1
|
Dunjic M, Turini S, Nejkovic L, Sulovic N, Cvetkovic S, Dunjic M, Dunjic K, Dolovac D. Comparative Molecular Docking of Apigenin and Luteolin versus Conventional Ligands for TP-53, pRb, APOBEC3H, and HPV-16 E6: Potential Clinical Applications in Preventing Gynecological Malignancies. Curr Issues Mol Biol 2024; 46:11136-11155. [PMID: 39451541 PMCID: PMC11505693 DOI: 10.3390/cimb46100661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/26/2024] Open
Abstract
This study presents a comparative analysis of molecular docking data, focusing on the binding interactions of the natural compounds apigenin and luteolin with the proteins TP-53, pRb, and APOBEC, in comparison to conventional pharmacological ligands. Advanced bioinformatics techniques were employed to evaluate and contrast binding energies, showing that apigenin and luteolin demonstrate significantly higher affinities for TP-53, pRb, and APOBEC, with binding energies of -6.9 kcal/mol and -6.6 kcal/mol, respectively. These values suggest strong potential for therapeutic intervention against HPV-16. Conventional ligands, by comparison, exhibited lower affinities, with energies ranging from -4.5 to -5.5 kcal/mol. Additionally, protein-protein docking simulations were performed to assess the interaction between HPV-16 E6 oncoprotein and tumor suppressors TP-53 and pRb, which revealed high binding energies around -976.7 kcal/mol, indicative of their complex interaction. A conversion formula was applied to translate these protein-protein interaction energies to a comparable scale for non-protein interactions, further underscoring the superior binding potential of apigenin and luteolin. These findings highlight the therapeutic promise of these natural compounds in preventing HPV-16-induced oncogenesis, warranting further experimental validation for clinical applications.
Collapse
Affiliation(s)
- Momir Dunjic
- School of Medicine, University of Pristina, BB Anri Dinana, 38220 Kosovska Mitrovica, Serbia;
- Faculty of Pharmacy, Heroja Pinkija 4, 21000 Novi Sad, Serbia
- Alma Mater Europaea (AMEU-ECM), Slovenska Ulica/Street 17, 2000 Maribor, Slovenia;
- BDORT Center for Functional Supplementation and Integrative Medicine, Bulevar Oslobodjenja 2, 11000 Belgrade, Serbia;
| | - Stefano Turini
- Alma Mater Europaea (AMEU-ECM), Slovenska Ulica/Street 17, 2000 Maribor, Slovenia;
- BDORT Center for Functional Supplementation and Integrative Medicine, Bulevar Oslobodjenja 2, 11000 Belgrade, Serbia;
- Guard Plus Doo, Nemanjina 40, 11000 Belgrade, Serbia
- Worldwide Consultancy and Services, Division of Advanced Research and Development, Via Andrea Ferrara 45, 00165 Rome, Italy;
- Capri Campus Forensic and Security, Division of Environmental Medicine and Security, Via G. Orlandi 91 Anacapri, Capri Island, 80071 Naples, Italy
| | - Lazar Nejkovic
- Belgrade University, School of Medicine, dr Subotića Starijeg 8, 11000 Belgrade, Serbia;
- Clinic for Obstetrics and Gynecology, Kraljice Natalije 62, 11000 Belgrade, Serbia
| | - Nenad Sulovic
- School of Medicine, University of Pristina, BB Anri Dinana, 38220 Kosovska Mitrovica, Serbia;
| | - Sasa Cvetkovic
- School of Medicine, University of Pristina, BB Anri Dinana, 38220 Kosovska Mitrovica, Serbia;
| | - Marija Dunjic
- Worldwide Consultancy and Services, Division of Advanced Research and Development, Via Andrea Ferrara 45, 00165 Rome, Italy;
| | - Katarina Dunjic
- BDORT Center for Functional Supplementation and Integrative Medicine, Bulevar Oslobodjenja 2, 11000 Belgrade, Serbia;
| | - Dina Dolovac
- General Hospital, UI. Generala Zivkovica 1, 36300 Novi Pazar, Serbia;
| |
Collapse
|
2
|
Malone M, Maeyama A, Ogden N, Perry KN, Kramer A, Bates C, Marble C, Orlando R, Rausch A, Smeraldi C, Lowey C, Fees B, Dyson HJ, Dorrell M, Kast-Woelbern H, Jansma AL. The effect of phosphorylation efficiency on the oncogenic properties of the protein E7 from high-risk HPV. Virus Res 2024; 348:199446. [PMID: 39127239 PMCID: PMC11375142 DOI: 10.1016/j.virusres.2024.199446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/27/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
