1
|
Yuan X, Zhang X, Wang H, Mao X, Sun Y, Tan L, Song C, Qiu X, Ding C, Liao Y. The Ubiquitin-Proteasome System Facilitates Membrane Fusion and Uncoating during Coronavirus Entry. Viruses 2023; 15:2001. [PMID: 37896778 PMCID: PMC10610886 DOI: 10.3390/v15102001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/08/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Although the involvement of the ubiquitin-proteasome system (UPS) in several coronavirus-productive infections has been reported, whether the UPS is required for infectious bronchitis virus (IBV) and porcine epidemic diarrhea virus (PEDV) infections is unclear. In this study, the role of UPS in the IBV and PEDV life cycles was investigated. When the UPS was suppressed by pharmacological inhibition at the early infection stage, IBV and PEDV infectivity were severely impaired. Further study showed that inhibition of UPS did not change the internalization of virus particles; however, by using R18 and DiOC-labeled virus particles, we found that inhibition of UPS prevented the IBV and PEDV membrane fusion with late endosomes or lysosomes. In addition, proteasome inhibitors blocked the degradation of the incoming viral protein N, suggesting the uncoating process and genomic RNA release were suppressed. Subsequently, the initial translation of genomic RNA was blocked. Thus, UPS may target the virus-cellular membrane fusion to facilitate the release of incoming viruses from late endosomes or lysosomes, subsequently blocking the following virus uncoating, initial translation, and replication events. Similar to the observation of proteasome inhibitors, ubiquitin-activating enzyme E1 inhibitor PYR-41 also impaired the entry of IBV, enhanced the accumulation of ubiquitinated proteins, and depleted mono-ubiquitin. In all, this study reveals an important role of UPS in coronavirus entry by preventing membrane fusion and identifies UPS as a potential target for developing antiviral therapies for coronavirus.
Collapse
Affiliation(s)
- Xiao Yuan
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (X.Y.); (X.Z.); (H.W.); (X.M.); (Y.S.); (L.T.); (C.S.); (X.Q.); (C.D.)
| | - Xiaoman Zhang
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (X.Y.); (X.Z.); (H.W.); (X.M.); (Y.S.); (L.T.); (C.S.); (X.Q.); (C.D.)
| | - Huan Wang
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (X.Y.); (X.Z.); (H.W.); (X.M.); (Y.S.); (L.T.); (C.S.); (X.Q.); (C.D.)
| | - Xiang Mao
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (X.Y.); (X.Z.); (H.W.); (X.M.); (Y.S.); (L.T.); (C.S.); (X.Q.); (C.D.)
| | - Yingjie Sun
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (X.Y.); (X.Z.); (H.W.); (X.M.); (Y.S.); (L.T.); (C.S.); (X.Q.); (C.D.)
| | - Lei Tan
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (X.Y.); (X.Z.); (H.W.); (X.M.); (Y.S.); (L.T.); (C.S.); (X.Q.); (C.D.)
| | - Cuiping Song
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (X.Y.); (X.Z.); (H.W.); (X.M.); (Y.S.); (L.T.); (C.S.); (X.Q.); (C.D.)
| | - Xusheng Qiu
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (X.Y.); (X.Z.); (H.W.); (X.M.); (Y.S.); (L.T.); (C.S.); (X.Q.); (C.D.)
| | - Chan Ding
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (X.Y.); (X.Z.); (H.W.); (X.M.); (Y.S.); (L.T.); (C.S.); (X.Q.); (C.D.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Ying Liao
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (X.Y.); (X.Z.); (H.W.); (X.M.); (Y.S.); (L.T.); (C.S.); (X.Q.); (C.D.)
| |
Collapse
|
2
|
Analysis of Zika virus capsid-Aedes aegypti mosquito interactome reveals pro-viral host factors critical for establishing infection. Nat Commun 2021; 12:2766. [PMID: 33986255 PMCID: PMC8119459 DOI: 10.1038/s41467-021-22966-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 04/06/2021] [Indexed: 02/06/2023] Open
Abstract
The escalating global prevalence of arboviral diseases emphasizes the need to improve our understanding of their biology. Research in this area has been hindered by the lack of molecular tools for studying virus-mosquito interactions. Here, we develop an Aedes aegypti cell line which stably expresses Zika virus (ZIKV) capsid proteins in order to study virus-vector protein-protein interactions through quantitative label-free proteomics. We identify 157 interactors and show that eight have potentially pro-viral activity during ZIKV infection in mosquito cells. Notably, silencing of transitional endoplasmic reticulum protein TER94 prevents ZIKV capsid degradation and significantly reduces viral replication. Similar results are observed if the TER94 ortholog (VCP) functioning is blocked with inhibitors in human cells. In addition, we show that an E3 ubiquitin-protein ligase, UBR5, mediates the interaction between TER94 and ZIKV capsid. Our study demonstrates a pro-viral function for TER94/VCP during ZIKV infection that is conserved between human and mosquito cells.
