1
|
Tajima S, Ebihara H, Lim CK. Amino Acids at Positions 156 and 332 in the E Protein of the West Nile Virus Subtype Kunjin Virus Classical Strain OR393 Are Involved in Plaque Size, Growth, and Pathogenicity in Mice. Viruses 2024; 16:1237. [PMID: 39205211 PMCID: PMC11359920 DOI: 10.3390/v16081237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
The West Nile virus (WNV) subtype Kunjin virus (WNVKUN) is endemic to Australia. Here, we characterized the classical WNVKUN strain, OR393. The original OR393 strain contained two types of viruses: small plaque-forming virus (SP) and large plaque-forming virus (LP). The amino acid residues at positions 156 and 332 in the E protein (E156 and E332) of SP were Ser and Lys (E156S/332K), respectively, whereas those in LP were Phe and Thr (E156F/332T). SP grew slightly faster than LP in vitro. The E protein of SP was N-glycosylated, whereas that of LP was not. Analysis using two recombinant single-mutant LP viruses, rKUNV-LP-EF156S and rKUNV-LP-ET332K, indicated that E156S enlarged plaques formed by LP, but E332K potently reduced them, regardless of the amino acid at E156. rKUNV-LP-EF156S showed significantly higher neuroinvasive ability than LP, SP, and rKUNV-LP-ET332K. Our results indicate that the low-pathogenic classical WNVKUN can easily change its pathogenicity through only a few amino acid substitutions in the E protein. It was also found that Phe at E156 of the rKUNV-LP-ET332K was easily changed to Ser during replication in vitro and in vivo, suggesting that E156S is advantageous for the propagation of WNVKUN in mammalian cells.
Collapse
Affiliation(s)
- Shigeru Tajima
- Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| | | | | |
Collapse
|
2
|
Fiacre L, Lowenski S, Bahuon C, Dumarest M, Lambrecht B, Dridi M, Albina E, Richardson J, Zientara S, Jiménez-Clavero MÁ, Pardigon N, Gonzalez G, Lecollinet S. Evaluation of NS4A, NS4B, NS5 and 3'UTR Genetic Determinants of WNV Lineage 1 Virulence in Birds and Mammals. Viruses 2023; 15:v15051094. [PMID: 37243180 DOI: 10.3390/v15051094] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
West Nile virus (WNV) is amplified in an enzootic cycle involving birds as amplifying hosts. Because they do not develop high levels of viremia, humans and horses are considered to be dead-end hosts. Mosquitoes, especially from the Culex genus, are vectors responsible for transmission between hosts. Consequently, understanding WNV epidemiology and infection requires comparative and integrated analyses in bird, mammalian, and insect hosts. So far, markers of WNV virulence have mainly been determined in mammalian model organisms (essentially mice), while data in avian models are still missing. WNV Israel 1998 (IS98) is a highly virulent strain that is closely genetically related to the strain introduced into North America in 1999, NY99 (genomic sequence homology > 99%). The latter probably entered the continent at New York City, generating the most impactful WNV outbreak ever documented in wild birds, horses, and humans. In contrast, the WNV Italy 2008 strain (IT08) induced only limited mortality in birds and mammals in Europe during the summer of 2008. To test whether genetic polymorphism between IS98 and IT08 could account for differences in disease spread and burden, we generated chimeric viruses between IS98 and IT08, focusing on the 3' end of the genome (NS4A, NS4B, NS5, and 3'UTR regions) where most of the non-synonymous mutations were detected. In vitro and in vivo comparative analyses of parental and chimeric viruses demonstrated a role for NS4A/NS4B/5'NS5 in the decreased virulence of IT08 in SPF chickens, possibly due to the NS4B-E249D mutation. Additionally, significant differences between the highly virulent strain IS98 and the other three viruses were observed in mice, implying the existence of additional molecular determinants of virulence in mammals, such as the amino acid changes NS5-V258A, NS5-N280K, NS5-A372V, and NS5-R422K. As previously shown, our work also suggests that genetic determinants of WNV virulence can be host-dependent.
