1
|
Gao C, Wen F, Guan M, Hatuwal B, Li L, Praena B, Tang CY, Zhang J, Luo F, Xie H, Webby R, Tao YJ, Wan XF. MAIVeSS: streamlined selection of antigenically matched, high-yield viruses for seasonal influenza vaccine production. Nat Commun 2024; 15:1128. [PMID: 38321021 PMCID: PMC10847134 DOI: 10.1038/s41467-024-45145-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 01/15/2024] [Indexed: 02/08/2024] Open
Abstract
Vaccines are the main pharmaceutical intervention used against the global public health threat posed by influenza viruses. Timely selection of optimal seed viruses with matched antigenicity between vaccine antigen and circulating viruses and with high yield underscore vaccine efficacy and supply, respectively. Current methods for selecting influenza seed vaccines are labor intensive and time-consuming. Here, we report the Machine-learning Assisted Influenza VaccinE Strain Selection framework, MAIVeSS, that enables streamlined selection of naturally circulating, antigenically matched, and high-yield influenza vaccine strains directly from clinical samples by using molecular signatures of antigenicity and yield to support optimal candidate vaccine virus selection. We apply our framework on publicly available sequences to select A(H1N1)pdm09 vaccine candidates and experimentally confirm that these candidates have optimal antigenicity and growth in cells and eggs. Our framework can potentially reduce the optimal vaccine candidate selection time from months to days and thus facilitate timely supply of seasonal vaccines.
Collapse
Affiliation(s)
- Cheng Gao
- Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, MO, 65211, USA
- Department of Electrical Engineering & Computer Science, College of Engineering, University of Missouri, Columbia, MO, 65211, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Feng Wen
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, 39762, USA
| | - Minhui Guan
- Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, MO, 65211, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Bijaya Hatuwal
- Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, MO, 65211, USA
- Department of Electrical Engineering & Computer Science, College of Engineering, University of Missouri, Columbia, MO, 65211, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Lei Li
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
- Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA, 30303, USA
| | - Beatriz Praena
- Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, MO, 65211, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Cynthia Y Tang
- Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, MO, 65211, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO, 65211, USA
| | - Jieze Zhang
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
| | - Feng Luo
- University School of Computing, Clemson University, Clemson, SC, 29634, USA
| | - Hang Xie
- Laboratory of Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Richard Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 63141, USA
| | - Yizhi Jane Tao
- Department of BioSciences, Rice University, Houston, TX, 77251, USA
| | - Xiu-Feng Wan
- Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, MO, 65211, USA.
- Department of Electrical Engineering & Computer Science, College of Engineering, University of Missouri, Columbia, MO, 65211, USA.
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, 65211, USA.
- Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, 39762, USA.
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
2
|
Naz S, Liu P, Farooq U, Ma H. Insight into de-regulation of amino acid feedback inhibition: a focus on structure analysis method. Microb Cell Fact 2023; 22:161. [PMID: 37612753 PMCID: PMC10464499 DOI: 10.1186/s12934-023-02178-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/13/2023] [Indexed: 08/25/2023] Open
Abstract
Regulation of amino acid's biosynthetic pathway is of significant importance to maintain homeostasis and cell functions. Amino acids regulate their biosynthetic pathway by end-product feedback inhibition of enzymes catalyzing committed steps of a pathway. Discovery of new feedback resistant enzyme variants to enhance industrial production of amino acids is a key objective in industrial biotechnology. Deregulation of feedback inhibition has been achieved for various enzymes using in vitro and in silico mutagenesis techniques. As enzyme's function, its substrate binding capacity, catalysis activity, regulation and stability are dependent on its structural characteristics, here, we provide detailed structural analysis of all feedback sensitive enzyme targets in amino acid biosynthetic pathways. Current review summarizes information regarding structural characteristics of various enzyme targets and effect of mutations on their structures and functions especially in terms of deregulation of feedback inhibition. Furthermore, applicability of various experimental as well as computational mutagenesis techniques to accomplish feedback resistance has also been discussed in detail to have an insight into various aspects of research work reported in this particular field of study.
