1
|
A Murine Herpesvirus Closely Related to Ubiquitous Human Herpesviruses Causes T-Cell Depletion. J Virol 2017; 91:JVI.02463-16. [PMID: 28179532 PMCID: PMC5391440 DOI: 10.1128/jvi.02463-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 01/26/2017] [Indexed: 12/14/2022] Open
Abstract
The human roseoloviruses human herpesvirus 6A (HHV-6A), HHV-6B, and HHV-7 comprise the Roseolovirus genus of the human Betaherpesvirinae subfamily. Infections with these viruses have been implicated in many diseases; however, it has been challenging to establish infections with roseoloviruses as direct drivers of pathology, because they are nearly ubiquitous and display species-specific tropism. Furthermore, controlled study of infection has been hampered by the lack of experimental models, and until now, a mouse roseolovirus has not been identified. Herein we describe a virus that causes severe thymic necrosis in neonatal mice, characterized by a loss of CD4+ T cells. These phenotypes resemble those caused by the previously described mouse thymic virus (MTV), a putative herpesvirus that has not been molecularly characterized. By next-generation sequencing of infected tissue homogenates, we assembled a contiguous 174-kb genome sequence containing 128 unique predicted open reading frames (ORFs), many of which were most closely related to herpesvirus genes. Moreover, the structure of the virus genome and phylogenetic analysis of multiple genes strongly suggested that this virus is a betaherpesvirus more closely related to the roseoloviruses, HHV-6A, HHV-6B, and HHV-7, than to another murine betaherpesvirus, mouse cytomegalovirus (MCMV). As such, we have named this virus murine roseolovirus (MRV) because these data strongly suggest that MRV is a mouse homolog of HHV-6A, HHV-6B, and HHV-7.IMPORTANCE Herein we describe the complete genome sequence of a novel murine herpesvirus. By sequence and phylogenetic analyses, we show that it is a betaherpesvirus most closely related to the roseoloviruses, human herpesviruses 6A, 6B, and 7. These data combined with physiological similarities with human roseoloviruses collectively suggest that this virus is a murine roseolovirus (MRV), the first definitively described rodent roseolovirus, to our knowledge. Many biological and clinical ramifications of roseolovirus infection in humans have been hypothesized, but studies showing definitive causative relationships between infection and disease susceptibility are lacking. Here we show that MRV infects the thymus and causes T-cell depletion, suggesting that other roseoloviruses may have similar properties.
Collapse
|
2
|
Pozo F, Juste J, Vázquez-Morón S, Aznar-López C, Ibáñez C, Garin I, Aihartza J, Casas I, Tenorio A, Echevarría JE. Identification of Novel Betaherpesviruses in Iberian Bats Reveals Parallel Evolution. PLoS One 2016; 11:e0169153. [PMID: 28036408 PMCID: PMC5201282 DOI: 10.1371/journal.pone.0169153] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 12/13/2016] [Indexed: 12/15/2022] Open
Abstract
A thorough search for bat herpesviruses was carried out in oropharyngeal samples taken from most of the bat species present in the Iberian Peninsula from the Vespertilionidae, Miniopteridae, Molossidae and Rhinolophidae families, in addition to a colony of captive fruit bats from the Pteropodidae family. By using two degenerate consensus PCR methods targeting two conserved genes, distinct and previously unrecognized bat-hosted herpesviruses were identified for the most of the tested species. All together a total of 42 potentially novel bat herpesviruses were partially characterized. Thirty-two of them were tentatively assigned to the Betaherpesvirinae subfamily while the remaining 10 were allocated into the Gammaherpesvirinae subfamily. Significant diversity was observed among the novel sequences when compared with type herpesvirus species of the ICTV-approved genera. The inferred phylogenetic relationships showed that most of the betaherpesviruses sequences fell into a well-supported unique monophyletic clade and support the recognition of a new betaherpesvirus genus. This clade is subdivided into three major clades, corresponding to the families of bats studied. This supports the hypothesis of a species-specific parallel evolution process between the potentially new betaherpesviruses and their bat hosts. Interestingly, two of the betaherpesviruses’ sequences detected in rhinolophid bats clustered together apart from the rest, closely related to viruses that belong to the Roseolovirus genus. This suggests a putative third roseolo lineage. On the contrary, no phylogenetic structure was detected among several potentially novel bat-hosted gammaherpesviruses found in the study. Remarkably, all of the possible novel bat herpesviruses described in this study are linked to a unique bat species.