Collapse
Affiliation(s)
- Lise Fiacre
- Animal Health Laboratory, L'alimentation et L'environnement (INRAE), Institut National de Recherche pour L'agriculture, École Vétérinaire d'Alfort (ENVA), Agence Nationale de Sécurité Sanitaire de L'alimentation, de L'environnement et du Travail (ANSES), UMR Virology, 94700 Maisons-Alfort, France
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR ASTRE, 97170 Petit-Bourg, France
- ASTRE, CIRAD, INRAe, University of Montpellier, 34000 Montpellier, France
| | - Steeve Lowenski
- Animal Health Laboratory, L'alimentation et L'environnement (INRAE), Institut National de Recherche pour L'agriculture, École Vétérinaire d'Alfort (ENVA), Agence Nationale de Sécurité Sanitaire de L'alimentation, de L'environnement et du Travail (ANSES), UMR Virology, 94700 Maisons-Alfort, France
| | - Céline Bahuon
- Animal Health Laboratory, L'alimentation et L'environnement (INRAE), Institut National de Recherche pour L'agriculture, École Vétérinaire d'Alfort (ENVA), Agence Nationale de Sécurité Sanitaire de L'alimentation, de L'environnement et du Travail (ANSES), UMR Virology, 94700 Maisons-Alfort, France
| | - Marine Dumarest
- Animal Health Laboratory, L'alimentation et L'environnement (INRAE), Institut National de Recherche pour L'agriculture, École Vétérinaire d'Alfort (ENVA), Agence Nationale de Sécurité Sanitaire de L'alimentation, de L'environnement et du Travail (ANSES), UMR Virology, 94700 Maisons-Alfort, France
| | | | - Maha Dridi
- SCIENSANO, Avian Virology and Immunology, 1180 Brussels, Belgium
| | - Emmanuel Albina
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR ASTRE, 97170 Petit-Bourg, France
- ASTRE, CIRAD, INRAe, University of Montpellier, 34000 Montpellier, France
| | - Jennifer Richardson
- Animal Health Laboratory, L'alimentation et L'environnement (INRAE), Institut National de Recherche pour L'agriculture, École Vétérinaire d'Alfort (ENVA), Agence Nationale de Sécurité Sanitaire de L'alimentation, de L'environnement et du Travail (ANSES), UMR Virology, 94700 Maisons-Alfort, France
| | - Stéphan Zientara
- Animal Health Laboratory, L'alimentation et L'environnement (INRAE), Institut National de Recherche pour L'agriculture, École Vétérinaire d'Alfort (ENVA), Agence Nationale de Sécurité Sanitaire de L'alimentation, de L'environnement et du Travail (ANSES), UMR Virology, 94700 Maisons-Alfort, France
| | - Miguel-Ángel Jiménez-Clavero
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, Carretera Algete-El Casar s/n, 28130 Valdeolmos, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), 28001 Madrid, Spain
| | | | - Gaëlle Gonzalez
- Animal Health Laboratory, L'alimentation et L'environnement (INRAE), Institut National de Recherche pour L'agriculture, École Vétérinaire d'Alfort (ENVA), Agence Nationale de Sécurité Sanitaire de L'alimentation, de L'environnement et du Travail (ANSES), UMR Virology, 94700 Maisons-Alfort, France
| | - Sylvie Lecollinet
- Animal Health Laboratory, L'alimentation et L'environnement (INRAE), Institut National de Recherche pour L'agriculture, École Vétérinaire d'Alfort (ENVA), Agence Nationale de Sécurité Sanitaire de L'alimentation, de L'environnement et du Travail (ANSES), UMR Virology, 94700 Maisons-Alfort, France
| |
Collapse
|
3
|
Zaccaria G, Malatesta D, Jurisic L, Marcacci M, Di Teodoro G, Conte A, Teodori L, Monaco F, Marini V, Casaccia C, Savini G, Di Gennaro A, Rossi E, D'Innocenzo V, D'Alterio N, Lorusso A. The envelope protein of Usutu virus attenuates West Nile virus virulence in immunocompetent mice. Vet Microbiol 2021; 263:109262. [PMID: 34715462 DOI: 10.1016/j.vetmic.2021.109262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/17/2021] [Indexed: 11/28/2022]
Abstract
West Nile virus (WNV) and Usutu virus (USUV) are the two most widespread mosquito-borne flaviviruses in Europe causing severe neuroinvasive disease in humans. Here, following standardization of the murine model with wild type (wt) viruses, we engineered WNV and USUV genome by reverse genetics. A recombinant virus carrying the 5' UTR of WNV within the USUV genome backbone (r-USUV5'-UTR WNV) was rescued; when administered to mice this virus did not cause signs or disease as wt USUV suggesting that 5' UTR of a marked neurotropic parental WNV was not per se a virulence factor. Interestingly, a chimeric virus carrying the envelope (E) protein of USUV in the WNV genome backbone (r-WNVE-USUV) showed an attenuated profile in mice compared to wt WNV but significantly more virulent than wt USUV. Moreover, except when tested against serum samples originating from a live WNV infection, r-WNVE-USUV showed an identical antigenic profile to wt USUV confirming that E is also the major immunodominant protein of USUV.
Collapse
Affiliation(s)
- Guendalina Zaccaria
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Campo Boario, 64100 Teramo, Italy
| | - Daniela Malatesta
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Campo Boario, 64100 Teramo, Italy
| | - Lucija Jurisic
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Campo Boario, 64100 Teramo, Italy; Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Maurilia Marcacci
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Campo Boario, 64100 Teramo, Italy; Dipartimento di Medicina Veterinaria, University of Bari, Valenzano, Bari, Italy
| | - Giovanni Di Teodoro
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Campo Boario, 64100 Teramo, Italy
| | - Annamaria Conte
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Campo Boario, 64100 Teramo, Italy
| | - Liana Teodori
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Campo Boario, 64100 Teramo, Italy
| | - Federica Monaco
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Campo Boario, 64100 Teramo, Italy
| | - Valeria Marini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Campo Boario, 64100 Teramo, Italy
| | - Claudia Casaccia
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Campo Boario, 64100 Teramo, Italy
| | - Giovanni Savini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Campo Boario, 64100 Teramo, Italy
| | - Annapia Di Gennaro
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Campo Boario, 64100 Teramo, Italy
| | - Emanuela Rossi
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Campo Boario, 64100 Teramo, Italy
| | - Vincenzo D'Innocenzo
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Campo Boario, 64100 Teramo, Italy
| | - Nicola D'Alterio
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Campo Boario, 64100 Teramo, Italy
| | - Alessio Lorusso
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Campo Boario, 64100 Teramo, Italy.