Collapse
Affiliation(s)
- Sadia Naz
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Pi Liu
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Umar Farooq
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Islamabad, 22060, Pakistan
| | - Hongwu Ma
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| |
Collapse
|
3
|
Guan L, Ping J, Lopes TJS, Fan S, Presler R, Neumann G, Kawaoka Y. Development of an Enhanced High-Yield Influenza Vaccine Backbone in Embryonated Chicken Eggs. Vaccines (Basel) 2023; 11:1364. [PMID: 37631932 PMCID: PMC10459923 DOI: 10.3390/vaccines11081364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/28/2023] Open
Abstract
Vaccination is an efficient approach to preventing influenza virus infections. Recently, we developed influenza A and B virus vaccine backbones that increased the yield of several vaccine viruses in Madin-Darby canine kidney (MDCK) and African green monkey kidney (Vero) cells. These vaccine backbones also increased viral replication in embryonated chicken eggs, which are the most frequently used platform for influenza vaccine manufacturing. In this study, to further increase the viral titers in embryonated chicken eggs, we introduced random mutations into the 'internal genes' (i.e., all influenza viral genes except those encoding the hemagglutinin and neuraminidase proteins) of the influenza A virus high-yield virus backbone we developed previously. The randomly mutated viruses were sequentially passaged in embryonated chicken eggs to select variants with increased replicative ability. We identified a candidate that conferred higher influenza virus growth than the high-yield parental virus backbone. Although the observed increases in virus growth may be considered small, they are highly relevant for vaccine manufacturers.
Collapse
Affiliation(s)
- Lizheng Guan
- Department of Pathobiological Sciences, School of Veterinary Medicine, Influenza Research Institute, University of Wisconsin-Madison, Madison, WI 53711, USA (T.J.S.L.); (R.P.)
| | - Jihui Ping
- Department of Pathobiological Sciences, School of Veterinary Medicine, Influenza Research Institute, University of Wisconsin-Madison, Madison, WI 53711, USA (T.J.S.L.); (R.P.)
| | - Tiago J. S. Lopes
- Department of Pathobiological Sciences, School of Veterinary Medicine, Influenza Research Institute, University of Wisconsin-Madison, Madison, WI 53711, USA (T.J.S.L.); (R.P.)
| | - Shufang Fan
- Department of Pathobiological Sciences, School of Veterinary Medicine, Influenza Research Institute, University of Wisconsin-Madison, Madison, WI 53711, USA (T.J.S.L.); (R.P.)
| | - Robert Presler
- Department of Pathobiological Sciences, School of Veterinary Medicine, Influenza Research Institute, University of Wisconsin-Madison, Madison, WI 53711, USA (T.J.S.L.); (R.P.)
| | - Gabriele Neumann
- Department of Pathobiological Sciences, School of Veterinary Medicine, Influenza Research Institute, University of Wisconsin-Madison, Madison, WI 53711, USA (T.J.S.L.); (R.P.)
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, School of Veterinary Medicine, Influenza Research Institute, University of Wisconsin-Madison, Madison, WI 53711, USA (T.J.S.L.); (R.P.)
- Division of Virology, Department of Microbiology and Immunology, International Research Center for Infectious Diseases, The Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan
| |
Collapse
|
4
|
Li L, Wu S, Si Y, Li H, Yin X, Peng D. Single-chain fragment variable produced by phage display technology: Construction, selection, mutation, expression, and recent applications in food safety. Compr Rev Food Sci Food Saf 2022; 21:4354-4377. [PMID: 35904244 DOI: 10.1111/1541-4337.13018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 01/28/2023]
Abstract
Immunoassays are reliable, efficient, and accurate methods for the analysis of small-molecule harmful substances (such as pesticides, veterinary drugs, and biological toxins) that may be present in food. However, traditional polyclonal and monoclonal antibodies are limited by animal hosts and hinder further development of immunoassays. With the gradual application of phage display technology as an efficient in vitro selection technology, the single-chain fragment variable (scFv) now provides an exciting alternative to traditional antibodies. Efficiently constructed scFv source libraries and specifically designed biopanning schemes can now yield scFvs possessing specific recognition capabilities. A rational mutation strategy further enhances the affinity of scFv, and allows it to reach a level that cannot be achieved by immunization. Finally, appropriate prokaryotic expression measures ensure stable and efficient production of scFv. Therefore, when developing excellent scFvs, it is necessary to focus on three key aspects of this process that include screening, mutation, and expression. In this review, we analyze in detail the preparation and affinity improvement process for scFv and provide insights into the research progress and development trend of scFv-based immunoassay methods for monitoring small-molecule harmful substances.
