1
|
Bonner X, Sondgeroth A, McCue A, Nicely N, Tripathy A, Spielvogel E, Moeser M, Ke R, Leiderman K, Joseph SB, Swanstrom R. Stoichiometry for entry and binding properties of the Env protein of R5 T cell-tropic HIV-1 and its evolutionary variant of macrophage-tropic HIV-1. mBio 2024; 15:e0032124. [PMID: 38426750 PMCID: PMC11210212 DOI: 10.1128/mbio.00321-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
Human immunodeficiency virus type 1 typically requires a high density of CD4 for efficient entry as a mechanism to target CD4+ T cells (T-tropic), with CCR5 being used most often as the coreceptor. When target T cells are limiting, the virus can evolve to infect cells with a low density of CD4 such as macrophages (M-tropic). The entry phenotype is known to be encoded in the viral Env protein on the surface of the virus particle. Using data showing a dose response for infectivity based on CD4 surface density, we built a model consistent with T-tropic viruses requiring multiple CD4 molecules to mediate infection, whereas M-tropic viruses can infect cells using a single CD4 receptor molecule interaction. We also found that T-tropic viruses bound to the surface of cells with a low density of CD4 are released more slowly than M-tropic viruses which we modeled to be due to multiple interactions of the T-tropic virus with multiple CD4 molecules to allow the initial stable binding. Finally, we found that some M-tropic Env proteins, as the gp120 subunit, possess an enhanced affinity for CD4 compared with their T-tropic pair, indicating that the evolution of macrophage tropism can be reflected both in the closed Env trimer conformation on the virion surface and, in some cases, also in the open confirmation of gp120 Env. Collectively, these studies reveal differences in the stoichiometry of interaction of T-tropic and M-tropic viruses with CD4 and start to identify the basis of binding differences at the biochemical level. IMPORTANCE Human immunodeficiency virus type 1 normally targets CD4+ T cells for viral replication. When T cells are limiting, the virus can evolve to infect myeloid cells. The evolutionary step involves a change from requiring a high surface density of CD4 for entry to being able to infect cells with a low density of CD4, as is found on myeloid lineage cells such as macrophage and microglia. Viruses able to infect macrophages efficiently are most often found in the CNS late in the disease course, and such viruses may contribute to neurocognitive impairment. Here, we examine the CD4 binding properties of the viral Env protein to explore these two different entry phenotypes.
Collapse
Affiliation(s)
- Xavier Bonner
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Amy Sondgeroth
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Amelia McCue
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nathan Nicely
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ashutosh Tripathy
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ean Spielvogel
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Matthew Moeser
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ruian Ke
- T-6, Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Karin Leiderman
- Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sarah B. Joseph
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ronald Swanstrom
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
2
|
Wang X, Wang J, Zhang W, Li B, Zhu Y, Hu Q, Yang Y, Zhang X, Yan H, Zeng Y. Inhibition of Human Immunodeficiency Virus Type 1 Entry by a Keggin Polyoxometalate. Viruses 2018; 10:v10050265. [PMID: 29772712 PMCID: PMC5977258 DOI: 10.3390/v10050265] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 12/20/2022] Open
Abstract
Here, we report the anti-human immunodeficiency virus (HIV) potency and underlying mechanisms of a Keggin polyoxometalate (PT-1, K6HPTi2W10O40). Our findings showed that PT-1 exhibited highly potent effects against a diverse group of HIV type 1 (HIV-1) strains and displayed low cytotoxicity and genotoxicity. The time-addition assay revealed that PT-1 acted at an early stage of infection, and these findings were supported by the observation that PT-1 had more potency against Env-pseudotyped virus than vesicular stomatitis virus glycoprotein (VSVG) pseudotyped virus. Surface plasmon resonance binding assays and flow cytometry analysis showed that PT-1 blocked the gp120 binding site in the CD4 receptor. Moreover, PT-1 bound directly to gp41 NHR (N36 peptide), thereby interrupting the core bundle formation of gp41. In conclusion, our data suggested that PT-1 may be developed as a new anti-HIV-1 agent through its effects on entry inhibition.