| |
Collapse
|
4
|
Liu D, Xiao X, Zhou P, Zheng H, Li Y, Jin H, Jongkaewwattana A, Luo R. Glycosylation on envelope glycoprotein of duck Tembusu virus affects virus replication in vitro and contributes to the neurovirulence and pathogenicity in vivo. Virulence 2021; 12:2400-2414. [PMID: 34506259 PMCID: PMC8437475 DOI: 10.1080/21505594.2021.1974329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Duck Tembusu virus (DTMUV), an emergent flavivirus, causes domestic waterfowls to suffer from severe egg-drop syndrome and fatal encephalitis, greatly threatens duck production globally. Like other mosquito-borne flaviviruses, the envelope (E) protein of all DTMUV strains was N-glycosylated at the amino acid position 154. Thus far, the biological roles of DTMUV E glycosylation have remained largely unexplored. Herein, we demonstrated the key roles of E glycosylation in the replication and pathogenicity of DTMUV in ducks by characterizing the reverse-genetics-derived DTMUV wild-type MC strain and MC bearing mutations (N154Q and N154I) that abolish the E glycosylation. Our data showed that the disruption of E glycosylation could substantially impair virus attachment, entry, and infectivity in DEFs and C6/36 cells. Notably, ducks inoculated intracerebrally with the wild-type virus exhibited severe disease onset. In contrast, those inoculated with mutant viruses were mildly affected as manifested by minimal weight loss, no mortality, lower viral loads in the various tissues, and reduced brain lesions. Attenuated phenotypes of the mutant viruses might be partly associated with lower inflammatory cytokines expression in the brains of infected ducks. Our study offers the first evidence that E glycosylation is vital for DTMUV replication, pathogenicity, and neurovirulence in vivo.
Collapse
Affiliation(s)
- Dejian Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Xuyao Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Peng Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Huijun Zheng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Yaqian Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Hui Jin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Anan Jongkaewwattana
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (Biotec), National Science and Technology Development Agency (Nstda), Klong Nueng, Pathum Thani Thailand
| | - Rui Luo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| |
Collapse
|
5
|
Defective viral genomes as therapeutic interfering particles against flavivirus infection in mammalian and mosquito hosts. Nat Commun 2021; 12:2290. [PMID: 33863888 PMCID: PMC8052367 DOI: 10.1038/s41467-021-22341-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/12/2021] [Indexed: 01/13/2023] Open
Abstract
Arthropod-borne viruses pose a major threat to global public health. Thus, innovative strategies for their control and prevention are urgently needed. Here, we exploit the natural capacity of viruses to generate defective viral genomes (DVGs) to their detriment. While DVGs have been described for most viruses, identifying which, if any, can be used as therapeutic agents remains a challenge. We present a combined experimental evolution and computational approach to triage DVG sequence space and pinpoint the fittest deletions, using Zika virus as an arbovirus model. This approach identifies fit DVGs that optimally interfere with wild-type virus infection. We show that the most fit DVGs conserve the open reading frame to maintain the translation of the remaining non-structural proteins, a characteristic that is fundamental across the flavivirus genus. Finally, we demonstrate that the high fitness DVG is antiviral in vivo both in the mammalian host and the mosquito vector, reducing transmission in the latter by up to 90%. Our approach establishes the method to interrogate the DVG fitness landscape, and enables the systematic identification of DVGs that show promise as human therapeutics and vector control strategies to mitigate arbovirus transmission and disease.
Collapse
|
6
|
Tangudu CS, Charles J, Nunez-Avellaneda D, Hargett AM, Brault AC, Blitvich BJ. Chimeric Zika viruses containing structural protein genes of insect-specific flaviviruses cannot replicate in vertebrate cells due to entry and post-translational restrictions. Virology 2021; 559:30-39. [PMID: 33812340 DOI: 10.1016/j.virol.2021.03.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/04/2021] [Accepted: 03/21/2021] [Indexed: 02/06/2023]
Abstract
Long Pine Key virus (LPKV) and Lammi virus are insect-specific flaviviruses that phylogenetically affiliate with dual-host flaviviruses. The goal of this study was to provide insight into the genetic determinants that condition this host range restriction. Chimeras were initially created by replacing select regions of the Zika virus genome, including the premembrane and envelope protein (prM-E) genes, with the corresponding regions of the LPKV genome. Of the four chimeras produced, one (the prM-E swap) yielded virus that replicated in mosquito cells. Another chimeric virus with a mosquito replication-competent phenotype was created by inserting the prM-E genes of Lammi virus into a Zika virus genetic background. Vertebrate cells did not support the replication of either chimeric virus although trace to modest amounts of viral antigen were produced, consistent with suboptimal viral entry. These data suggest that dual-host affiliated insect-specific flaviviruses cannot replicate in vertebrate cells due to entry and post-translational restrictions.