Collapse
Affiliation(s)
- Long Li
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shuangmin Wu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yu Si
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Huaming Li
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiaoyang Yin
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Dapeng Peng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei, China.,Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, Guangdong, China.,Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China.,Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| |
Collapse
|
5
|
Iqbal Z, Sadaf S. Forty Years of Directed Evolution and its Continuously Evolving Technology Toolbox - A Review of the Patent Landscape. Biotechnol Bioeng 2021; 119:693-724. [PMID: 34923625 DOI: 10.1002/bit.28009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 11/10/2022]
Abstract
Generating functional protein variants with novel or improved characteristics has been a goal of the biotechnology industry and life sciences, for decades. Rational design and directed evolution are two major pathways to achieve the desired ends. Whilst rational protein design approach has made substantial progress, the idea of using a method based on cycles of mutagenesis and natural selection to develop novel binding proteins, enzymes and structures has attracted great attention. Laboratory evolution of proteins/enzymes requires new tools and analytical approaches to create genetic diversity and identifying variants with desired traits. In this pursuit, construction of sufficiently large libraries of target molecules to search for improved variants and the need for new protocols to alter the properties of target molecules has been a continuing challenge in the directed evolution experiments. This review will discuss the in vivo and in vitro gene diversification tools, library screening or selection approaches, and artificial intelligence/machine-learning-based strategies to mutagenesis developed in the last forty years to accelerate the natural process of evolution in creating new functional protein variants, optimization of microbial strains and transformation of enzymes into industrial machines. Analyzing patent position over these techniques and mechanisms also constitutes an integral and distinctive part of this review. The aim is to provide an up-to-date resource/technology toolbox for research-based and pharmaceutical companies to discover the boundaries of competitor's intellectual property (IP) portfolio, their freedom-to-operate in the relevant IP landscape, and the need for patent due diligence analysis to rule out whether use of a particular patented mutagenesis method, library screening/selection technique falls outside the safe harbor of experimental use exemption. While so doing, we have referred to some recent cases that emphasize the significance of selecting a suitable gene diversification strategy in directed evolution experiments. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zarina Iqbal
- PakPat World Intellectual Property Protection Services, Lahore, 54000, Pakistan
| | - Saima Sadaf
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Pakistan
| |
Collapse
|
6
|
Waters K, Wan HJ, Han L, Xue J, Ykema M, Tao YJ, Wan XF. Variations outside the conserved motifs of PB1 catalytic active site may affect replication efficiency of the RNP complex of influenza A virus. Virology 2021; 559:145-155. [PMID: 33887645 PMCID: PMC8579824 DOI: 10.1016/j.virol.2021.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/31/2021] [Accepted: 04/05/2021] [Indexed: 12/24/2022]
Abstract
PB1 functions as the catalytic subunit of influenza virus RNA polymerase complex and plays an essential role in viral RNA transcription and replication. To determine plasticity in the PB1 enzymatic site and map catalytically important residues, 658 mutants were constructed, each with one to seven mutations in the enzymatic site of PB1. The polymerase activities of these mutants were quantified using a minigenome assay, and polymerase activity-associated residues were identified using sparse learning. Results showed that polymerase activities are affected by the residues not only within the conserved motifs, but also across the inter-motif regions of PB1, and the latter are primarily located at the base of the palm domain, a region that is conserved in avian PB1 but with high sequence diversity in swine PB1. Our results suggest that mutations outside the PB1 conserved motifs may affect RNA replication and could be associated with influenza virus host adaptation.
Collapse
Affiliation(s)
- Kaitlyn Waters
- Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, MO, USA; Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, 65212, USA; Bond Life Sciences Center, University of Missouri, Columbia, MO, USA; Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Hamilton J Wan
- Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, MO, USA; Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, 65212, USA; Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Lei Han
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Jianli Xue
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Matthew Ykema
- Department of BioSciences, Rice University, Houston, TX, 77251, USA
| | - Yizhi J Tao
- Department of BioSciences, Rice University, Houston, TX, 77251, USA
| | - Xiu-Feng Wan
- Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, MO, USA; Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, 65212, USA; Bond Life Sciences Center, University of Missouri, Columbia, MO, USA; Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, 39762, USA; Department of Electrical Engineering & Computer Science, College of Engineering, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
7
|
Fitness selection of hyperfusogenic measles virus F proteins associated with neuropathogenic phenotypes. Proc Natl Acad Sci U S A 2021; 118:2026027118. [PMID: 33903248 DOI: 10.1073/pnas.2026027118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Measles virus (MeV) is resurgent and caused >200,000 deaths in 2019. MeV infection can establish a chronic latent infection of the brain that can recrudesce months to years after recovery from the primary infection. Recrudescent MeV leads to fatal subacute sclerosing panencephalitis (SSPE) or measles inclusion body encephalitis (MIBE) as the virus spreads across multiple brain regions. Most clinical isolates of SSPE/MIBE strains show mutations in the fusion (F) gene that result in a hyperfusogenic phenotype in vitro and allow for efficient spread in primary human neurons. Wild-type MeV receptor-binding protein is indispensable for manifesting these mutant F phenotypes, even though neurons lack canonical MeV receptors (CD150/SLAMF1 or nectin-4). How such hyperfusogenic F mutants are selected and whether they confer a fitness advantage for efficient neuronal spread is unresolved. To better understand the fitness landscape that allows for the selection of such hyperfusogenic F mutants, we conducted a screen of ≥3.1 × 105 MeV-F point mutants in their genomic context. We rescued and amplified our genomic MeV-F mutant libraries in BSR-T7 cells under conditions in which MeV-F-T461I (a known SSPE mutant), but not wild-type MeV, can spread. We recovered known SSPE mutants but also characterized at least 15 hyperfusogenic F mutations with an SSPE phenotype. Structural mapping of these mutants onto the prefusion MeV-F trimer confirm and extend our understanding of the F regulatory domains in MeV-F. Our list of hyperfusogenic F mutants is a valuable resource for future studies into MeV neuropathogenesis and the regulation of paramyxovirus F.
