1
|
Brown MA, Jabeen M, Bharj G, Hinks TSC. Non-typeable Haemophilus influenzae airways infection: the next treatable trait in asthma? Eur Respir Rev 2022; 31:220008. [PMID: 36130784 PMCID: PMC9724834 DOI: 10.1183/16000617.0008-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 07/04/2022] [Indexed: 11/05/2022] Open
Abstract
Asthma is a complex, heterogeneous condition that affects over 350 million people globally. It is characterised by bronchial hyperreactivity and airways inflammation. A subset display marked airway neutrophilia, associated with worse lung function, higher morbidity and poor response to treatment. In these individuals, recent metagenomic studies have identified persistent bacterial infection, particularly with non-encapsulated strains of the Gram-negative bacterium Haemophilus influenzae. Here we review knowledge of non-typeable H. influenzae (NTHi) in the microbiology of asthma, the immune consequences of mucosal NTHi infection, various immune evasion mechanisms, and the clinical implications of NTHi infection for phenotyping and targeted therapies in neutrophilic asthma. Airway neutrophilia is associated with production of neutrophil chemokines and proinflammatory cytokines in the airways, including interleukin (IL)-1β, IL-6, IL-8, IL-12, IL-17A and tumour necrosis factor. NTHi adheres to and invades the lower respiratory tract epithelium, inducing the NLR family pyrin domain containing 3 (NLRP3) and absent in melanoma 2 (AIM2) inflammasomes. NTHi reduces expression of tight-junction proteins, impairing epithelial integrity, and can persist intracellularly. NTHi interacts with rhinoviruses synergistically via upregulation of intracellular cell adhesion molecule 1 and promotion of a neutrophilic environment, to which NTHi is adapted. We highlight the clinical relevance of this emerging pathogen and its relevance for the efficacy of long-term macrolide therapy in airways diseases, we identify important unanswered questions and we propose future directions for research.
Collapse
Affiliation(s)
- Mary Ashley Brown
- Respiratory Medicine Unit and National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), Experimental Medicine Division, Nuffield Dept of Medicine, University of Oxford, Oxford, UK
| | - Maisha Jabeen
- Respiratory Medicine Unit and National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), Experimental Medicine Division, Nuffield Dept of Medicine, University of Oxford, Oxford, UK
| | - Gurpreet Bharj
- Respiratory Medicine Unit and National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), Experimental Medicine Division, Nuffield Dept of Medicine, University of Oxford, Oxford, UK
- Mammalian Genetics Unit, MRC Harwell Institute, Oxford, UK
| | - Timothy S C Hinks
- Respiratory Medicine Unit and National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), Experimental Medicine Division, Nuffield Dept of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Li L, Deng X, Zou Y, Lv X, Guo Y. Characterization of the nasopharynx microbiota in patients with nasopharyngeal carcinoma vs. healthy controls. Braz J Microbiol 2021; 52:1873-1880. [PMID: 34491569 DOI: 10.1007/s42770-021-00594-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 08/08/2021] [Indexed: 01/05/2023] Open
Abstract
PURPOSE Nasopharyngeal carcinoma (NPC), an epithelial-originated malignant tumor, has a special geographic distribution. However, the etiology of NPC has not been examined in detail. Increasing pieces of evidence indicate that the microbiome may contribute to head and neck squamous cell carcinoma. Until now, there is limited information on the role of the microbiome in NPC, so we assessed variations in the nasopharynx microbiota of patients with NPC relative to the bacterial in health controls. METHODS Nasopharynx lavage fluid (NLF) samples were collected from 11 NPC patients and 5 volunteer controls. 16S rRNA sequencing and comparative analyses of NLF bacterial microbiome between NPC patients and controls were performed. RESULTS NLF microbial alpha-diversity by the Shannon index and Simpson index decreased significantly in the NPC patients when compared with the controls. Beta-diversity by principal component analysis exhibited separated patterns of the NPC patients and healthy controls. Thirty-one genera differed significantly between the NPC patient group and healthy control group. The abundance of 17 bacteria was correlated with primary tumor size and invaded lymph node size. Functional gene prediction analysis showed that 9 gene function pathways were significantly different between the two groups. CONCLUSION Our results demonstrated that the nasopharynx microbiota in NPC patients was different from that of the healthy controls, suggesting that the nasopharynx microenvironment might be related to NPC.