Collapse
Affiliation(s)
- Chandra S Tangudu
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Jermilia Charles
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Daniel Nunez-Avellaneda
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Alissa M Hargett
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Aaron C Brault
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Bradley J Blitvich
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA.
| |
Collapse
|
7
|
Role of PDZ-binding motif from West Nile virus NS5 protein on viral replication. Sci Rep 2021; 11:3266. [PMID: 33547379 PMCID: PMC7865074 DOI: 10.1038/s41598-021-82751-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 01/25/2021] [Indexed: 01/30/2023] Open
Abstract
West Nile virus (WNV) is a Flavivirus, which can cause febrile illness in humans that may progress to encephalitis. Like any other obligate intracellular pathogens, Flaviviruses hijack cellular protein functions as a strategy for sustaining their life cycle. Many cellular proteins display globular domain known as PDZ domain that interacts with PDZ-Binding Motifs (PBM) identified in many viral proteins. Thus, cellular PDZ-containing proteins are common targets during viral infection. The non-structural protein 5 (NS5) from WNV provides both RNA cap methyltransferase and RNA polymerase activities and is involved in viral replication but its interactions with host proteins remain poorly known. In this study, we demonstrate that the C-terminal PBM of WNV NS5 recognizes several human PDZ-containing proteins using both in vitro and in cellulo high-throughput methods. Furthermore, we constructed and assayed in cell culture WNV replicons where the PBM within NS5 was mutated. Our results demonstrate that the PBM of WNV NS5 is important in WNV replication. Moreover, we show that knockdown of the PDZ-containing proteins TJP1, PARD3, ARHGAP21 or SHANK2 results in the decrease of WNV replication in cells. Altogether, our data reveal that interactions between the PBM of NS5 and PDZ-containing proteins affect West Nile virus replication.
Collapse
|
8
|
Fiacre L, Pagès N, Albina E, Richardson J, Lecollinet S, Gonzalez G. Molecular Determinants of West Nile Virus Virulence and Pathogenesis in Vertebrate and Invertebrate Hosts. Int J Mol Sci 2020; 21:ijms21239117. [PMID: 33266206 PMCID: PMC7731113 DOI: 10.3390/ijms21239117] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022] Open
Abstract
West Nile virus (WNV), like the dengue virus (DENV) and yellow fever virus (YFV), are major arboviruses belonging to the Flavivirus genus. WNV is emerging or endemic in many countries around the world, affecting humans and other vertebrates. Since 1999, it has been considered to be a major public and veterinary health problem, causing diverse pathologies, ranging from a mild febrile state to severe neurological damage and death. WNV is transmitted in a bird–mosquito–bird cycle, and can occasionally infect humans and horses, both highly susceptible to the virus but considered dead-end hosts. Many studies have investigated the molecular determinants of WNV virulence, mainly with the ultimate objective of guiding vaccine development. Several vaccines are used in horses in different parts of the world, but there are no licensed WNV vaccines for humans, suggesting the need for greater understanding of the molecular determinants of virulence and antigenicity in different hosts. Owing to technical and economic considerations, WNV virulence factors have essentially been studied in rodent models, and the results cannot always be transported to mosquito vectors or to avian hosts. In this review, the known molecular determinants of WNV virulence, according to invertebrate (mosquitoes) or vertebrate hosts (mammalian and avian), are presented and discussed. This overview will highlight the differences and similarities found between WNV hosts and models, to provide a foundation for the prediction and anticipation of WNV re-emergence and its risk of global spread.
Collapse
Affiliation(s)
- Lise Fiacre
- UMR 1161 Virology, ANSES, INRAE, ENVA, ANSES Animal Health Laboratory, EURL for Equine Diseases, 94704 Maisons-Alfort, France; (L.F.); (J.R.); (G.G.)
- CIRAD, UMR ASTRE, F-97170 Petit Bourg, Guadeloupe, France; (N.P.); (E.A.)
- ASTRE, University Montpellier, CIRAD, INRAE, F-34398 Montpellier, France
| | - Nonito Pagès
- CIRAD, UMR ASTRE, F-97170 Petit Bourg, Guadeloupe, France; (N.P.); (E.A.)
- ASTRE, University Montpellier, CIRAD, INRAE, F-34398 Montpellier, France
| | - Emmanuel Albina
- CIRAD, UMR ASTRE, F-97170 Petit Bourg, Guadeloupe, France; (N.P.); (E.A.)