Collapse
|
8
|
Steven J, Ubah OC, Buschhaus M, Kovaleva M, Ferguson L, Porter AJ, Barelle CJ. In Vitro Maturation of a Humanized Shark VNAR Domain to Improve Its Biophysical Properties. Methods Mol Biol 2020; 2070:115-142. [PMID: 31625093 DOI: 10.1007/978-1-4939-9853-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
VNAR domains are the binding regions of new antigen receptor proteins (IgNAR) which are unique to sharks, skates, and rays (Elasmobranchii). Individual VNAR domains can bind antigens independently and are the smallest reported adaptive immune recognition entities in the vertebrate kingdom. Sharing limited sequence homology with human immunoglobulin domains, their development and use as biotherapeutic agents require that they be humanized to minimize their potential immunogenicity. Efforts to humanize a human serum albumin (HSA)-specific VNAR, E06, resulted in protein molecules that initially had undesirable biophysical properties or reduced affinity for cognate antigen. Two lead humanized anti-HSA clones, v1.10 and v2.4, were subjected to a process of random mutagenesis using error-prone PCR. The mutated sequences for each humanized VNAR variant were screened for improvements in affinity for HSA and biophysical properties, achieved without a predicted increase in overall immunogenicity.
Collapse
Affiliation(s)
| | | | | | | | | | - Andrew J Porter
- Elasmogen Ltd., Aberdeen, UK
- Scottish Biologics Facility, School of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | | |
Collapse
|
9
|
Bozovičar K, Bratkovič T. Evolving a Peptide: Library Platforms and Diversification Strategies. Int J Mol Sci 2019; 21:E215. [PMID: 31892275 PMCID: PMC6981544 DOI: 10.3390/ijms21010215] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/22/2019] [Accepted: 12/25/2019] [Indexed: 12/22/2022] Open
Abstract
Peptides are widely used in pharmaceutical industry as active pharmaceutical ingredients, versatile tools in drug discovery, and for drug delivery. They find themselves at the crossroads of small molecules and proteins, possessing favorable tissue penetration and the capability to engage into specific and high-affinity interactions with endogenous receptors. One of the commonly employed approaches in peptide discovery and design is to screen combinatorial libraries, comprising a myriad of peptide variants of either chemical or biological origin. In this review, we focus mainly on recombinant peptide libraries, discussing different platforms for their display or expression, and various diversification strategies for library design. We take a look at well-established technologies as well as new developments and future directions.
Collapse
Affiliation(s)
| | - Tomaž Bratkovič
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, SI-1000 Ljubljana, Slovenia;
| |
Collapse
|
10
|
Lim CC, Choong YS, Lim TS. Cognizance of Molecular Methods for the Generation of Mutagenic Phage Display Antibody Libraries for Affinity Maturation. Int J Mol Sci 2019; 20:E1861. [PMID: 30991723 PMCID: PMC6515083 DOI: 10.3390/ijms20081861] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/10/2019] [Accepted: 04/12/2019] [Indexed: 12/25/2022] Open
Abstract
Antibodies leverage on their unique architecture to bind with an array of antigens. The strength of interaction has a direct relation to the affinity of the antibodies towards the antigen. In vivo affinity maturation is performed through multiple rounds of somatic hypermutation and selection in the germinal centre. This unique process involves intricate sequence rearrangements at the gene level via molecular mechanisms. The emergence of in vitro display technologies, mainly phage display and recombinant DNA technology, has helped revolutionize the way antibody improvements are being carried out in the laboratory. The adaptation of molecular approaches in vitro to replicate the in vivo processes has allowed for improvements in the way recombinant antibodies are designed and tuned. Combinatorial libraries, consisting of a myriad of possible antibodies, are capable of replicating the diversity of the natural human antibody repertoire. The isolation of target-specific antibodies with specific affinity characteristics can also be accomplished through modification of stringent protocols. Despite the ability to screen and select for high-affinity binders, some 'fine tuning' may be required to enhance antibody binding in terms of its affinity. This review will provide a brief account of phage display technology used for antibody generation followed by a summary of different combinatorial library characteristics. The review will focus on available strategies, which include molecular approaches, next generation sequencing, and in silico approaches used for antibody affinity maturation in both therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Chia Chiu Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia.
