1
|
Datta G, Miller NM, Afghah Z, Geiger JD, Chen X. HIV-1 gp120 Promotes Lysosomal Exocytosis in Human Schwann Cells. Front Cell Neurosci 2019; 13:329. [PMID: 31379513 PMCID: PMC6650616 DOI: 10.3389/fncel.2019.00329] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/03/2019] [Indexed: 12/31/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) associated neuropathy is the most common neurological complication of HIV-1, with debilitating pain affecting the quality of life. HIV-1 gp120 plays an important role in the pathogenesis of HIV neuropathy via direct neurotoxic effects or indirect pro-inflammatory responses. Studies have shown that gp120-induced release of mediators from Schwann cells induce CCR5-dependent DRG neurotoxicity, however, CCR5 antagonists failed to improve pain in HIV- infected individuals. Thus, there is an urgent need for a better understanding of neuropathic pain pathogenesis and developing effective therapeutic strategies. Because lysosomal exocytosis in Schwann cells is an indispensable process for regulating myelination and demyelination, we determined the extent to which gp120 affected lysosomal exocytosis in human Schwann cells. We demonstrated that gp120 promoted the movement of lysosomes toward plasma membranes, induced lysosomal exocytosis, and increased the release of ATP into the extracellular media. Mechanistically, we demonstrated lysosome de-acidification, and activation of P2X4 and VNUT to underlie gp120-induced lysosome exocytosis. Functionally, we demonstrated that gp120-induced lysosome exocytosis and release of ATP from Schwann cells leads to increases in intracellular calcium and generation of cytosolic reactive oxygen species in DRG neurons. Our results suggest that gp120-induced lysosome exocytosis and release of ATP from Schwann cells and DRG neurons contribute to the pathogenesis of HIV-1 associated neuropathy.
Collapse
Affiliation(s)
- Gaurav Datta
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Nicole M Miller
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Zahra Afghah
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Jonathan D Geiger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Xuesong Chen
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| |
Collapse
|
2
|
Snapp EL, McCaul N, Quandte M, Cabartova Z, Bontjer I, Källgren C, Nilsson I, Land A, von Heijne G, Sanders RW, Braakman I. Structure and topology around the cleavage site regulate post-translational cleavage of the HIV-1 gp160 signal peptide. eLife 2017; 6:26067. [PMID: 28753126 PMCID: PMC5577925 DOI: 10.7554/elife.26067] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 07/26/2017] [Indexed: 12/29/2022] Open
Abstract
Like all other secretory proteins, the HIV-1 envelope glycoprotein gp160 is targeted to the endoplasmic reticulum (ER) by its signal peptide during synthesis. Proper gp160 folding in the ER requires core glycosylation, disulfide-bond formation and proline isomerization. Signal-peptide cleavage occurs only late after gp160 chain termination and is dependent on folding of the soluble subunit gp120 to a near-native conformation. We here detail the mechanism by which co-translational signal-peptide cleavage is prevented. Conserved residues from the signal peptide and residues downstream of the canonical cleavage site form an extended alpha-helix in the ER membrane, which covers the cleavage site, thus preventing cleavage. A point mutation in the signal peptide breaks the alpha helix allowing co-translational cleavage. We demonstrate that postponed cleavage of gp160 enhances functional folding of the molecule. The change to early cleavage results in decreased viral fitness compared to wild-type HIV.
Collapse
Affiliation(s)
- Erik Lee Snapp
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Nicholas McCaul
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Matthias Quandte
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Zuzana Cabartova
- National Institute of Public Health, National Reference Laboratory for Viral Hepatitis, Prague, Czech Republic
| | - Ilja Bontjer
- Department of Medical Microbiology, Laboratory of Experimental Virology, Center for Infection and Immunity Amsterdam, Academic Medical Center, Amsterdam, Netherlands
| | - Carolina Källgren
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.,Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - IngMarie Nilsson
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.,Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Aafke Land
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Gunnar von Heijne
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.,Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Rogier W Sanders
- Department of Medical Microbiology, Laboratory of Experimental Virology, Center for Infection and Immunity Amsterdam, Academic Medical Center, Amsterdam, Netherlands
| | - Ineke Braakman
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
3
|
Abstract
Transport of newly synthesized proteins from the endoplasmic reticulum (ER) to the Golgi complex is highly selective. As a general rule, such transport is limited to soluble and membrane-associated secretory proteins that have reached properly folded and assembled conformations. To secure the efficiency, fidelity, and control of this crucial transport step, cells use a combination of mechanisms. The mechanisms are based on selective retention of proteins in the ER to prevent uptake into transport vesicles, on selective capture of proteins in COPII carrier vesicles, on inclusion of proteins in these vesicles by default as part of fluid and membrane bulk flow, and on selective retrieval of proteins from post-ER compartments by retrograde vesicle transport.
Collapse
Affiliation(s)
- Charles Barlowe
- Biochemistry Department, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755;
| | - Ari Helenius
- Institute of Biochemistry, ETH Zurich, Zurich CH-8093, Switzerland
| |
Collapse
|
4
|
Sliepen K, van Montfort T, Ozorowski G, Pritchard LK, Crispin M, Ward AB, Sanders RW. Engineering and Characterization of a Fluorescent Native-Like HIV-1 Envelope Glycoprotein Trimer. Biomolecules 2015; 5:2919-34. [PMID: 26512709 PMCID: PMC4693263 DOI: 10.3390/biom5042919] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/13/2015] [Accepted: 10/15/2015] [Indexed: 12/03/2022] Open
Abstract
Generation of a stable, soluble mimic of the HIV-1 envelope glycoprotein (Env) trimer on the virion surface has been considered an important first step for developing a successful HIV-1 vaccine. Recently, a soluble native-like Env trimer (BG505 SOSIP.664) has been described. This protein has facilitated major advances in the HIV-1 vaccine field, since it was the first Env immunogen that induced consistent neutralizing antibodies against a neutralization-resistant (tier 2) virus. Moreover, BG505 SOSIP.664 enabled elucidation of the atomic resolution structure of the Env trimer and facilitated the isolation and characterization of new broadly neutralizing antibodies against HIV-1. Here, we designed and characterized the BG505 SOSIP.664 trimer fused to fluorescent superfolder GFP (sfGFP), a GFP variant that allows efficient folding (BG505 SOSIP.664-sfGFP). Despite the presence of the sfGFP, the Env protein largely retained its morphology, antigenicity, glycan composition, and thermostability. In addition, we show that BG505 SOSIP.664-sfGFP can be used for fluorescence-based assays, such as flow cytometry.
Collapse
Affiliation(s)
- Kwinten Sliepen
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands.
| | - Thijs van Montfort
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands.
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, IAVI Neutralizing Antibody Center, Collaboration for AIDS Vaccine Discovery (CAVD), Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Laura K Pritchard
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| | - Max Crispin
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, IAVI Neutralizing Antibody Center, Collaboration for AIDS Vaccine Discovery (CAVD), Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Rogier W Sanders
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands.
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10065, USA.
| |
Collapse
|