- ASTRE, University Montpellier, CIRAD, INRAE, F-34398 Montpellier, France
| | - Jennifer Richardson
- UMR 1161 Virology, ANSES, INRAE, ENVA, ANSES Animal Health Laboratory, EURL for Equine Diseases, 94704 Maisons-Alfort, France; (L.F.); (J.R.); (G.G.)
| | - Sylvie Lecollinet
- UMR 1161 Virology, ANSES, INRAE, ENVA, ANSES Animal Health Laboratory, EURL for Equine Diseases, 94704 Maisons-Alfort, France; (L.F.); (J.R.); (G.G.)
- Correspondence: ; Tel.: +33-1-43967376
| | - Gaëlle Gonzalez
- UMR 1161 Virology, ANSES, INRAE, ENVA, ANSES Animal Health Laboratory, EURL for Equine Diseases, 94704 Maisons-Alfort, France; (L.F.); (J.R.); (G.G.)
| |
Collapse
|
9
|
Abstract
The flavivirus genus encompasses more than 75 unique viruses, including dengue virus which accounts for almost 390 million global infections annually. Flavivirus infection can result in a myriad of symptoms ranging from mild rash and flu-like symptoms, to severe encephalitis and even hemorrhagic fever. Efforts to combat the impact of these viruses have been hindered due to limited antiviral drug and vaccine development. However, the advancement of knowledge in the structural biology of flaviviruses over the last 25 years has produced unique perspectives for the identification of potential therapeutic targets. With particular emphasis on the assembly and maturation stages of the flavivirus life cycle, it is the goal of this review to comparatively analyze the structural similarities between flaviviruses to provide avenues for new research and innovation.
Collapse
Affiliation(s)
- Conrrad M R Nicholls
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Madhumati Sevvana
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Richard J Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States; Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
10
|
A Molecular Determinant of West Nile Virus Secretion and Morphology as a Target for Viral Attenuation. J Virol 2020; 94:JVI.00086-20. [PMID: 32269117 PMCID: PMC7307099 DOI: 10.1128/jvi.00086-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/29/2020] [Indexed: 12/22/2022] Open
Abstract
West Nile virus (WNV) is a worldwide (re)emerging mosquito-transmitted Flavivirus causing fatal neurological diseases in humans. However, no human vaccine has been yet approved. One of the most effective live-attenuated vaccines was empirically obtained by serial passaging of wild-type yellow fever Flavivirus. However, such an approach is not acceptable nowadays, and the development of a rationally designed vaccine is necessary. Generating molecular infectious clones and mutating specific residues known to be involved in Flavivirus virulence constitute a powerful tool to promote viral attenuation. WNV membrane glycoprotein is thought to carry such essential determinants. Here, we identified two residues of this protein whose substitutions are key to the full and stable attenuation of WNV in vivo, most likely through inhibition of secretion and possible alteration of morphology. Applied to other flaviviruses, this approach should help in designing new vaccines against these viruses, which are an increasing threat to global human health. West Nile virus (WNV), a member of the Flavivirus genus and currently one of the most common arboviruses worldwide, is associated with severe neurological disease in humans. Its high potential to reemerge and rapidly disseminate makes it a bona fide global public health problem. The surface membrane glycoprotein (M) has been associated with Flavivirus-induced pathogenesis. Here, we identified a key amino acid residue at position 36 of the M protein whose mutation impacts WNV secretion and promotes viral attenuation. We also identified a compensatory site at position M-43 whose mutation stabilizes M-36 substitution both in vitro and in vivo. Moreover, we found that introduction of the two mutations together confers a full attenuation phenotype and protection against wild-type WNV lethal challenge, eliciting potent neutralizing-antibody production in mice. Our study thus establishes the M protein as a new viral target for rational design of attenuated WNV strains. IMPORTANCE West Nile virus (WNV) is a worldwide (re)emerging mosquito-transmitted Flavivirus causing fatal neurological diseases in humans. However, no human vaccine has been yet approved. One of the most effective live-attenuated vaccines was empirically obtained by serial passaging of wild-type yellow fever Flavivirus. However, such an approach is not acceptable nowadays, and the development of a rationally designed vaccine is necessary. Generating molecular infectious clones and mutating specific residues known to be involved in Flavivirus virulence constitute a powerful tool to promote viral attenuation. WNV membrane glycoprotein is thought to carry such essential determinants. Here, we identified two residues of this protein whose substitutions are key to the full and stable attenuation of WNV in vivo, most likely through inhibition of secretion and possible alteration of morphology. Applied to other flaviviruses, this approach should help in designing new vaccines against these viruses, which are an increasing threat to global human health.
Collapse
|
11
|
Flavivirus Envelope Protein Glycosylation: Impacts on Viral Infection and Pathogenesis. J Virol 2020; 94:JVI.00104-20. [PMID: 32161171 DOI: 10.1128/jvi.00104-20] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/10/2020] [Indexed: 02/06/2023] Open
Abstract
Flaviviruses encode one, two, or no N-linked glycosylation sites on their envelope proteins. Glycosylation can impact virus interactions with cell surface attachment factors and also may impact virion stability and virus replication. Envelope protein glycosylation has been identified as a virulence determinant for multiple flaviviruses, but the mechanisms by which glycosylation mediates pathogenesis remain unclear. In this Gem, we summarize current knowledge on flavivirus envelope protein glycosylation and its impact on viral infection and pathogenesis.