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, Penang 11800, Malaysia.
| |
Collapse
|
11
|
A Y161F Hemagglutinin Substitution Increases Thermostability and Improves Yields of 2009 H1N1 Influenza A Virus in Cells. J Virol 2018; 92:JVI.01621-17. [PMID: 29118117 DOI: 10.1128/jvi.01621-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 10/27/2017] [Indexed: 12/20/2022] Open
Abstract
Vaccination is the primary strategy for influenza prevention and control. However, egg-based vaccines, the predominant production platform, have several disadvantages, including the emergence of viral antigenic variants that can be induced during egg passage. These limitations have prompted the development of cell-based vaccines, which themselves are not without issue. Most importantly, vaccine seed viruses often do not grow efficiently in mammalian cell lines. Here we aimed to identify novel high-yield signatures for influenza viruses in continuous Madin-Darby canine kidney (MDCK) and Vero cells. Using influenza A(H1N1)pdm09 virus as the testing platform and an integrating error-prone PCR-based mutagenesis strategy, we identified a Y161F mutation in hemagglutinin (HA) that not only enhanced the infectivity of the resultant virus by more than 300-fold but also increased its thermostability without changing its original antigenic properties. The vaccine produced from the Y161F mutant fully protected mice against lethal challenge with wild-type A(H1N1)pdm09. Compared with A(H1N1)pdm09, the Y161F mutant had significantly higher avidity for avian-like and human-like receptor analogs. Of note, the introduction of the Y161F mutation into HA of seasonal H3N2 influenza A virus (IAV) and canine H3N8 IAV also increased yields and thermostability in MDCK cells and chicken embryotic eggs. Thus, residue F161 plays an important role in determining viral growth and thermostability, which could be harnessed to optimize IAV vaccine seed viruses.IMPORTANCE Although a promising complement to current egg-based influenza vaccines, cell-based vaccines have one large challenge: high-yield vaccine seeds for production. In this study, we identified a molecular signature, Y161F, in hemagglutinin (HA) that resulted in increased virus growth in Madin-Darby canine kidney and Vero cells, two cell lines commonly used for influenza vaccine manufacturing. This Y161F mutation not only increased HA thermostability but also enhanced its binding affinity for α2,6- and α2,3-linked Neu5Ac. These results suggest that a vaccine strain bearing the Y161F mutation in HA could potentially increase vaccine yields in mammalian cell culture systems.
Collapse
|
12
|
Baweja M, Nain L, Kawarabayasi Y, Shukla P. Current Technological Improvements in Enzymes toward Their Biotechnological Applications. Front Microbiol 2016; 7:965. [PMID: 27379087 PMCID: PMC4909775 DOI: 10.3389/fmicb.2016.00965] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/03/2016] [Indexed: 01/07/2023] Open
Abstract
Enzymes from extremophiles are creating interest among researchers due to their unique properties and the enormous power of catalysis at extreme conditions. Since community demands are getting more intensified, therefore, researchers are applying various approaches viz. metagenomics to increase the database of extremophilic species. Furthermore, the innovations are being made in the naturally occurring enzymes utilizing various tools of recombinant DNA technology and protein engineering, which allows redesigning of the enzymes for its better fitment into the process. In this review, we discuss the biochemical constraints of psychrophiles during survival at the lower temperature. We summarize the current knowledge about the sources of such enzymes and their in vitro modification through mutagenesis to explore their biotechnological potential. Finally, we recap the microbial cell surface display to enhance the efficiency of the process in cost effective way.
Collapse
Affiliation(s)
- Mehak Baweja
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak India
| | - Lata Nain
- Division of Microbiology, Indian Agricultural Research Institute, New Delhi India
| | - Yutaka Kawarabayasi
- National Institute of Advanced Industrial Science and Technology, Tsukuba Japan
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak India
| |
Collapse
|