Collapse
Affiliation(s)
- Longjie Li
- Department of Radiation Oncology, the First Affiliated Hospital of Dalian Medical University, Dalian, 116021, Liaoning, China
| | - Xiaoqin Deng
- Department of Radiation Oncology, the First Affiliated Hospital of Dalian Medical University, Dalian, 116021, Liaoning, China
| | - Yang Zou
- Department of Radiation Oncology, the First Affiliated Hospital of Dalian Medical University, Dalian, 116021, Liaoning, China
| | - XiuPeng Lv
- Department of Radiation Oncology, the First Affiliated Hospital of Dalian Medical University, Dalian, 116021, Liaoning, China
| | - Yanjie Guo
- Department of Microecology, School of Basic Medical Science, Dalian Medical University, No. 9, West Segment of South Lvshun Road, Lvshunkou District, Dalian, 116044, China.
| |
Collapse
|
3
|
Weeks JR, Staples KJ, Spalluto CM, Watson A, Wilkinson TMA. The Role of Non-Typeable Haemophilus influenzae Biofilms in Chronic Obstructive Pulmonary Disease. Front Cell Infect Microbiol 2021; 11:720742. [PMID: 34422683 PMCID: PMC8373199 DOI: 10.3389/fcimb.2021.720742] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/15/2021] [Indexed: 11/13/2022] Open
Abstract
Non-typeable Haemophilus influenzae (NTHi) is an ubiquitous commensal-turned-pathogen that colonises the respiratory mucosa in airways diseases including Chronic Obstructive Pulmonary Disease (COPD). COPD is a progressive inflammatory syndrome of the lungs, encompassing chronic bronchitis that is characterised by mucus hypersecretion and impaired mucociliary clearance and creates a static, protective, humid, and nutrient-rich environment, with dysregulated mucosal immunity; a favourable environment for NTHi colonisation. Several recent large COPD cohort studies have reported NTHi as a significant and recurrent aetiological pathogen in acute exacerbations of COPD. NTHi proliferation has been associated with increased hospitalisation, disease severity, morbidity and significant lung microbiome shifts. However, some cohorts with patients at different severities of COPD do not report that NTHi is a significant aetiological pathogen in their COPD patients, indicating other obligate pathogens including Moraxella catarrhalis, Streptococcus pneumoniae and Pseudomonas aeruginosa as the cause. NTHi is an ubiquitous organism across healthy non-smokers, healthy smokers and COPD patients from childhood to adulthood, but it currently remains unclear why NTHi becomes pathogenic in only some cohorts of COPD patients, and what behaviours, interactions and adaptations are driving this susceptibility. There is emerging evidence that biofilm-phase NTHi may play a significant role in COPD. NTHi displays many hallmarks of the biofilm lifestyle and expresses key biofilm formation-promoting genes. These include the autoinducer-mediated quorum sensing system, epithelial- and mucus-binding adhesins and expression of a protective, self-produced polymeric substance matrix. These NTHi biofilms exhibit extreme tolerance to antimicrobial treatments and the immune system as well as expressing synergistic interspecific interactions with other lung pathogens including S. pneumoniae and M. catarrhalis. Whilst the majority of our understanding surrounding NTHi as a biofilm arises from otitis media or in-vitro bacterial monoculture models, the role of NTHi biofilms in the COPD lung is now being studied. This review explores the evidence for the existence of NTHi biofilms and their impact in the COPD lung. Understanding the nature of chronic and recurrent NTHi infections in acute exacerbations of COPD could have important implications for clinical treatment and identification of novel bactericidal targets.
Collapse
Affiliation(s)
- Jake R Weeks
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
| | - Karl J Staples
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom.,National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, Southampton General Hospital, Southampton, United Kingdom
| | - C Mirella Spalluto
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom.,National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, Southampton General Hospital, Southampton, United Kingdom
| | - Alastair Watson
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom.,National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, Southampton General Hospital, Southampton, United Kingdom.,Birmingham Medical School, University of Birmingham, Birmingham, United Kingdom
| | - Tom M A Wilkinson
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom.,National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, Southampton General Hospital, Southampton, United Kingdom
| |
Collapse
|
4
|
Pacheco GA, Gálvez NMS, Soto JA, Andrade CA, Kalergis AM. Bacterial and Viral Coinfections with the Human Respiratory Syncytial Virus. Microorganisms 2021; 9:microorganisms9061293. [PMID: 34199284 PMCID: PMC8231868 DOI: 10.3390/microorganisms9061293] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/05/2021] [Accepted: 06/08/2021] [Indexed: 02/07/2023] Open
Abstract
The human respiratory syncytial virus (hRSV) is one of the leading causes of acute lower respiratory tract infections in children under five years old. Notably, hRSV infections can give way to pneumonia and predispose to other respiratory complications later in life, such as asthma. Even though the social and economic burden associated with hRSV infections is tremendous, there are no approved vaccines to date to prevent the disease caused by this pathogen. Recently, coinfections and superinfections have turned into an active field of study, and interactions between many viral and bacterial pathogens have been studied. hRSV is not an exception since polymicrobial infections involving this virus are common, especially when illness has evolved into pneumonia. Here, we review the epidemiology and recent findings regarding the main polymicrobial infections involving hRSV and several prevalent bacterial and viral respiratory pathogens, such as Staphylococcus aureus, Pseudomonas aeruginosa, Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis, Klebsiella pneumoniae, human rhinoviruses, influenza A virus, human metapneumovirus, and human parainfluenza viruses. As reports of most polymicrobial infections involving hRSV lack a molecular basis explaining the interaction between hRSV and these pathogens, we believe this review article can serve as a starting point to interesting and very much needed research in this area.