Collapse
|
12
|
Besson B, Basset J, Gatellier S, Chabrolles H, Chaze T, Hourdel V, Matondo M, Pardigon N, Choumet V. Comparison of a human neuronal model proteome upon Japanese encephalitis or West Nile Virus infection and potential role of mosquito saliva in neuropathogenesis. PLoS One 2020; 15:e0232585. [PMID: 32374750 PMCID: PMC7202638 DOI: 10.1371/journal.pone.0232585] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 04/18/2020] [Indexed: 12/31/2022] Open
Abstract
Neurotropic flavivirus Japanese encephalitis virus (JEV) and West Nile virus (WNV) are amongst the leading causes of encephalitis. Using label-free quantitative proteomics, we identified proteins differentially expressed upon JEV (gp-3, RP9) or WNV (IS98) infection of human neuroblastoma cells. Data are available via ProteomeXchange with identifier PXD016805. Both viruses were associated with the up-regulation of immune response (IFIT1/3/5, ISG15, OAS, STAT1, IRF9) and the down-regulation of SSBP2 and PAM, involved in gene expression and in neuropeptide amidation respectively. Proteins associated to membranes, involved in extracellular matrix organization and collagen metabolism represented major clusters down-regulated by JEV and WNV. Moreover, transcription regulation and mRNA processing clusters were also heavily regulated by both viruses. The proteome of neuroblastoma cells infected by JEV or WNV was significantly modulated in the presence of mosquito saliva, but distinct patterns were associated to each virus. Mosquito saliva favored modulation of proteins associated with gene regulation in JEV infected neuroblastoma cells while modulation of proteins associated with protein maturation, signal transduction and ion transporters was found in WNV infected neuroblastoma cells.
Collapse
Affiliation(s)
- Benoit Besson
- Institut Pasteur, Environment and Infectious Risks Unit, Arbovirus Group, Paris, France
| | - Justine Basset
- Institut Pasteur, Environment and Infectious Risks Unit, Arbovirus Group, Paris, France
| | - Sandrine Gatellier
- Institut Pasteur, Environment and Infectious Risks Unit, Arbovirus Group, Paris, France
| | - Hélène Chabrolles
- Institut Pasteur, Environment and Infectious Risks Unit, Arbovirus Group, Paris, France
| | - Thibault Chaze
- Institut Pasteur, Plateforme Protéomique, Unité de Spectrométrie de Masse pour la Biologie (MSBio), Centre de Ressources et Recherches Technologiques (C2RT), USR CNRS, Paris, France
| | - Véronique Hourdel
- Institut Pasteur, Environment and Infectious Risks Unit, Arbovirus Group, Paris, France
- Institut Pasteur, Plateforme Protéomique, Unité de Spectrométrie de Masse pour la Biologie (MSBio), Centre de Ressources et Recherches Technologiques (C2RT), USR CNRS, Paris, France
| | - Mariette Matondo
- Institut Pasteur, Plateforme Protéomique, Unité de Spectrométrie de Masse pour la Biologie (MSBio), Centre de Ressources et Recherches Technologiques (C2RT), USR CNRS, Paris, France
| | - Nathalie Pardigon
- Institut Pasteur, Environment and Infectious Risks Unit, Arbovirus Group, Paris, France
| | - Valérie Choumet
- Institut Pasteur, Environment and Infectious Risks Unit, Arbovirus Group, Paris, France
- * E-mail:
| |
Collapse
|
13
|
A simple and rapid pipeline for identification of receptor-binding sites on the surface proteins of pathogens. Sci Rep 2020; 10:1163. [PMID: 31980725 PMCID: PMC6981161 DOI: 10.1038/s41598-020-58305-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/14/2020] [Indexed: 12/02/2022] Open
Abstract
Ligand-receptor interactions play a crucial role in the plethora of biological processes. Several methods have been established to reveal ligand-receptor interface, however, the majority of methods are time-consuming, laborious and expensive. Here we present a straightforward and simple pipeline to identify putative receptor-binding sites on the pathogen ligands. Two model ligands (bait proteins), domain III of protein E of West Nile virus and NadA of Neisseria meningitidis, were incubated with the proteins of human brain microvascular endothelial cells immobilized on nitrocellulose or PVDF membrane, the complex was trypsinized on-membrane, bound peptides of the bait proteins were recovered and detected on MALDI-TOF. Two peptides of DIII (~916 Da and ~2003 Da) and four peptides of NadA (~1453 Da, ~1810 Da, ~2051 Da and ~2433 Da) were identified as plausible receptor-binders. Further, binding of the identified peptides to the proteins of endothelial cells was corroborated using biotinylated synthetic analogues in ELISA and immunocytochemistry. Experimental pipeline presented here can be upscaled easily to map receptor-binding sites on several ligands simultaneously. The approach is rapid, cost-effective and less laborious. The proposed experimental pipeline could be a simpler alternative or complementary method to the existing techniques used to reveal amino-acids involved in the ligand-receptor interface.