Collapse
|
3
|
Chen Y, Fan S, Zhao M, Wu K, Zhu E, Ma S, He W, Deng S, Xu H, Zhang J, Ding H, Yi L, Zhao M, Chen J. MG132 Attenuates the Replication of Classical Swine Fever Virus in vitro. Front Microbiol 2020; 11:852. [PMID: 32582037 PMCID: PMC7283581 DOI: 10.3389/fmicb.2020.00852] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/09/2020] [Indexed: 12/21/2022] Open
Abstract
The 26S proteasome, in charge of intracellular protein degradation, plays significant roles in the modulation of various cellular activities as well as in the interplay between virus and host. However, studies about the relationship between 26S proteasome and classical swine fever virus (CSFV) is limited up to now. MG132 is a proteasome inhibitor and has been extensively used in studies about replication of many viruses. Herein, we investigated the role of MG132 in CSFV replication and results showed that MG132 significantly decreased virus titers and viral RNA copies in CSFV-infected PK-15 cells. Further studies demonstrated that MG132 upregulated the expression of several interferon-stimulated genes (ISGs), in CSFV-infected cells. Since the activation of ISGs is controlled by the JAK-STAT signal pathway, we next examined the effect of MG132 on the expression and localization of key molecular STAT1 in the infected cells using Western blot and confocal laser scanning microscopy, respectively. Results showed that CSFV infection and viral NS4A protein decreased the protein level of STAT1, and MG132 promoted the accumulation of STAT1 in the nucleus of cells adjacent to the CSFV-infected cells. Besides, MG132 did not affect the expressions of IFN-α, STAT1, Mx1, OAS1, and PKR genes in cells without CSFV. In conclusion, we identify that MG132 significantly inhibits CSFV replication in vitro, in which the activation of the JAK-STAT pathway and the subsequent upregulation of expressions of ISGs might play significant roles, providing a potential preventive method for CSF.
Collapse
Affiliation(s)
- Yuming Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Mengpo Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Keke Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Erpeng Zhu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shengming Ma
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Wencheng He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shaofeng Deng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Hailuan Xu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jingyuan Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Hongxing Ding
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Lin Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
4
|
Baloch AS, Liu C, Liang X, Liu Y, Chen J, Cao R, Zhou B. Avian Flavivirus Enters BHK-21 Cells by a Low pH-Dependent Endosomal Pathway. Viruses 2019; 11:v11121112. [PMID: 31801284 PMCID: PMC6949961 DOI: 10.3390/v11121112] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 02/07/2023] Open
Abstract
Duck Tembusu virus (DTMUV), a pathogenic member of the Flavivirus family, was first discovered in the coastal provinces of South-Eastern China in 2010. Many previous reports have clearly shown that some Flaviviruses utilize several endocytic pathways to enter the host cells, however, the detailed mechanism of DTMUV entry into BHK-21 cells, which is usually employed to produce commercial veterinary vaccines for DTMUV, as well as of other Flaviviruses by serial passages, is still unknown. In this study, DTMUV entry into BHK-21 cells was found to be inhibited by noncytotoxic concentrations of the agents chloroquine, NH4Cl, and Bafilomycin A1, which blocked the acidification of the endosomes. Inactivation of virions by acid pretreatment is a hallmark of viruses that utilize a low-pH-mediated entry pathway. Exposure of DTMUV virions to pH 5.0 in the absence of host cell membranes decreased entry into cells by 65%. Furthermore, DTMUV infection was significantly decreased by chlorpromazine treatment, or by knockdown of the clathrin heavy chain (CHC) through RNA interference, which suggested that DTMUV entry depends on clathrin. Taken together, these findings highlight that a low endosomal pH is an important route of entry for DTMUV.
Collapse
Affiliation(s)
- Abdul Sattar Baloch
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunchun Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaodong Liang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yayun Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruibing Cao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Bin Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
5
|
Hu H, Guo N, Chen S, Guo X, Liu X, Ye S, Chai Q, Wang Y, Liu B, He Q. Antiviral activity of Piscidin 1 against pseudorabies virus both in vitro and in vivo. Virol J 2019; 16:95. [PMID: 31366370 PMCID: PMC6670175 DOI: 10.1186/s12985-019-1199-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 07/17/2019] [Indexed: 12/21/2022] Open
Abstract
Background Swine-origin virus infection spreading widely could cause significant economic loss to porcine industry. Novel antiviral agents need to be developed to control this situation. Methods In this study, we evaluated the activities of five broad-spectrum antimicrobial peptides (AMPs) against several important swine-origin pathogenic viruses by TCID50 assay. Plaque reduction assay and cell apoptosis assay were also used to test the activity of the peptides. Protection effect of piscidin against pseudorabies virus (PRV) was also examined in mouse model. Results Piscidin (piscidin 1), caerin (caerin 1.1) and maculatin (maculatin 1.1) could inhibit PRV by direct interaction with the virus particles in a dose-dependent manner and they could also protect the cells from PRV-induced apoptosis. Among the peptides tested, piscidin showed the strongest activity against PRV. Moreover, in vivo assay showed that piscidin can reduce the mortality of mice infected with PRV. Conclusion In vitro and in vivo experiments indicate that piscidin has antiviral activity against PRV.