Collapse
Affiliation(s)
- Francisco Pozo
- Virology Section, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Javier Juste
- Estación Biológica de Doñana, CSIC, Seville, Spain
| | - Sonia Vázquez-Morón
- Virology Section, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.,Centro de Investigación Biológica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Carolina Aznar-López
- Virology Section, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.,Centro de Investigación Biológica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | | | - Inazio Garin
- Department of Zoology and Animal Cell Biology, University of the Basque Country (UPV/EHU), Leioa, The Basque Country, Spain
| | - Joxerra Aihartza
- Department of Zoology and Animal Cell Biology, University of the Basque Country (UPV/EHU), Leioa, The Basque Country, Spain
| | - Inmaculada Casas
- Virology Section, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Antonio Tenorio
- Virology Section, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Juan Emilio Echevarría
- Virology Section, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.,Centro de Investigación Biológica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
3
|
Complete Unique Genome Sequence, Expression Profile, and Salivary Gland Tissue Tropism of the Herpesvirus 7 Homolog in Pigtailed Macaques. J Virol 2016; 90:6657-6674. [PMID: 27170755 PMCID: PMC4944276 DOI: 10.1128/jvi.00651-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 05/03/2016] [Indexed: 11/20/2022] Open
Abstract
Human herpesvirus 6A (HHV-6A), HHV-6B, and HHV-7 are classified as roseoloviruses and are highly prevalent in the human population. Roseolovirus reactivation in an immunocompromised host can cause severe pathologies. While the pathogenic potential of HHV-7 is unclear, it can reactivate HHV-6 from latency and thus contributes to severe pathological conditions associated with HHV-6. Because of the ubiquitous nature of roseoloviruses, their roles in such interactions and the resulting pathological consequences have been difficult to study. Furthermore, the lack of a relevant animal model for HHV-7 infection has hindered a better understanding of its contribution to roseolovirus-associated diseases. Using next-generation sequencing analysis, we characterized the unique genome of an uncultured novel pigtailed macaque roseolovirus. Detailed genomic analysis revealed the presence of gene homologs to all 84 known HHV-7 open reading frames. Phylogenetic analysis confirmed that the virus is a macaque homolog of HHV-7, which we have provisionally named Macaca nemestrina herpesvirus 7 (MneHV7). Using high-throughput RNA sequencing, we observed that the salivary gland tissue samples from nine different macaques had distinct MneHV7 gene expression patterns and that the overall number of viral transcripts correlated with viral loads in parotid gland tissue and saliva. Immunohistochemistry staining confirmed that, like HHV-7, MneHV7 exhibits a natural tropism for salivary gland ductal cells. We also observed staining for MneHV7 in peripheral nerve ganglia present in salivary gland tissues, suggesting that HHV-7 may also have a tropism for the peripheral nervous system. Our data demonstrate that MneHV7-infected macaques represent a relevant animal model that may help clarify the causality between roseolovirus reactivation and diseases. IMPORTANCE Human herpesvirus 6A (HHV-6A), HHV-6B, and HHV-7 are classified as roseoloviruses. We have recently discovered that pigtailed macaques are naturally infected with viral homologs of HHV-6 and HHV-7, which we provisionally named MneHV6 and MneHV7, respectively. In this study, we confirm that MneHV7 is genetically and biologically similar to its human counterpart, HHV-7. We determined the complete unique MneHV7 genome sequence and provide a comprehensive annotation of all genes. We also characterized viral transcription profiles in salivary glands from naturally infected macaques. We show that broad transcriptional activity across most of the viral genome is associated with high viral loads in infected parotid glands and that late viral protein expression is detected in salivary duct cells and peripheral nerve ganglia. Our study provides new insights into the natural behavior of an extremely prevalent virus and establishes a basis for subsequent investigations of the mechanisms that cause HHV-7 reactivation and associated disease.