Collapse
|
14
|
Maharaj PD, Langevin SA, Bolling BG, Andrade CC, Engle XA, Ramey WN, Bosco-Lauth A, Bowen RA, Sanders TA, Huang CYH, Reisen WK, Brault AC. N-linked glycosylation of the West Nile virus envelope protein is not a requisite for avian virulence or vector competence. PLoS Negl Trop Dis 2019; 13:e0007473. [PMID: 31306420 PMCID: PMC6658116 DOI: 10.1371/journal.pntd.0007473] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 07/25/2019] [Accepted: 05/17/2019] [Indexed: 01/27/2023] Open
Abstract
The N-linked glycosylation motif at amino acid position 154-156 of the envelope (E) protein of West Nile virus (WNV) is linked to enhanced murine neuroinvasiveness, avian pathogenicity and vector competence. Naturally occurring isolates with altered E protein glycosylation patterns have been observed in WNV isolates; however, the specific effects of these polymorphisms on avian host pathogenesis and vector competence have not been investigated before. In the present study, amino acid polymorphisms, NYT, NYP, NYF, SYP, SYS, KYS and deletion (A'DEL), were reverse engineered into a parental WNV (NYS) cDNA infectious clone to generate WNV glycosylation mutant viruses. These WNV glycosylation mutant viruses were characterized for in vitro growth, pH-sensitivity, temperature-sensitivity and host competence in American crows (AMCR), house sparrows (HOSP) and Culex quinquefasciatus. The NYS and NYT glycosylated viruses showed higher viral replication, and lower pH and temperature sensitivity than NYP, NYF, SYP, SYS, KYS and A'DEL viruses in vitro. Interestingly, in vivo results demonstrated asymmetric effects in avian and mosquito competence that were independent of the E-protein glycosylation status. In AMCRs and HOSPs, all viruses showed comparable viremias with the exception of NYP and KYS viruses that showed attenuated phenotypes. Only NYP showed reduced vector competence in both Cx. quinquefasciatus and Cx. tarsalis. Glycosylated NYT exhibited similar avian virulence properties as NYS, but resulted in higher mosquito oral infectivity than glycosylated NYS and nonglycosylated, NYP, NYF, SYP and KYS mutants. These data demonstrated that amino acid polymorphisms at E154/156 dictate differential avian host and vector competence phenotypes independent of E-protein glycosylation status.
Collapse
Affiliation(s)
- Payal D. Maharaj
- Division of Vector-Borne Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States of America
- Center for Vector-borne Disease Research and Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States of America
| | - Stanley A. Langevin
- Center for Vector-borne Disease Research and Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States of America
| | - Bethany G. Bolling
- Division of Vector-Borne Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States of America
| | - Christy C. Andrade
- Center for Vector-borne Disease Research and Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States of America
| | - Xavier A. Engle
- Division of Vector-Borne Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States of America
| | - Wanichaya N. Ramey
- Center for Vector-borne Disease Research and Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States of America
| | - Angela Bosco-Lauth
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States of America
| | - Richard A. Bowen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States of America
| | - Todd A. Sanders
- U.S. Fish and Wildlife Service, Vancouver, WA, United States of America
| | - Claire Y.-H. Huang
- Division of Vector-Borne Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States of America
| | - William K. Reisen
- Center for Vector-borne Disease Research and Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States of America
| | - Aaron C. Brault
- Division of Vector-Borne Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States of America
- Center for Vector-borne Disease Research and Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States of America
| |
Collapse
|
15
|
A Survey on West Nile and Usutu Viruses in Horses and Birds in Poland. Viruses 2018; 10:v10020087. [PMID: 29462983 PMCID: PMC5850394 DOI: 10.3390/v10020087] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/09/2018] [Accepted: 02/13/2018] [Indexed: 11/17/2022] Open
Abstract
West Nile virus (WNV) and Usutu virus (USUV) are members of the family Flaviviridae which, natural life cycles involve mosquito–bird–mosquito transmission. Both represent emerging viruses in Europe with potential to cause neuroinvasive disease in humans. This study investigates the seroprevalence of serum neutralizing antibodies to WNV and to USUV in birds and in horses in Poland. Antibodies against WNV and USUV were detected in 5 (35.7%) and in 1 (7.14%) of 14 birds and in 62 (15.08%) and in 115 (27.98%) of 411 horses, respectively. Twenty-one WNV serologically positive horses (33.87%) and 67 USUV serologically positive horses (58.26%) did not travel outside Polish borders. Given the high abundance of potentially competent mosquito species in Poland, high populations of horses and different bird species, our findings highlight implementation of active control programs, including monitoring of geographic spread and dynamics of WNV and USUV transmission in both primary and accidental hosts. It is also important to improve public health awareness about the disease these viruses may cause.
