with a U14 expression vector. When the carboxyl-terminal region of U14 was deleted, no association of U14 and EDD was observed, and the percentage of cells in G2/M decreased relative to that in cells expressing wild-type U14, indicating that the C-terminal region of U14 and the U14-EDD association are critical for the cell-cycle arrest induced by U14. These results indicate that U14 is a G2/M checkpoint regulator encoded by HHV-6.
Collapse
Affiliation(s)
- Junko Mori
- Division of Clinical Virology, Kobe University Graduate School of Medicine, Kobe, 6500017, Japan
| | - Akiko Kawabata
- Division of Clinical Virology, Kobe University Graduate School of Medicine, Kobe, 6500017, Japan
| | - Huamin Tang
- Division of Clinical Virology, Kobe University Graduate School of Medicine, Kobe, 6500017, Japan
- Department of Immunology, Nanjing Medical University, Nanjing, 210029, China
| | - Kenjiro Tadagaki
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 6028566, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 5650871, Japan
| | - Kazumichi Kuroda
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, 1738610, Japan
| | - Yasuko Mori
- Division of Clinical Virology, Kobe University Graduate School of Medicine, Kobe, 6500017, Japan
- Laboratory of Virology and Vaccinology, National Institute of Biomedical Innovation, Osaka, 5670085, Japan
- * E-mail:
| |
Collapse
|
7
|
Frenkel N, Sharon E, Zeigerman H. Roseoloviruses manipulate host cell cycle. Curr Opin Virol 2014; 9:162-6. [PMID: 25462449 DOI: 10.1016/j.coviro.2014.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/05/2014] [Accepted: 10/07/2014] [Indexed: 10/24/2022]
Abstract
During lytic infections HHV-6A and HHV-6B disrupt E2F1-Rb complexes by Rb degradation, releasing E2F1 and driving the infected cells toward the S-phase. Whereas upon infection E2F1 and its cofactor DP1 were up-regulated, additional E2F responsive genes were expressed differentially in various cells. E2F binding sites were identified in promoters of several HHV-6 genes, including the U27 and U79 associated with viral DNA replication, revealing high dependence on the binding site and the effect of the E2F1 transcription factor. Viral genes regulation by E2F1 can synchronize viral replication with the optimal cell cycle phase, enabling utilization of host resources for successful viral replication. Furthermore, it was found that infection by roseoloviruses leads to cell cycle arrest, mostly in the G2/M-phase.
Collapse
Affiliation(s)
- Niza Frenkel
- Department of Cell Research and Immunology and the S. Daniel Abraham Institute for Molecular Virology, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Eyal Sharon
- Department of Cell Research and Immunology and the S. Daniel Abraham Institute for Molecular Virology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Haim Zeigerman
- Department of Cell Research and Immunology and the S. Daniel Abraham Institute for Molecular Virology, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|