Collapse
|
4
|
Wallaschek N, Sanyal A, Pirzer F, Gravel A, Mori Y, Flamand L, Kaufer BB. The Telomeric Repeats of Human Herpesvirus 6A (HHV-6A) Are Required for Efficient Virus Integration. PLoS Pathog 2016; 12:e1005666. [PMID: 27244446 PMCID: PMC4887096 DOI: 10.1371/journal.ppat.1005666] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/09/2016] [Indexed: 11/20/2022] Open
Abstract
Human herpesvirus 6A (HHV-6A) and 6B (HHV-6B) are ubiquitous betaherpesviruses that infects humans within the first years of life and establishes latency in various cell types. Both viruses can integrate their genomes into telomeres of host chromosomes in latently infected cells. The molecular mechanism of viral integration remains elusive. Intriguingly, HHV-6A, HHV-6B and several other herpesviruses harbor arrays of telomeric repeats (TMR) identical to human telomere sequences at the ends of their genomes. The HHV-6A and HHV-6B genomes harbor two TMR arrays, the perfect TMR (pTMR) and the imperfect TMR (impTMR). To determine if the TMR are involved in virus integration, we deleted both pTMR and impTMR in the HHV-6A genome. Upon reconstitution, the TMR mutant virus replicated comparable to wild type (wt) virus, indicating that the TMR are not essential for HHV-6A replication. To assess the integration properties of the recombinant viruses, we established an in vitro integration system that allows assessment of integration efficiency and genome maintenance in latently infected cells. Integration of HHV-6A was severely impaired in the absence of the TMR and the virus genome was lost rapidly, suggesting that integration is crucial for the maintenance of the virus genome. Individual deletion of the pTMR and impTMR revealed that the pTMR play the major role in HHV-6A integration, whereas the impTMR only make a minor contribution, allowing us to establish a model for HHV-6A integration. Taken together, our data shows that the HHV-6A TMR are dispensable for virus replication, but are crucial for integration and maintenance of the virus genome in latently infected cells. Herpesviruses are ubiquitous pathogens that persist in the host for life. Two human herpesviruses (HHV-6A and HHV-6B) can integrate their genetic material into the telomeres of host chromosomes. Integration also occurs in germ cells, resulting in individuals that harbor the virus in every single cells of their body and transmit it to their offspring, a condition that affects about 1% of the human population. We set to elucidate the integration mechanism that allows these viruses to maintain their genome in infected cells. Intriguingly, HHV-6A, HHV-6B and several other herpesviruses harbor telomere sequences at the end of their genome. Removal of these sequences in the genome of HHV-6A revealed that the viral telomeres are crucial for the integration of this human herpesvirus. In addition, we demonstrate that the telomere sequences at the right and left end of the virus genome play different roles in the integration process. Taken together, our data sheds light on the integration mechanism that allows HHV-6A to integrate into somatic cells and to enter into the germ line.