Collapse
Affiliation(s)
- Han Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, 430068, China
| | - Nan Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shuhua Chen
- Pig health substantial innovation center, Wuhan, Hubei, China
| | - Xiaozhen Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiaoli Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shiyi Ye
- Pig health substantial innovation center, Wuhan, Hubei, China
| | - Qingqing Chai
- Feinberg school of medicine, northwestern university, Boston, MA, USA
| | - Yang Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, 430068, China
| | - Binlei Liu
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, 430068, China
| | - Qigai He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China. .,Pig health substantial innovation center, Wuhan, Hubei, China.
| |
Collapse
|
6
|
Han K, Zhao D, Liu Y, Liu Q, Huang X, Yang J, Zhang L, Li Y. The ubiquitin-proteasome system is necessary for the replication of duck Tembusu virus. Microb Pathog 2019; 132:362-368. [PMID: 31054366 PMCID: PMC7126904 DOI: 10.1016/j.micpath.2019.04.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/18/2019] [Accepted: 04/30/2019] [Indexed: 01/18/2023]
Abstract
Duck Tembusu virus (DTMUV) is a newly emerging pathogenic flavivirus that has caused massive economic losses to the duck industry in China. The cellular factors required for DTMUV replication have been poorly studied. The ubiquitin-proteasome system (UPS), the major intracellular proteolytic pathway, mediates diverse cellular processes, including endocytosis and signal transduction, which may be involved in the entry of virus. In the present study, we explored the interplay between DTMUV replication and the UPS in BHK-21 cells and found that treatment with proteasome inhibitor (MG132 and lactacystin) significantly decreased the DTMUV progency at the early infection stage. We further revealed that inhibition of the UPS mainly occurs on the level of viral protein expression and RNA transcription. In addition, using specific siRNAs targeting ubiquitin reduces the production of viral progeny. In the presence of MG132 the staining for the envelope protein of DTMUV was dramatically reduced in comparison with the untreated control cells. Overall, our observations reveal an important role of the UPS in multiple steps of the DTMUV infection cycle and identify the UPS as a potential drug target to modulate the impact of DTMUV infection.
Treatment with proteasome inhibitor significantly decreased the DTMUV progency. Inhibition of the UPS mainly occurs on the level of viral protein expression and RNA transcription. Inhibit the expression of ubiquitin reduces the production of viral progeny.
Collapse
Affiliation(s)
- Kaikai Han
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - Dongmin Zhao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - Yuzhuo Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - Qingtao Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - Xinmei Huang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - Jing Yang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - Lijiao Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - Yin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China.
| |
Collapse
|
7
|
Liu J, Ma C, Zhang X, You J, Dong M, Chen L, Jiang P, Yun S. Molecular detection of Hsp90 inhibitor suppressing PCV2 replication in host cells. Microb Pathog 2019; 132:51-58. [PMID: 31028862 DOI: 10.1016/j.micpath.2019.04.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/15/2019] [Accepted: 04/23/2019] [Indexed: 11/19/2022]
Abstract
Porcine Circovirus Type 2 (PCV2) is a pathogen that has the ability to cause devastating disease manifestations in pig populations with major economic implications. Our previous research found that Hsp90 is required for PCV2 production in PK-15 and 3D4/31 cells. The aim of this study was to evaluate the effect of Hsp90 inhibitor regulating PCV2 replication and to explore its underlying mechanism. In PK-15 and 3D4/31 cells treated with 17-AAG after viral adsorption, replication of PCV2 was attenuated as assessed by quantitating the expression of viral protein. Following NF-κB activation it was observed that 24hpi with PCV2 was significantly inhibited in the presence of 17-AAG. The expression of Hsp90 associated client proteins in PCV2-infected cells were also reduced in the presence of 17-AAG. However, treatment with MG-132 failed to rescue 17-AAG mediated reduction of PCV2 production in host cells. Thus, Hsp90 regulates PCV2 by modulating cellular signaling proteins. These results highlight the importance of cellular proteins during PCV2 infection and the possibility of targeting cellular chaperones for developing new anti-rotaviral strategies.
Collapse
Affiliation(s)
- Jie Liu
- Department of Comparative Medicine, Jinling Hospital, No.305 East Zhongshan Road, Nanjing, 210002, PR China
| | - Chang Ma
- Department of Comparative Medicine, Jinling Hospital, No.305 East Zhongshan Road, Nanjing, 210002, PR China
| | - Xuliang Zhang
- Department of Comparative Medicine, Jinling Hospital, No.305 East Zhongshan Road, Nanjing, 210002, PR China
| | - Jinwei You
- Department of Comparative Medicine, Jinling Hospital, No.305 East Zhongshan Road, Nanjing, 210002, PR China
| | - Min Dong
- Department of Comparative Medicine, Jinling Hospital, No.305 East Zhongshan Road, Nanjing, 210002, PR China
| | - Li Chen
- Department of Comparative Medicine, Jinling Hospital, No.305 East Zhongshan Road, Nanjing, 210002, PR China
| | - Ping Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Shifeng Yun
- Department of Comparative Medicine, Jinling Hospital, No.305 East Zhongshan Road, Nanjing, 210002, PR China.