Collapse
Affiliation(s)
- Gaspar A. Pacheco
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute of Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (G.A.P.); (N.M.S.G.); (J.A.S.); (C.A.A.)
| | - Nicolás M. S. Gálvez
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute of Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (G.A.P.); (N.M.S.G.); (J.A.S.); (C.A.A.)
| | - Jorge A. Soto
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute of Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (G.A.P.); (N.M.S.G.); (J.A.S.); (C.A.A.)
| | - Catalina A. Andrade
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute of Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (G.A.P.); (N.M.S.G.); (J.A.S.); (C.A.A.)
| | - Alexis M. Kalergis
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute of Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (G.A.P.); (N.M.S.G.); (J.A.S.); (C.A.A.)
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile
- Correspondence: ; Tel.: +56-2-686-2842; Fax: +56-2-222-5515
| |
Collapse
|
5
|
O'Boyle N, Sutherland E, Berry CC, Davies RL. Temporal dynamics of ovine airway epithelial cell differentiation at an air-liquid interface. PLoS One 2017; 12:e0181583. [PMID: 28746416 PMCID: PMC5529025 DOI: 10.1371/journal.pone.0181583] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/03/2017] [Indexed: 12/17/2022] Open
Abstract
The respiratory tract and lungs are subject to diverse pathologies with wide-ranging implications for both human and animal welfare. The development and detailed characterization of cell culture models for studying such forms of disease is of critical importance. In recent years the use of air-liquid interface (ALI)-cultured airway epithelial cells has increased markedly, as this method of culture results in the formation of a highly representative, organotypic in vitro model system. In this study we have expanded on previous knowledge of differentiated ovine tracheal epithelial cells by analysing the progression of differentiation over an extensive time course at an ALI. We observed a pseudo-stratified epithelium with ciliation and a concurrent increase in cell layer thickness from 9 days post-ALI with ciliation approaching a maximum level at day 24. A similar pattern was observed with respect to mucus production with intensely stained PAS-positive cells appearing at day 12. Ultrastructural analysis by SEM confirmed the presence of both ciliated cells and mucus globules on the epithelial surface within this time-frame. Trans-epithelial electrical resistance (TEER) peaked at 1049 Ω × cm2 as the cell layer became confluent, followed by a subsequent reduction as differentiation proceeded and stabilization at ~200 Ω × cm2. Importantly, little deterioration or de-differentiation was observed over the 45 day time-course indicating that the model is suitable for long-term experiments.
Collapse
Affiliation(s)
- Nicky O'Boyle
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Erin Sutherland
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Catherine C Berry
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Robert L Davies
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
6
|
Mertens TCJ, Karmouty-Quintana H, Taube C, Hiemstra PS. Use of airway epithelial cell culture to unravel the pathogenesis and study treatment in obstructive airway diseases. Pulm Pharmacol Ther 2017; 45:101-113. [PMID: 28502841 DOI: 10.1016/j.pupt.2017.05.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 04/19/2017] [Accepted: 05/10/2017] [Indexed: 12/12/2022]
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are considered as two distinct obstructive diseases. Both chronic diseases share a component of airway epithelial dysfunction. The airway epithelium is localized to deal with inhaled substances, and functions as a barrier preventing penetration of such substances into the body. In addition, the epithelium is involved in the regulation of both innate and adaptive immune responses following inhalation of particles, allergens and pathogens. Through triggering and inducing immune responses, airway epithelial cells contribute to the pathogenesis of both asthma and COPD. Various in vitro research models have been described to study airway epithelial cell dysfunction in asthma and COPD. However, various considerations and cautions have to be taken into account when designing such in vitro experiments. Epithelial features of asthma and COPD can be modelled by using a variety of disease-related invoking substances either alone or in combination, and by the use of primary cells isolated from patients. Differentiation is a hallmark of airway epithelial cells, and therefore models should include the ability of cells to differentiate, as can be achieved in air-liquid interface models. More recently developed in vitro models, including precision cut lung slices, lung-on-a-chip, organoids and human induced pluripotent stem cells derived cultures, provide novel state-of-the-art alternatives to the conventional in vitro models. Furthermore, advanced models in which cells are exposed to respiratory pathogens, aerosolized medications and inhaled toxic substances such as cigarette smoke and air pollution are increasingly used to model e.g. acute exacerbations. These exposure models are relevant to study how epithelial features of asthma and COPD are affected and provide a useful tool to study the effect of drugs used in treatment of asthma and COPD. These new developments are expected to contribute to a better understanding of the complex gene-environment interactions that contribute to development and progression of asthma and COPD.
Collapse
Affiliation(s)
- Tinne C J Mertens
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands; Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Christian Taube
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
7
|
Weyand NJ. Neisseria models of infection and persistence in the upper respiratory tract. Pathog Dis 2017; 75:3078547. [DOI: 10.1093/femspd/ftx031] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/15/2017] [Indexed: 12/15/2022] Open
|