Collapse
Affiliation(s)
- Nina Wallaschek
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | - Anirban Sanyal
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | - Fabian Pirzer
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | - Annie Gravel
- Division of Infectious Disease and Immunity, CHU de Québec Research Center, Quebec City, Quebec, Canada
| | - Yasuko Mori
- Division of Clinical Virology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Louis Flamand
- Division of Infectious Disease and Immunity, CHU de Québec Research Center, Quebec City, Quebec, Canada
- Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, Université Laval, Quebec City, Québec, Canada
| | - Benedikt B. Kaufer
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
5
|
Dreyfus DH. Serological evidence that activation of ubiquitous human herpesvirus-6 (HHV-6) plays a role in chronic idiopathic/spontaneous urticaria (CIU). Clin Exp Immunol 2015; 183:230-8. [PMID: 26361716 DOI: 10.1111/cei.12704] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2015] [Indexed: 01/25/2023] Open
Abstract
Acute infection with viral pathogens in the herpesviridae family can trigger acute urticaria, and reactivation of herpesviridae is associated with cutaneous urticarial-like syndromes such as drug-induced hypersensitivity syndrome/drug reaction with eosinophilia and systemic symptoms (DRESS). Reactivation of latent herpesviridae has not been studied systematically in chronic idiopathic/spontaneous urticaria (CIU). This review proposes that CIU is an inflammatory disorder with autoimmune features (termed 'CVU' for chronic viral urticaria), based on serology consistent with the hypothesis that reactivation of a latent herpesvirus or -viruses may play a role in CIU. Serology obtained from a cohort of omalizumab (Xolair)-dependent patients with severe CIU was consistent with previous HHV-6 infection, persistent viral gene expression and replication. CIU patients also exhibited serological evidence of increased immune response to HHV-4 (Epstein-Barr virus, or EBV) but not all CIU patients were infected with EBV. These observations, combined with case reports of CIU response to anti-viral therapy, suggest that HHV-6, possibly interacting with HHV-4 in cutaneous tissues, is a candidate for further prospective study as a co-factor in CIU.
Collapse
Affiliation(s)
- D H Dreyfus
- Clinical Faculty Department of Pediatrics Yale School of Medicine and Gesher LLC Allergy, Asthma and Clinical Immunology, Waterbury, CT, USA
| |
Collapse
|
6
|
Agut H, Bonnafous P, Gautheret-Dejean A. Laboratory and clinical aspects of human herpesvirus 6 infections. Clin Microbiol Rev 2015; 28:313-35. [PMID: 25762531 PMCID: PMC4402955 DOI: 10.1128/cmr.00122-14] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Human herpesvirus 6 (HHV-6) is a widespread betaherpesvirus which is genetically related to human cytomegalovirus (HCMV) and now encompasses two different species: HHV-6A and HHV-6B. HHV-6 exhibits a wide cell tropism in vivo and, like other herpesviruses, induces a lifelong latent infection in humans. As a noticeable difference with respect to other human herpesviruses, genomic HHV-6 DNA is covalently integrated into the subtelomeric region of cell chromosomes (ciHHV-6) in about 1% of the general population. Although it is infrequent, this may be a confounding factor for the diagnosis of active viral infection. The diagnosis of HHV-6 infection is performed by both serologic and direct methods. The most prominent technique is the quantification of viral DNA in blood, other body fluids, and organs by means of real-time PCR. Many active HHV-6 infections, corresponding to primary infections, reactivations, or exogenous reinfections, are asymptomatic. However, the virus may be the cause of serious diseases, particularly in immunocompromised individuals. As emblematic examples of HHV-6 pathogenicity, exanthema subitum, a benign disease of infancy, is associated with primary infection, whereas further virus reactivations can induce severe encephalitis cases, particularly in hematopoietic stem cell transplant recipients. Generally speaking, the formal demonstration of the causative role of HHV-6 in many acute and chronic human diseases is difficult due to the ubiquitous nature of the virus, chronicity of infection, existence of two distinct species, and limitations of current investigational tools. The antiviral compounds ganciclovir, foscarnet, and cidofovir are effective against active HHV-6 infections, but the indications for treatment, as well as the conditions of drug administration, are not formally approved to date. There are still numerous pending questions about HHV-6 which should stimulate future research works on the pathophysiology, diagnosis, and therapy of this remarkable human virus.