| |
Collapse
|
8
|
Llamas-González YY, Campos D, Pascale JM, Arbiza J, González-Santamaría J. A Functional Ubiquitin-Proteasome System is Required for Efficient Replication of New World Mayaro and Una Alphaviruses. Viruses 2019; 11:v11040370. [PMID: 31018496 PMCID: PMC6520948 DOI: 10.3390/v11040370] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 12/20/2022] Open
Abstract
Mayaro (MAYV) and Una (UNAV) are emerging arboviruses belonging to the Alphavirus genus of the Togaviridae family. These viruses can produce febrile disease with symptoms such as fever, headache, myalgia, skin rash and incapacitating poly-arthralgia. Serological studies indicate that both viruses are circulating in different countries in Latin America. Viruses need the host cell machinery and resources to replicate effectively. One strategy to find new antivirals consists of identifying key cellular pathways or factors that are essential for virus replication. In this study, we analyzed the role of the ubiquitin-proteasome system (UPS) in MAYV and UNAV replication. Vero-E6 or HeLa cells were treated with the proteasome inhibitors MG132 or Lactacystin, and viral progeny production was quantified using a plaque assay method. In addition, the synthesis of viral proteins was analyzed by Western blot and confocal microscopy. Our results indicate that treatment with proteasome inhibitors decreases MAYV and UNAV protein synthesis, and also causes a significant dose-dependent decrease in MAYV and UNAV replication. Proteasome activity seems to be important at the early stages of MAYV replication. These findings suggest that the ubiquitin-proteasome system is a possible pharmacological target to inhibit these neglected alphaviruses.
Collapse
Affiliation(s)
- Yessica Y Llamas-González
- Grupo de Biología Celular y Molecular de Arbovirus, Instituto Conmemorativo Gorgas de Estudios de la Salud, Panamá 0816-02593, Panama.
- Programa de Doctorado en Ciencias Biologicas, Universidad de la República, Montevideo 11200, Uruguay.
| | - Dalkiria Campos
- Grupo de Biología Celular y Molecular de Arbovirus, Instituto Conmemorativo Gorgas de Estudios de la Salud, Panamá 0816-02593, Panama.
| | - Juan M Pascale
- Dirección de Investigación y Desarrollo Tecnológico, Instituto Conmemorativo Gorgas de Estudios de la Salud, Panamá 0816-02593, Panama.
- Escuela de Medicina, Universidad de Panamá, Panamá, Panama.
| | - Juan Arbiza
- Seccción de Virología, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay.
| | - José González-Santamaría
- Grupo de Biología Celular y Molecular de Arbovirus, Instituto Conmemorativo Gorgas de Estudios de la Salud, Panamá 0816-02593, Panama.
- Dirección de Investigación, Universidad Interamericana de Panamá, Panamá 9865, Panama.
| |
Collapse
|
9
|
Affiliation(s)
- Yashpal Singh Malik
- ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Uttar Pradesh India
| | - Raj Kumar Singh
- ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Uttar Pradesh India
| | - Mahendra Pal Yadav
- ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Uttar Pradesh, India, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, India
| |
Collapse
|
10
|
Huang X, Wei S, Ni S, Huang Y, Qin Q. Ubiquitin-Proteasome System Is Required for Efficient Replication of Singapore Grouper Iridovirus. Front Microbiol 2018; 9:2798. [PMID: 30534113 PMCID: PMC6275174 DOI: 10.3389/fmicb.2018.02798] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 10/31/2018] [Indexed: 12/20/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) serves as the major intracellular pathway for protein degradation and plays crucial roles in several cellular processes. However, little is known about the potential actions of the UPS during fish virus infection. In this study, we elucidated the possible roles of UPS in the life cycle of Singapore grouper iridovirus (SGIV); a large DNA virus that usually causes serious systemic diseases with high mortality in groupers. Data from transcriptomic analysis of differentially expressed genes illustrated that expression of 65 genes within the UPS pathway, including ubiquitin encoding, ubiquitination, deubiquitination, and proteasome, were up- or down-regulated during SGIV infection. Using different proteasome inhibitors, inhibition of the proteasome decreased SGIV replication in vitro, accompanied by inhibition of virus assembly site formation, and viral gene transcription and protein transportation. Over-expression of ubiquitin partly rescued the inhibitory effect of ubiquitin inhibitor on SGIV replication, suggesting that UPS was required for fish iridovirus infection in vitro. Viral or host proteins regulated by proteasome inhibition during SGIV infection were investigated with two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Sixty-two differentially expressed proteins, including 15 viral and 47 host proteins, were identified after SGIV infection. The host proteins were involved in ubiquitin-mediated protein degradation, metabolism, cytoskeleton, macromolecular biosynthesis, and signal transduction. Among them, 11 proteins were negatively regulated upon MG132 treatment during SGIV infection. This is believed to be the first study to provide evidence that UPS was essential for fish virus infection and replication.
Collapse
Affiliation(s)
- Xiaohong Huang
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Shina Wei
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Songwei Ni
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Youhua Huang
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
11
|
Guo N, Zhang B, Hu H, Ye S, Chen F, Li Z, Chen P, Wang C, He Q. Caerin1.1 Suppresses the Growth of Porcine Epidemic Diarrhea Virus In Vitro via Direct Binding to the Virus. Viruses 2018; 10:v10090507. [PMID: 30231560 PMCID: PMC6165370 DOI: 10.3390/v10090507] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/04/2018] [Accepted: 09/13/2018] [Indexed: 01/04/2023] Open
Abstract
Porcine epidemic diarrhea (PED) has re-emerged in recent years and has already caused huge economic losses to the porcine industry all over the world. Therefore, it is urgent for us to find out efficient ways to prevent and control this disease. In this study, the antiviral activity of a cationic amphibian antimicrobial peptide Caerin1.1 against porcine epidemic diarrhea virus (PEDV) was evaluated by an in vitro system using Vero cells. We found that even at a very low concentration, Caerin1.1 has the ability to destroy the integrity of the virus particles to block the release of the viruses, resulting in a considerable decrease in PEDV infections. In addition, Caerin1.1 showed powerful antiviral activity without interfering with the binding progress between PEDV and the receptor of the cells, therefore, it could be used as a potential antiviral drug or as a microbicide compound for prevention and control of PEDV.