The Human papillomavirus (HPV) causes tumors in part by hijacking the host cell cycle and forcing uncontrolled cellular division. While there are >200 genotypes of HPV, 15 are classified as high-risk and have been shown to transform infected cells and contribute to tumor formation. The remaining low-risk genotypes are not considered oncogenic and result in benign skin lesions. In high-risk HPV, the oncoprotein E7 contributes to the dysregulation of cell cycle regulatory mechanisms. High-risk E7 is phosphorylated in cells at two conserved serine residues by Casein Kinase 2 (CK2) and this phosphorylation event increases binding affinity for cellular proteins such as the tumor suppressor retinoblastoma (pRb). While low-risk E7 possesses similar serine residues, it is phosphorylated to a lesser degree in cells and has decreased binding capabilities. When E7 binding affinity is decreased, it is less able to facilitate complex interactions between proteins and therefore has less capability to dysregulate the cell cycle. By comparing E7 protein sequences from both low- and high-risk HPV variants and using site-directed mutagenesis combined with NMR spectroscopy and cell-based assays, we demonstrate that the presence of two key nonpolar valine residues within the CK2 recognition sequence, present in low-risk E7, reduces serine phosphorylation efficiency relative to high-risk E7. This results in significant loss of the ability of E7 to degrade the retinoblastoma tumor suppressor protein, thus also reducing the ability of E7 to increase cellular proliferation and reduce senescence. This provides additional insight into the differential E7-mediated outcomes when cells are infected with high-risk verses low-risk HPV. Understanding these oncogenic differences may be important to developing targeted treatment options for HPV-induced cancers.
Collapse
Affiliation(s)
- Madison Malone
- Department of Chemistry, Point Loma Nazarene University, 3900 Lomaland Drive, San Diego, 92126, CA, USA
| | - Ava Maeyama
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Drive, San Diego, 92126, CA, USA
| | - Naomi Ogden
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Drive, San Diego, 92126, CA, USA
| | - Kayla N Perry
- Department of Chemistry, Point Loma Nazarene University, 3900 Lomaland Drive, San Diego, 92126, CA, USA
| | - Andrew Kramer
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Drive, San Diego, 92126, CA, USA
| | - Caleb Bates
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Drive, San Diego, 92126, CA, USA
| | - Camryn Marble
- Department of Chemistry, Point Loma Nazarene University, 3900 Lomaland Drive, San Diego, 92126, CA, USA
| | - Ryan Orlando
- Department of Chemistry, Point Loma Nazarene University, 3900 Lomaland Drive, San Diego, 92126, CA, USA
| | - Amy Rausch
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Drive, San Diego, 92126, CA, USA
| | - Caleb Smeraldi
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Drive, San Diego, 92126, CA, USA
| | - Connor Lowey
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Drive, San Diego, 92126, CA, USA
| | - Bronson Fees
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Drive, San Diego, 92126, CA, USA
| | - H Jane Dyson
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, 92037, CA, USA
| | - Michael Dorrell
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Drive, San Diego, 92126, CA, USA
| | - Heidi Kast-Woelbern
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Drive, San Diego, 92126, CA, USA.
| | - Ariane L Jansma
- Department of Chemistry, Point Loma Nazarene University, 3900 Lomaland Drive, San Diego, 92126, CA, USA.
| |
Collapse
|
3
|
Makioka D, Inada M, Awano M, Saito E, Shinoda T, Abe S, Yoshimura T, Müller M, Sasagawa T, Ito E. Quantification of HPV16 E7 Oncoproteins in Urine Specimens from Women with Cervical Intraepithelial Neoplasia. Microorganisms 2024; 12:1205. [PMID: 38930587 PMCID: PMC11205804 DOI: 10.3390/microorganisms12061205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/03/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
We present the validity of using an ultrasensitive enzyme-linked immunosorbent assay (ELISA) for quantifying high-risk human papillomavirus (HPV) 16 E7 oncoproteins in urine specimens as a noninvasive method of analyzing the oncogenic activity of HPV. Some reports claim that the oncogenic activity of HPV is a more relevant clinical indicator than the presence of HPV DNA for estimating malignant potential. In the present study, urine containing HPV16 and related types were selected by uniplex E6/E7 polymerase chain reaction and classified according to the pathologic diagnosis of cervical intraepithelial neoplasia (CIN) in cervical biopsy specimens. Our ultrasensitive ELISA was able to detect attomole levels of HPV16 E7 oncoproteins, and it detected HPV16-positive SiHa cells at >500 cells/mL without detecting HPV18-positive cells. Our ELISA results showed E7 oncoproteins in 80% (4/5) of urine specimens from women with HPV16-positive CIN1, 71% (5/7) of urine specimens from CIN2 patients, and 38% (3/8) of urine specimens from CIN3 patients. Some urine specimens with undetectable E7 oncoproteins were thought to be negative for live HPV 16-positive cells or in an inactivated state of infection. These results provide the basis for assessing oncogenic activity by quantifying E7 oncoproteins in patient urine.