Collapse
|
16
|
Pérez-Ramírez E, Llorente F, del Amo J, Fall G, Sall AA, Lubisi A, Lecollinet S, Vázquez A, Jiménez-Clavero MÁ. Pathogenicity evaluation of twelve West Nile virus strains belonging to four lineages from five continents in a mouse model: discrimination between three pathogenicity categories. J Gen Virol 2017; 98:662-670. [DOI: 10.1099/jgv.0.000743] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Elisa Pérez-Ramírez
- Centro de Investigación en Sanidad Animal-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CISA), Carretera Algete-El casar s/n, 28130 Valdeolmos, Madrid, Spain
| | - Francisco Llorente
- Centro de Investigación en Sanidad Animal-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CISA), Carretera Algete-El casar s/n, 28130 Valdeolmos, Madrid, Spain
| | - Javier del Amo
- Centro de Investigación en Sanidad Animal-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CISA), Carretera Algete-El casar s/n, 28130 Valdeolmos, Madrid, Spain
| | - Gamou Fall
- Unité des Arbovirus et Virus de Fièvres Hémorragiques, Institut Pasteur de Dakar, BP220, Senegal
| | - Amadou Alpha Sall
- Unité des Arbovirus et Virus de Fièvres Hémorragiques, Institut Pasteur de Dakar, BP220, Senegal
| | - Alison Lubisi
- ARC-Onderstepoort Veterinary Institute, Onderstepoort, 0110 Pretoria, South Africa
| | - Sylvie Lecollinet
- French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Animal Health Laboratory, UMR1161 Virology, INRA, ANSES, ENVA, Maisons-Alfort 94706, France
| | - Ana Vázquez
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Miguel Ángel Jiménez-Clavero
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Centro de Investigación en Sanidad Animal-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CISA), Carretera Algete-El casar s/n, 28130 Valdeolmos, Madrid, Spain
| |
Collapse
|
17
|
Brault JB, Khou C, Basset J, Coquand L, Fraisier V, Frenkiel MP, Goud B, Manuguerra JC, Pardigon N, Baffet AD. Comparative Analysis Between Flaviviruses Reveals Specific Neural Stem Cell Tropism for Zika Virus in the Mouse Developing Neocortex. EBioMedicine 2016; 10:71-6. [PMID: 27453325 PMCID: PMC5006693 DOI: 10.1016/j.ebiom.2016.07.018] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 07/06/2016] [Accepted: 07/14/2016] [Indexed: 02/04/2023] Open
Abstract
The recent Zika outbreak in South America and French Polynesia was associated with an epidemic of microcephaly, a disease characterized by a reduced size of the cerebral cortex. Other members of the Flavivirus genus, including West Nile virus (WNV), can cause encephalitis but were not demonstrated to cause microcephaly. It remains unclear whether Zika virus (ZIKV) and other flaviviruses may infect different cell populations in the developing neocortex and lead to distinct developmental defects. Here, we describe an assay to infect mouse E15 embryonic brain slices with ZIKV, WNV and dengue virus serotype 4 (DENV-4). We show that this tissue is able to support viral replication of ZIKV and WNV, but not DENV-4. Cell fate analysis reveals a remarkable tropism of ZIKV infection for neural stem cells. Closely related WNV displays a very different tropism of infection, with a bias towards neurons. We further show that ZIKV infection, but not WNV infection, impairs cell cycle progression of neural stem cells. Both viruses inhibited apoptosis at early stages of infection. This work establishes a powerful comparative approach to identify ZIKV-specific alterations in the developing neocortex and reveals specific preferential infection of neural stem cells by ZIKV. Mouse embryonic brain slices sustain Zika and West Nile, but not Dengue-4, virus replication. Zika virus, but not West Nile virus, exhibits a selective tropism of infection for neural stem cells. Zika virus, but not West Nile virus, alters cell cycle progression of neural stem cells.
A Zika virus outbreak in South America is currently responsible for a large burst of microcephaly cases, a congenital brain malformation characterized by a reduced brain size. We describe here an assay to infect cultured mouse embryonic brain slices with Zika virus as well as other closely related flaviviruses not demonstrated to cause microcephaly. We show that Zika virus displays a specific pattern of infection in the developing brain, almost exclusively infecting neural stem cells. Zika virus impairs neural stem cell proliferation, an effect not seen for other flaviviruses and that may participate in the induction of microcephaly.
Collapse
Affiliation(s)
| | - Cécile Khou
- Institut Pasteur, ERI/CIBU Arbovirus Group, 25 rue du Dr Roux, 75015 Paris, France
| | - Justine Basset
- Institut Pasteur, ERI/CIBU Arbovirus Group, 25 rue du Dr Roux, 75015 Paris, France
| | - Laure Coquand
- Institut Curie, PSL Research University, CNRS, UMR144, F-75005 Paris, France
| | - Vincent Fraisier
- Institut Curie, PSL Research University, CNRS, UMR144, F-75005 Paris, France
| | | | - Bruno Goud
- Institut Curie, PSL Research University, CNRS, UMR144, F-75005 Paris, France
| | | | - Nathalie Pardigon
- Institut Pasteur, ERI/CIBU Arbovirus Group, 25 rue du Dr Roux, 75015 Paris, France
| | - Alexandre D Baffet
- Institut Curie, PSL Research University, CNRS, UMR144, F-75005 Paris, France.
| |
Collapse
|