Collapse
Affiliation(s)
- Nan Guo
- Division of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Bingzhou Zhang
- Division of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Han Hu
- Division of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Shiyi Ye
- Division of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Fangzhou Chen
- Division of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zhonghua Li
- Division of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Pin Chen
- Division of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Chunmei Wang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| | - Qigai He
- Division of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
12
|
Tang Q, Wu P, Chen H, Li G. Pleiotropic roles of the ubiquitin-proteasome system during viral propagation. Life Sci 2018; 207:350-354. [PMID: 29913185 PMCID: PMC7094228 DOI: 10.1016/j.lfs.2018.06.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/11/2018] [Accepted: 06/14/2018] [Indexed: 11/09/2022]
Abstract
Protein ubiquitination is a highly conserved post-translational modification affecting various biological processes including viral propagation. Ubiquitination has multiple effects on viral propagation, including viral genome uncoating, viral replication, and immune evasion. Ubiquitination of viral proteins is triggered by the ubiquitin-proteasome system (UPS). This involves the covalent attachment of the highly conserved 76 amino acid residue ubiquitin protein to target proteins by the consecutive actions of E1, E2 and E3 enzymes, and the 26S proteasome that together form a multiprotein complex that degrades target proteins. The UPS is the primary cytosolic proteolytic machinery for the selective degradation of various forms of proteins including viral proteins, thereby limiting viral growth in host cells. To combat this host anti-viral machinery, viruses have evolved the ability to employ or subvert the UPS to inactivate or degrade cellular proteins to favour viral propagation. This review highlights our current knowledge on the different roles of the UPS during viral propagation.
Collapse
Affiliation(s)
- Qi Tang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Peng Wu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Huiqing Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Guohui Li
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China; School of Public Health, University of California, Berkeley, CA, USA.
| |
Collapse
|
13
|
The Ubiquitin-Proteasome System Is Necessary for Efficient Replication of Human Astrovirus. J Virol 2018; 92:JVI.01809-17. [PMID: 29093085 DOI: 10.1128/jvi.01809-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 10/18/2017] [Indexed: 12/25/2022] Open
Abstract
Astroviruses, members of the family Astroviridae, represent an important cause of human gastroenteritis in the world. The cellular factors required for astrovirus replication have been poorly studied. In this work, we evaluated the relevance of the ubiquitin-proteasome system (UPS) in the replication of Yuc8, a human astrovirus serotype 8 strain. We found that proteasome inhibitors decrease the production of infectious viral progeny at a step in the replication cycle subsequent to virus entry. The inhibition of proteasome activity decreases viral RNA levels and viral protein synthesis; similarly, the inhibition of ubiquitination by chemical inhibitors or RNA interference (RNAi) reduces the production of viral progeny as well as viral protein synthesis. The effect on viral progeny production induced by proteasome inhibitors is not explained by a reduction in the pool of monoubiquitin or the induction of early apoptosis or autophagy. Our observations are consistent with the need of the proteolytic activity of the UPS for the efficient replication of the virus and suggest that UPS is necessary for the production of genomic and subgenomic RNA but not for antigenomic RNA.IMPORTANCE Astroviruses are a major cause of gastroenteritis in young humans and animals, and recently, it was associated with fatal encephalitis in humans. The role of the ubiquitin-proteasome system in the replication of these viruses has not been studied previously. In this work, we present evidence that supports that the proteolytic activity of the proteasome is necessary for efficient viral progeny production and that this proteolytic system is required for the accumulation of both genomic and subgenomic viral RNAs.
Collapse
|
14
|
Barrado-Gil L, Galindo I, Martínez-Alonso D, Viedma S, Alonso C. The ubiquitin-proteasome system is required for African swine fever replication. PLoS One 2017; 12:e0189741. [PMID: 29244872 PMCID: PMC5731689 DOI: 10.1371/journal.pone.0189741] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/30/2017] [Indexed: 01/28/2023] Open
Abstract
Several viruses manipulate the ubiquitin-proteasome system (UPS) to initiate a productive infection. Determined viral proteins are able to change the host’s ubiquitin machinery and some viruses even encode their own ubiquitinating or deubiquitinating enzymes. African swine fever virus (ASFV) encodes a gene homologous to the E2 ubiquitin conjugating (UBC) enzyme. The viral ubiquitin-conjugating enzyme (UBCv1) is expressed throughout ASFV infection and accumulates at late times post infection. UBCv is also present in the viral particle suggesting that the ubiquitin-proteasome pathway could play an important role at early ASFV infection. We determined that inhibition of the final stage of the ubiquitin-proteasome pathway blocked a post-internalization step in ASFV replication in Vero cells. Under proteasome inhibition, ASF viral genome replication, late gene expression and viral production were severely reduced. Also, ASFV enhanced proteasome activity at late times and the accumulation of polyubiquitinated proteins surrounding viral factories. Core-associated and/or viral proteins involved in DNA replication may be targets for the ubiquitin-proteasome pathway that could possibly assist virus uncoating at final core breakdown and viral DNA release. At later steps, polyubiquitinated proteins at viral factories could exert regulatory roles in cell signaling.