Collapse
Affiliation(s)
- Daiki Makioka
- Department of Biology, Waseda University, Shinjuku, Tokyo 162-8480, Japan; (D.M.); (M.I.); (M.A.); (E.S.); (T.S.); (S.A.)
| | - Mikio Inada
- Department of Biology, Waseda University, Shinjuku, Tokyo 162-8480, Japan; (D.M.); (M.I.); (M.A.); (E.S.); (T.S.); (S.A.)
| | - Masayuki Awano
- Department of Biology, Waseda University, Shinjuku, Tokyo 162-8480, Japan; (D.M.); (M.I.); (M.A.); (E.S.); (T.S.); (S.A.)
| | - Ema Saito
- Department of Biology, Waseda University, Shinjuku, Tokyo 162-8480, Japan; (D.M.); (M.I.); (M.A.); (E.S.); (T.S.); (S.A.)
| | - Takuya Shinoda
- Department of Biology, Waseda University, Shinjuku, Tokyo 162-8480, Japan; (D.M.); (M.I.); (M.A.); (E.S.); (T.S.); (S.A.)
| | - Satoko Abe
- Department of Biology, Waseda University, Shinjuku, Tokyo 162-8480, Japan; (D.M.); (M.I.); (M.A.); (E.S.); (T.S.); (S.A.)
| | - Teruki Yoshimura
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Tobetsu 061-0293, Hokkaido, Japan;
| | - Martin Müller
- Tumorvirus-Specific Vaccination Strategies, Deutsche Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany;
| | - Toshiyuki Sasagawa
- Department of Obstetrics and Gynecology, Kanazawa Medical University, Uchinada 920-0293, Ishikawa, Japan
| | - Etsuro Ito
- Department of Biology, Waseda University, Shinjuku, Tokyo 162-8480, Japan; (D.M.); (M.I.); (M.A.); (E.S.); (T.S.); (S.A.)
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
4
|
Hidayatullah A, Putra WE, Sustiprijatno S, Rifa'i M, Widiastuti D, Heikal MF, Permatasari GW. Concatenation of molecular docking and dynamics simulation of human papillomavirus type 16 E7 oncoprotein targeted ligands: In quest of cervical cancer's treatment. AN ACAD BRAS CIENC 2023; 95:e20220633. [PMID: 37466536 DOI: 10.1590/0001-3765202320220633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/23/2022] [Indexed: 07/20/2023] Open
Abstract
The Human papillomaviruses type 16 E7 oncoprotein is a 98-amino-acid, 11-kilodalton acidic oncoprotein with three conserved portions. Due to its interaction with the pRb-E2F complex, CKII, CKI (mostly p21), and even HDAC1, it possesses strong transformative and carcinogenic qualities that inhibit normal differentiation and cell cycle regulation. Here, we target the E7 oncoprotein using two prior research active compounds: asarinin and thiazolo[3,2-a]benzimidazole-3(2H)-one,2-(2-fluorobenzylideno)-7,8-dimethyl (thiazolo), and valproic acid as a control. We are performing molecular docking followed by molecular dynamic analysis. By acting as competitive inhibitors in the binding site, it was hypothesized that both drugs would inhibit E7-mediated pRb degradation and E7-mediated p21 degradation, resulting in decreased cell cycle progression, immortalization, and proliferation. In addition, we expect that the direct inhibitory action of valproic acid in E7 will target the CKII-mediated phosphorylation pathway necessary for destabilizing p130 and pRb. According to the results of the dynamic simulation, stable interactions exist between every compound. Despite the instability of E7 protein, stability results indicate that both natural chemicals are preferable, with thiazolo outperforming valproic acid.
