1
|
Kastner M, Karner A, Zhu R, Huang Q, Geissner A, Sadewasser A, Lesch M, Wörmann X, Karlas A, Seeberger PH, Wolff T, Hinterdorfer P, Herrmann A, Sieben C. Relevance of Host Cell Surface Glycan Structure for Cell Specificity of Influenza A Viruses. Viruses 2023; 15:1507. [PMID: 37515193 PMCID: PMC10385328 DOI: 10.3390/v15071507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/21/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Influenza A viruses (IAVs) initiate infection via binding of the viral hemagglutinin (HA) to sialylated glycans on host cells. HA's receptor specificity towards individual glycans is well studied and clearly critical for virus infection, but the contribution of the highly heterogeneous and complex glycocalyx to virus-cell adhesion remains elusive. Here, we use two complementary methods, glycan arrays and single-virus force spectroscopy (SVFS), to compare influenza virus receptor specificity with virus binding to live cells. Unexpectedly, we found that HA's receptor binding preference does not necessarily reflect virus-cell specificity. We propose SVFS as a tool to elucidate the cell binding preference of IAVs, thereby including the complex environment of sialylated receptors within the plasma membrane of living cells.
Collapse
Affiliation(s)
- Markus Kastner
- Institute for Biophysics, Johannes Kepler University Linz, 4020 Linz, Austria
| | - Andreas Karner
- Institute for Biophysics, Johannes Kepler University Linz, 4020 Linz, Austria
| | - Rong Zhu
- Institute for Biophysics, Johannes Kepler University Linz, 4020 Linz, Austria
| | - Qiang Huang
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Andreas Geissner
- Department for Biomolecular Systems, Max Planck Institute for Colloids and Interfaces, 14476 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Anne Sadewasser
- Division of Influenza and other Respiratory Viruses, Robert Koch-Institute, 13353 Berlin, Germany
| | - Markus Lesch
- Molecular Biology Department, Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| | - Xenia Wörmann
- Molecular Biology Department, Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| | - Alexander Karlas
- Molecular Biology Department, Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| | - Peter H. Seeberger
- Department for Biomolecular Systems, Max Planck Institute for Colloids and Interfaces, 14476 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Thorsten Wolff
- Division of Influenza and other Respiratory Viruses, Robert Koch-Institute, 13353 Berlin, Germany
| | - Peter Hinterdorfer
- Institute for Biophysics, Johannes Kepler University Linz, 4020 Linz, Austria
| | - Andreas Herrmann
- Institut für Chemie und Biochemie, Freie Universität Berlin, Altensteinstraße 23a, 14195 Berlin, Germany
| | - Christian Sieben
- Nanoscale Infection Biology Group, Department of Cell Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
- Institute for Genetics, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| |
Collapse
|
2
|
Russell CJ. Hemagglutinin Stability and Its Impact on Influenza A Virus Infectivity, Pathogenicity, and Transmissibility in Avians, Mice, Swine, Seals, Ferrets, and Humans. Viruses 2021; 13:746. [PMID: 33923198 PMCID: PMC8145662 DOI: 10.3390/v13050746] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
Genetically diverse influenza A viruses (IAVs) circulate in wild aquatic birds. From this reservoir, IAVs sporadically cause outbreaks, epidemics, and pandemics in wild and domestic avians, wild land and sea mammals, horses, canines, felines, swine, humans, and other species. One molecular trait shown to modulate IAV host range is the stability of the hemagglutinin (HA) surface glycoprotein. The HA protein is the major antigen and during virus entry, this trimeric envelope glycoprotein binds sialic acid-containing receptors before being triggered by endosomal low pH to undergo irreversible structural changes that cause membrane fusion. The HA proteins from different IAV isolates can vary in the pH at which HA protein structural changes are triggered, the protein causes membrane fusion, or outside the cell the virion becomes inactivated. HA activation pH values generally range from pH 4.8 to 6.2. Human-adapted HA proteins tend to have relatively stable HA proteins activated at pH 5.5 or below. Here, studies are reviewed that report HA stability values and investigate the biological impact of variations in HA stability on replication, pathogenicity, and transmissibility in experimental animal models. Overall, a stabilized HA protein appears to be necessary for human pandemic potential and should be considered when assessing human pandemic risk.
Collapse
Affiliation(s)
- Charles J Russell
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
| |
Collapse
|
3
|
Russell CJ, Hu M, Okda FA. Influenza Hemagglutinin Protein Stability, Activation, and Pandemic Risk. Trends Microbiol 2018; 26:841-853. [PMID: 29681430 PMCID: PMC6150828 DOI: 10.1016/j.tim.2018.03.005] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/21/2018] [Accepted: 03/28/2018] [Indexed: 01/09/2023]
Abstract
For decades, hemagglutinin (HA) protein structure and its refolding mechanism have served as a paradigm for understanding protein-mediated membrane fusion. HA trimers are in a high-energy state and are functionally activated by low pH. Over the past decade, HA stability (or the pH at which irreversible conformational changes are triggered) has emerged as an important determinant in influenza virus host range, infectivity, transmissibility, and human pandemic potential. Here, we review HA protein structure, assays to measure its stability, measured HA stability values, residues and mutations that regulate its stability, the effect of HA stability on interspecies adaptation and transmissibility, and mechanistic insights into this process. Most importantly, HA stabilization appears to be necessary for adapting emerging influenza viruses to humans.
Collapse
Affiliation(s)
- Charles J Russell
- Department of Infectious Diseases, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA; Department of Microbiology, Immunology & Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Meng Hu
- Department of Infectious Diseases, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
| | - Faten A Okda
- Department of Infectious Diseases, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
| |
Collapse
|
4
|
Delguste M, Koehler M, Alsteens D. Probing Single Virus Binding Sites on Living Mammalian Cells Using AFM. Methods Mol Biol 2018; 1814:483-514. [PMID: 29956251 DOI: 10.1007/978-1-4939-8591-3_29] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In the last years, atomic force microscopy (AFM)-based approaches have evolved into a powerful multiparametric tool that allows biological samples ranging from single receptors to membranes and tissues to be probed. Force-distance curve-based AFM (FD-based AFM) nowadays enables to image living cells at high resolution and simultaneously localize and characterize specific ligand-receptor binding events. In this chapter, we present how FD-based AFM permits to investigate virus binding to living mammalian cells and quantify the kinetic and thermodynamic parameters that describe the free-energy landscape of the single virus-receptor-mediated binding. Using a model virus, we probed the specific interaction with cells expressing its cognate receptor and measured the affinity of the interaction. Furthermore, we observed that the virus rapidly established specific multivalent interactions and found that each bond formed in sequence strengthens the attachment of the virus to the cell.
Collapse
Affiliation(s)
- Martin Delguste
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Melanie Koehler
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium.
| |
Collapse
|
6
|
Sirinonthanawech N, Surichan S, Namsai A, Puthavathana P, Auewarakul P, Kongchanagul A. Titration of individual strains in trivalent live-attenuated influenza vaccine without neutralization. J Virol Methods 2016; 237:154-158. [DOI: 10.1016/j.jviromet.2016.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/01/2016] [Accepted: 09/01/2016] [Indexed: 10/21/2022]
|