Collapse
Affiliation(s)
- Lucía Barrado-Gil
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, INIA, Madrid, Spain
| | - Inmaculada Galindo
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, INIA, Madrid, Spain
| | - Diego Martínez-Alonso
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, INIA, Madrid, Spain
| | - Sergio Viedma
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, INIA, Madrid, Spain
| | - Covadonga Alonso
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, INIA, Madrid, Spain
- * E-mail:
| |
Collapse
|
15
|
Bistolas KSI, Rudstam LG, Hewson I. Gene expression of benthic amphipods (genus: Diporeia) in relation to a circular ssDNA virus across two Laurentian Great Lakes. PeerJ 2017; 5:e3810. [PMID: 28966890 PMCID: PMC5621510 DOI: 10.7717/peerj.3810] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/23/2017] [Indexed: 01/15/2023] Open
Abstract
Circular rep-encoding ssDNA (CRESS-DNA) viruses are common constituents of invertebrate viral consortia. Despite their ubiquity and sequence diversity, the effects of CRESS-DNA viruses on invertebrate biology and ecology remain largely unknown. This study assessed the relationship between the transcriptional profile of benthic amphipods of genus Diporeia and the presence of the CRESS-DNA virus, LM29173, in the Laurentian Great Lakes to provide potential insight into the influence of these viruses on invertebrate gene expression. Twelve transcriptomes derived from Diporeia were compared, representing organisms from two amphipod haplotype clades (Great Lakes Michigan and Superior, defined by COI barcode sequencing) with varying viral loads (up to 3 × 106 genome copies organism−1). Read recruitment to de novo assembled transcripts revealed 2,208 significantly over or underexpressed contigs in transcriptomes with above average LM29173 load. Of these contigs, 31.5% were assigned a putative function. The greatest proportion of annotated, differentially expressed transcripts were associated with functions including: (1) replication, recombination, and repair, (2) cell structure/biogenesis, and (3) post-translational modification, protein turnover, and chaperones. Contigs putatively associated with innate immunity displayed no consistent pattern of expression, though several transcripts were significantly overexpressed in amphipods with high viral load. Quantitation (RT-qPCR) of target transcripts, non-muscular myosin heavy chain, β-actin, and ubiquitin-conjugating enzyme E2, corroborated transcriptome analysis and indicated that Lake Michigan and Lake Superior amphipods with high LM29173 load exhibit lake-specific trends in gene expression. While this investigation provides the first comparative survey of the transcriptional profile of invertebrates of variable CRESS-DNA viral load, additional inquiry is required to define the scope of host-specific responses to potential infection.
Collapse
Affiliation(s)
| | - Lars G Rudstam
- Department of Natural Resources and the Cornell Biological Field Station, Cornell University, Bridgeport, NY, USA
| | - Ian Hewson
- Department of Microbiology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
16
|
Porcine Epidemic Diarrhea Virus Induces Autophagy to Benefit Its Replication. Viruses 2017; 9:v9030053. [PMID: 28335505 PMCID: PMC5371808 DOI: 10.3390/v9030053] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 03/13/2017] [Accepted: 03/15/2017] [Indexed: 02/06/2023] Open
Abstract
The new porcine epidemic diarrhea (PED) has caused devastating economic losses to the swine industry worldwide. Despite extensive research on the relationship between autophagy and virus infection, the concrete role of autophagy in porcine epidemic diarrhea virus (PEDV) infection has not been reported. In this study, autophagy was demonstrated to be triggered by the effective replication of PEDV through transmission electron microscopy, confocal microscopy, and Western blot analysis. Moreover, autophagy was confirmed to benefit PEDV replication by using autophagy regulators and RNA interference. Furthermore, autophagy might be associated with the expression of inflammatory cytokines and have a positive feedback loop with the NF-κB signaling pathway during PEDV infection. This work is the first attempt to explore the complex interplay between autophagy and PEDV infection. Our findings might accelerate our understanding of the pathogenesis of PEDV infection and provide new insights into the development of effective therapeutic strategies.