Collapse
Affiliation(s)
- Henri Agut
- Sorbonne Universités, UPMC, CIMI-Paris UMRS CR7, PVI Team, Paris, France INSERM, CIMI-Paris U1135, PVI Team, Paris, France AP-HP, Hôpitaux Universitaires Pitié Salpêtrière-Charles Foix, Service de Virologie, Paris, France
| | - Pascale Bonnafous
- Sorbonne Universités, UPMC, CIMI-Paris UMRS CR7, PVI Team, Paris, France INSERM, CIMI-Paris U1135, PVI Team, Paris, France
| | - Agnès Gautheret-Dejean
- Sorbonne Universités, UPMC, CIMI-Paris UMRS CR7, PVI Team, Paris, France INSERM, CIMI-Paris U1135, PVI Team, Paris, France AP-HP, Hôpitaux Universitaires Pitié Salpêtrière-Charles Foix, Service de Virologie, Paris, France Université René Descartes, Faculté de Pharmacie, Laboratoire de Microbiologie UPRES EA 4065, Paris, France
| |
Collapse
|
7
|
Houldcroft CJ, Breuer J. Tales from the crypt and coral reef: the successes and challenges of identifying new herpesviruses using metagenomics. Front Microbiol 2015; 6:188. [PMID: 25821447 PMCID: PMC4358218 DOI: 10.3389/fmicb.2015.00188] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 02/20/2015] [Indexed: 12/14/2022] Open
Abstract
Herpesviruses are ubiquitous double-stranded DNA viruses infecting many animals, with the capacity to cause disease in both immunocompetent and immunocompromised hosts. Different herpesviruses have different cell tropisms, and have been detected in a diverse range of tissues and sample types. Metagenomics—encompassing viromics—analyses the nucleic acid of a tissue or other sample in an unbiased manner, making few or no prior assumptions about which viruses may be present in a sample. This approach has successfully discovered a number of novel herpesviruses. Furthermore, metagenomic analysis can identify herpesviruses with high degrees of sequence divergence from known herpesviruses and does not rely upon culturing large quantities of viral material. Metagenomics has had success in two areas of herpesvirus sequencing: firstly, the discovery of novel exogenous and endogenous herpesviruses in primates, bats and cnidarians; and secondly, in characterizing large areas of the genomes of herpesviruses previously only known from small fragments, revealing unexpected diversity. This review will discuss the successes and challenges of using metagenomics to identify novel herpesviruses, and future directions within the field.
Collapse
Affiliation(s)
- Charlotte J Houldcroft
- Infection, Inflammation and Rheumatology, Institute of Child Health, University College London , London, UK
| | - Judith Breuer
- Infection, Inflammation and Rheumatology, Institute of Child Health, University College London , London, UK ; Division of Infection and Immunity, University College London , London, UK
| |
Collapse
|
8
|
Krug LT, Pellett PE. Roseolovirus molecular biology: recent advances. Curr Opin Virol 2014; 9:170-7. [PMID: 25437229 PMCID: PMC4753783 DOI: 10.1016/j.coviro.2014.10.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 10/16/2014] [Indexed: 12/29/2022]
Abstract
Human herpesviruses 6A, 6B, and 7 (HHV-6A, HHV-6B, and HHV-7) are classified within the roseolovirus genus of the betaherpesvirus subfamily. Most humans likely harbor at least two of these large DNA viruses, and 1% of humans harbor germline chromosomally integrated (ci) HHV-6A or HHV-6B genomes. Differences at the genetic level manifest as distinct biologic properties during infection and disease. We provide a brief synopsis of roseolovirus replication and highlight the unique properties of their lifecycle and what is known about the viral gene products that mediate these functions. In the nearly 30 years since their discovery, we have only begun to unlock the molecular strategies these highly evolved pathogens employ to establish and maintain chronic infections in humans.
Collapse
Affiliation(s)
- Laurie T Krug
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, United States
| | - Philip E Pellett
- Department of Immunology and Microbiology, Wayne State University, Detroit, MI 48201, United States.
| |
Collapse
|