Collapse
Affiliation(s)
- Xiaoli Wang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Jiao Wang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Wenmei Zhang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Boye Li
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Ying Zhu
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Qin Hu
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Yishu Yang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Xiaoguang Zhang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Hong Yan
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Yi Zeng
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| |
Collapse
|
3
|
CXCR7/ACKR3-targeting ligands interfere with X7 HIV-1 and HIV-2 entry and replication in human host cells. Heliyon 2018; 4:e00557. [PMID: 29560468 PMCID: PMC5857896 DOI: 10.1016/j.heliyon.2018.e00557] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/09/2018] [Accepted: 02/22/2018] [Indexed: 11/20/2022] Open
Abstract
Chemokine receptors CCR5 and CXCR4 are considered the main coreceptors for initial HIV infection, replication and transmission, and subsequent AIDS progression. Over the years, other chemokine receptors, belonging to the family of G protein-coupled receptors, have also been identified as candidate coreceptors for HIV entry into human host cells. Amongst them, CXCR7, also known as atypical chemokine receptor 3 (ACKR3), was suggested as a coreceptor candidate capable of facilitating both HIV-1 and HIV-2 entry in vitro. In this study, a cellular infection model was established to further decipher the role of CXCR7 as an HIV coreceptor. Using this model, CXCR7-mediated viral entry was demonstrated for several clinical HIV isolates as well as laboratory strains. Of interest, the X4-tropic HIV-1 HE strain showed rapid adaptation towards CXCR7-mediated infection after continuous passaging on CD4- and CXCR7-expressing cells. Furthermore, we uncovered anti-CXCR7 monoclonal antibodies, small molecule CXCR7 inhibitors and the natural CXCR7 chemokine ligands as potent inhibitors of CXCR7 receptor-mediated HIV entry and replication. Even though the clinical relevance of CXCR7-mediated HIV infection remains poorly understood, our data suggest that divergent HIV-1 and HIV-2 strains can quickly adapt their coreceptor usage depending on the cellular environment, which warrants further investigation.
Collapse
|
4
|
New Approach for Inhibition of HIV Entry: Modifying CD4 Binding Sites by Thiolated Pyrimidine Derivatives. Pathol Oncol Res 2016; 22:617-23. [PMID: 26860867 DOI: 10.1007/s12253-016-0044-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/27/2016] [Indexed: 10/22/2022]
Abstract
Thiolated pyrimidine derivatives have been synthetized and their antiretroviral effect against human immunodeficiency virus type 1 (HIV-1IIIB) and HIV-1 chimeric pseudovirions have been quantitatively determined in cell-based viral infectivity assays including syncytium inhibition assay as well as a single-cycle viral infection assay on HeLaCD4-LTR/ß-gal cells. Pseudotype virions prepared bearing HIV-1 envelope preference for CCR5 coreceptor, CXCR4 coreceptor or for both, respectively, with a HIV-1 core containing luciferase reporter gene were able to infect susceptible cells but are replication defective so unable to replicate in the cells . Data indicate that thiolated pyrimidine derivatives inhibited effectively virally induced cell fusion in vitro as well as infectivity of primary HIV-1IIIB strain and HIV-1 pseudovirions using chemokine receptors CCR5 or CXCR4 or both for virus entry a dose dependent manner. Inhibition was selective, depended on the pseudovirus coreceptor preference. Our results suggest that some of these sulfur containing pyrimidines interact with redoxactive -SH groups required for successful HIV entry, including a redox active disulfide in the CD4 molecule as well as -SH groups in HIV viral envelope gp120. This mode of action is unique representing a new class of potential HIV entry inhibitors.
Collapse
|
5
|
Brandenberg OF, Magnus C, Regoes RR, Trkola A. The HIV-1 Entry Process: A Stoichiometric View. Trends Microbiol 2015; 23:763-774. [PMID: 26541228 DOI: 10.1016/j.tim.2015.09.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/31/2015] [Accepted: 09/16/2015] [Indexed: 11/15/2022]
Abstract
HIV-1 infection starts with fusion of the viral and the host cell membranes, a process mediated by the HIV-1 envelope glycoprotein trimer. The number of trimers required to complete membrane fusion, referred to as HIV-1 entry stoichiometry, remains under debate. A precise definition of HIV-1 entry stoichiometry is important as it reflects the efficacy of the viral entry process and steers the infectivity of HIV-1 virion populations. Initial estimates suggested a unanimous entry stoichiometry across HIV-1 strains while recent findings showed that HIV-1 strains can differ in entry stoichiometry. Here, we review current analyses of HIV-1 entry stoichiometry and point out future research directions to further define the interplay between entry stoichiometry, virus entry fitness, transmission, and susceptibility to antibody neutralization.
Collapse
Affiliation(s)
- Oliver F Brandenberg
- Institute of Medical Virology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland; Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Carsten Magnus
- Institute of Medical Virology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Roland R Regoes
- Institute of Integrative Biology, ETH Zürich, Universitätsstrasse 16, CH-8092 Zürich, Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland.
| |
Collapse
|