Collapse
|
17
|
Wang S, Liu H, Zu X, Liu Y, Chen L, Zhu X, Zhang L, Zhou Z, Xiao G, Wang W. The ubiquitin-proteasome system is essential for the productive entry of Japanese encephalitis virus. Virology 2016; 498:116-127. [DOI: 10.1016/j.virol.2016.08.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/27/2016] [Accepted: 08/17/2016] [Indexed: 11/26/2022]
|
18
|
Ren L, Chen X, Ouyang H. Interactions of porcine circovirus 2 with its hosts. Virus Genes 2016; 52:437-44. [DOI: 10.1007/s11262-016-1326-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/19/2016] [Indexed: 12/11/2022]
|
19
|
Schroyen M, Eisley C, Koltes JE, Fritz-Waters E, Choi I, Plastow GS, Guan L, Stothard P, Bao H, Kommadath A, Reecy JM, Lunney JK, Rowland RRR, Dekkers JCM, Tuggle CK. Bioinformatic analyses in early host response to Porcine Reproductive and Respiratory Syndrome virus (PRRSV) reveals pathway differences between pigs with alternate genotypes for a major host response QTL. BMC Genomics 2016; 17:196. [PMID: 26951612 PMCID: PMC4782518 DOI: 10.1186/s12864-016-2547-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/26/2016] [Indexed: 01/01/2023] Open
Abstract
Background A region on Sus scrofa chromosome 4 (SSC4) surrounding single nucleotide polymorphism (SNP) marker WUR10000125 (WUR) has been reported to be strongly associated with both weight gain and serum viremia in pigs after infection with PRRS virus (PRRSV). A proposed causal mutation in the guanylate binding protein 5 gene (GBP5) is predicted to truncate the encoded protein. To investigate transcriptional differences between WUR genotypes in early host response to PRRSV infection, an RNA-seq experiment was performed on globin depleted whole blood RNA collected on 0, 4, 7, 10 and 14 days post-infection (dpi) from eight littermate pairs with one AB (favorable) and one AA (unfavorable) WUR genotype animal per litter. Results Gene Ontology (GO) enrichment analysis of transcripts that were differentially expressed (DE) between dpi across both genotypes revealed an inflammatory response for all dpi when compared to day 0. However, at the early time points of 4 and 7dpi, several GO terms had higher enrichment scores compared to later dpi, including inflammatory response (p < 10-7), specifically regulation of NFkappaB (p < 0.01), cytokine, and chemokine activity (p < 0.01). At 10 and 14dpi, GO term enrichment indicated a switch to DNA damage response, cell cycle checkpoints, and DNA replication. Few transcripts were DE between WUR genotypes on individual dpi or averaged over all dpi, and little enrichment of any GO term was found. However, there were differences in expression patterns over time between AA and AB animals, which was confirmed by genotype-specific expression patterns of several modules that were identified in weighted gene co-expression network analyses (WGCNA). Minor differences between AA and AB animals were observed in immune response and DNA damage response (p = 0.64 and p = 0.11, respectively), but a significant effect between genotypes pointed to a difference in ion transport/homeostasis and the participation of G-coupled protein receptors (p = 8e-4), which was reinforced by results from regulatory and phenotypic impact factor analyses between genotypes. Conclusion We propose these pathway differences between WUR genotypes are the result of the inability of the truncated GBP5 of the AA genotyped pigs to inhibit viral entry and replication as quickly as the intact GBP5 protein of the AB genotyped pigs. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2547-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Martine Schroyen
- Department of Animal Science, Iowa State University, 2255 Kildee Hall, Ames, IA, 50011, USA.
| | - Christopher Eisley
- Department of Statistics, Iowa State University, 1121 Snedecor Hall, Ames, IA, 50011, USA.
| | - James E Koltes
- Department of Animal Science, University of Arkansas, AFLS B106D, Fayetteville, AR, 72701, USA.
| | - Eric Fritz-Waters
- Department of Animal Science, Iowa State University, 2255 Kildee Hall, Ames, IA, 50011, USA.
| | - Igseo Choi
- USDA-ARS, BARC, APDL, Bldg.1040, Beltsville, MD, 20705, USA.
| | - Graham S Plastow
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.
| | - Leluo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.
| | - Paul Stothard
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.
| | - Hua Bao
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.
| | - Arun Kommadath
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.
| | - James M Reecy
- Department of Animal Science, Iowa State University, 2255 Kildee Hall, Ames, IA, 50011, USA.
| | - Joan K Lunney
- USDA-ARS, BARC, APDL, Bldg.1040, Beltsville, MD, 20705, USA.
| | - Robert R R Rowland
- College of Veterinary Medicine, Kansas State University, K-231 Mosier Hall, Manhattan, KS, 66506, USA.
| | - Jack C M Dekkers
- Department of Animal Science, Iowa State University, 2255 Kildee Hall, Ames, IA, 50011, USA.
| | - Christopher K Tuggle
- Department of Animal Science, Iowa State University, 2255 Kildee Hall, Ames, IA, 50011, USA.
| |
Collapse
|
20
|
Ye S, Li Z, Chen F, Li W, Guo X, Hu H, He Q. Porcine epidemic diarrhea virus ORF3 gene prolongs S-phase, facilitates formation of vesicles and promotes the proliferation of attenuated PEDV. Virus Genes 2015; 51:385-92. [PMID: 26531166 PMCID: PMC7088884 DOI: 10.1007/s11262-015-1257-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/28/2015] [Indexed: 02/02/2023]
Abstract
Porcine epidemic diarrhea virus (PEDV) is a porcine enteropathogenic coronavirus that has received increasing attention since the emergence of a PEDV variant worldwide. Previous studies have shown that PEDV ORF3 encodes an ion channel protein. However, its influence on cell cycle and subcellular structure still require more research. In this study, we developed a Vero cell line that stably expresses PEDV ORF3 gene. Subcellular localization and influences of PEDV ORF3 on host cells were investigated. We further verified whether or not this gene enhances virus production. The results showed that PEDV ORF3 protein localizes in the cytoplasm and affects cell cycle progression by prolonging the S phase. In addition, the ORF3-expressing Vero cells had more vesicles than the host Vero cells. Furthermore, the attenuated PEDV rather than virulent PEDV could grow better in ORF3-expressing Vero cells. The expression level of the PEDV nucleocapsid protein also increased. These results provided information on the function of PEDV ORF3 and were helpful in understanding the mechanisms of PEDV replication.
Collapse
Affiliation(s)
- Shiyi Ye
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Zhonghua Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Fangzhou Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Wentao Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xiaozhen Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Han Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Qigai He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
21
|
Ye S, Shao K, Li Z, Guo N, Zuo Y, Li Q, Lu Z, Chen L, He Q, Han H. Antiviral Activity of Graphene Oxide: How Sharp Edged Structure and Charge Matter. ACS APPLIED MATERIALS & INTERFACES 2015; 7:21571-9. [PMID: 26370151 DOI: 10.1021/acsami.5b06876] [Citation(s) in RCA: 219] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Graphene oxide and its derivatives have been widely explored for their antimicrobial properties due to their high surface-to-volume ratios and unique chemical and physical properties. However, little information is available on their effects on viruses. In this study, we report the broad-spectrum antiviral activity of GO against pseudorabies virus (PRV, a DNA virus) and porcine epidemic diarrhea virus (PEDV, an RNA virus). Our results showed that GO significantly suppressed the infection of PRV and PEDV for a 2 log reduction in virus titers at noncytotoxic concentrations. The potent antiviral activity of both GO and rGO can be attributed to the unique single-layer structure and negative charge. First, GO exhibited potent antiviral activity when conjugated with PVP, a nonionic polymer, but not when conjugated with PDDA, a cationic polymer. Additionally, the precursors Gt and GtO showed much weaker antiviral activity than monolayer GO and rGO, suggesting that the nanosheet structure is important for antiviral properties. Furthermore, GO inactivated both viruses by structural destruction prior to viral entry. The overall results suggest the potential of graphene oxide as a novel promising antiviral agent with a broad and potent antiviral activity.
Collapse
Affiliation(s)
- Shiyi Ye
- State Key Laboratory of Agricultural Microbiology, College of Science and ‡Division of Animal Infectious Disease, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan 430070, P.R. China
| | - Kang Shao
- State Key Laboratory of Agricultural Microbiology, College of Science and ‡Division of Animal Infectious Disease, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan 430070, P.R. China
| | - Zhonghua Li
- State Key Laboratory of Agricultural Microbiology, College of Science and ‡Division of Animal Infectious Disease, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan 430070, P.R. China
| | - Nan Guo
- State Key Laboratory of Agricultural Microbiology, College of Science and ‡Division of Animal Infectious Disease, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan 430070, P.R. China
| | - Yunpeng Zuo
- State Key Laboratory of Agricultural Microbiology, College of Science and ‡Division of Animal Infectious Disease, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan 430070, P.R. China
| | - Qin Li
- State Key Laboratory of Agricultural Microbiology, College of Science and ‡Division of Animal Infectious Disease, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan 430070, P.R. China
| | - Zhicheng Lu
- State Key Laboratory of Agricultural Microbiology, College of Science and ‡Division of Animal Infectious Disease, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan 430070, P.R. China
| | - Lu Chen
- State Key Laboratory of Agricultural Microbiology, College of Science and ‡Division of Animal Infectious Disease, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan 430070, P.R. China
| | - Qigai He
- State Key Laboratory of Agricultural Microbiology, College of Science and ‡Division of Animal Infectious Disease, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan 430070, P.R. China
| | - Heyou Han
- State Key Laboratory of Agricultural Microbiology, College of Science and ‡Division of Animal Infectious Disease, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan 430070, P.R. China
| |
Collapse
|
22
|
Human Pirh2 is a novel inhibitor of prototype foamy virus replication. Viruses 2015; 7:1668-84. [PMID: 25848801 PMCID: PMC4411673 DOI: 10.3390/v7041668] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/02/2015] [Accepted: 03/25/2015] [Indexed: 12/11/2022] Open
Abstract
Prototype foamy virus (PFV) is a member of the unconventional and nonpathogenic retroviruses. PFV causes lifelong chronic infections, which are partially attributable to a number of host cell factors that restrict viral replication. Herein, we identified human p53-induced RING-H2 protein (Pirh2) as a novel inhibitor of prototype foamy virus. Overexpression of Pirh2 decreased the replication of PFV, whereas knockdown of Pirh2 with specific siRNA increased PFV replication. Dual-luciferase assays and coimmunoprecipitation demonstrated that Pirh2 negatively influences the Tas-dependent transcriptional activation of the PFV long terminal repeat (LTR) and internal promoter (IP) by interacting with the transactivator Tas and down-regulating its expression. In addition, the viral inhibitory function of Pirh2 is N-terminal and RING domain dependent. Together, these results indicated that Pirh2 suppresses PFV replication by negatively impacting its transactivator Tas and the transcription of two viral promoters, which may contribute to the latency of PFV infection.
Collapse
|
23
|
Inhibition of hepatitis E virus replication by proteasome inhibitor is nonspecific. Arch Virol 2014; 160:435-9. [PMID: 25476751 PMCID: PMC7087333 DOI: 10.1007/s00705-014-2303-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 11/29/2014] [Indexed: 12/26/2022]
Abstract
The ubiquitin proteasome system plays important role in virus infection. A previous study showed that the proteasome inhibitor MG132 could potentially affect hepatitis E virus (HEV) replication. In this study, we found that MG132 could inhibit HEV and hepatitis C virus (HCV) replication-related luciferase activity in subgenomic models. Furthermore, treatment with MG132 in a HEV infectious model resulted in a dramatic reduction in the intracellular level of HEV RNA. Surprisingly, MG132 concurrently inhibited the expression of a luciferase gene used as a control as well as a wide range of host genes. Consistently, the total cellular RNA and protein content was concurrently reduced by MG132 treatment, suggesting a nonspecific antiviral effect.
Collapse
|