Collapse
Affiliation(s)
- Arief Hidayatullah
- United Nations Development Programme Indonesia, Health Governance Initiative, Eijkman-RSCM Building, Jakarta, 10430, Indonesia
| | - Wira E Putra
- Universitas Negeri Malang, Biotechnology Study Program, Department of Applied Sciences, Faculty of Mathematics and Natural Sciences, East Java 65145, Indonesia
| | - Sustiprijatno Sustiprijatno
- National Research and Innovation Agency, Research Center for Plant Conservation, Botanic Gardens and Forestry, Cibinong-Bogor, West Java 45262, Indonesia
| | - Muhaimin Rifa'i
- Brawijaya University, Department of Biology, Faculty of Mathematics and Natural Sciences, East Java, 65145, Indonesia
| | - Diana Widiastuti
- Universitas Pakuan, Department of Chemistry, Faculty of Mathematics and Natural Science, West Java, 45262, Indonesia
| | - Muhammad F Heikal
- Khon Kaen University, Tropical Medicine International Program, Faculty of Medicine, Khon Kaen 40000, Thailand
| | - Galuh W Permatasari
- Indonesian Research Institute for Biotechnology and Bioindustry, Bogor, West Java, 45262, Indonesia
| |
Collapse
|
5
|
Trembley JH, Kren BT, Afzal M, Scaria GA, Klein MA, Ahmed K. Protein kinase CK2 – diverse roles in cancer cell biology and therapeutic promise. Mol Cell Biochem 2022; 478:899-926. [PMID: 36114992 PMCID: PMC9483426 DOI: 10.1007/s11010-022-04558-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022]
Abstract
The association of protein kinase CK2 (formerly casein kinase II or 2) with cell growth and proliferation in cells was apparent at early stages of its investigation. A cancer-specific role for CK2 remained unclear until it was determined that CK2 was also a potent suppressor of cell death (apoptosis); the latter characteristic differentiated its function in normal versus malignant cells because dysregulation of both cell growth and cell death is a universal feature of cancer cells. Over time, it became evident that CK2 exerts its influence on a diverse range of cell functions in normal as well as in transformed cells. As such, CK2 and its substrates are localized in various compartments of the cell. The dysregulation of CK2 is documented in a wide range of malignancies; notably, by increased CK2 protein and activity levels with relatively moderate change in its RNA abundance. High levels of CK2 are associated with poor prognosis in multiple cancer types, and CK2 is a target for active research and testing for cancer therapy. Aspects of CK2 cellular roles and targeting in cancer are discussed in the present review, with focus on nuclear and mitochondrial functions and prostate, breast and head and neck malignancies.
Collapse
Affiliation(s)
- Janeen H Trembley
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA.
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Betsy T Kren
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA
| | - Muhammad Afzal
- Department of Biochemistry, Riphah International University, Islamabad, Pakistan
| | - George A Scaria
- Hematology/Oncology Section, Primary Care Service Line, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA
| | - Mark A Klein
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
- Hematology/Oncology Section, Primary Care Service Line, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Khalil Ahmed
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA.
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA.
- Department of Urology, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
6
|
Trembley JH, Li B, Kren BT, Peltola J, Manivel J, Meyyappan D, Gravely A, Klein M, Ahmed K, Caicedo-Granados E. Identification of high protein kinase CK2α in HPV(+) oropharyngeal squamous cell carcinoma and correlation with clinical outcomes. PeerJ 2022; 9:e12519. [PMID: 34993017 PMCID: PMC8675248 DOI: 10.7717/peerj.12519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/27/2021] [Indexed: 12/27/2022] Open
Abstract
Background Oropharyngeal squamous cell carcinoma (OPSCC) incidence is rising worldwide, especially human papillomavirus (HPV)-associated disease. Historically, high levels of protein kinase CK2 were linked with poor outcomes in head and neck squamous cell carcinoma (HNSCC), without consideration of HPV status. This retrospective study examined tumor CK2α protein expression levels and related clinical outcomes in a cohort of Veteran OPSCC patient tumors which were determined to be predominantly HPV(+). Methods Patients at the Minneapolis VA Health Care System with newly diagnosed primary OPSCC from January 2005 to December 2015 were identified. A total of 119 OPSCC patient tumors were stained for CK2α, p16 and Ki-67 proteins and E6/E7 RNA. CK2α protein levels in tumors and correlations with HPV status and Ki-67 index were assessed. Overall survival (OS) analysis was performed stratified by CK2α protein score and separately by HPV status, followed by Cox regression controlling for smoking status. To strengthen the limited HPV(−) data, survival analysis for HPV(−) HNSCC patients in the publicly available The Cancer Genome Atlas (TCGA) PanCancer RNA-seq dataset was determined for CSNK2A1. Results The patients in the study population were all male and had a predominant history of tobacco and alcohol use. This cohort comprised 84 HPV(+) and 35 HPV(−) tumors. CK2α levels were higher in HPV(+) tumors compared to HPV(−) tumors. Higher CK2α scores positively correlated with higher Ki-67 index. OS improved with increasing CK2α score and separately OS was significantly better for those with HPV(+) as opposed to HPV(−) OPSCC. Both remained significant after controlling for smoking status. High CSNK2A1 mRNA levels from TCGA data associated with worse patient survival in HPV(−) HNSCC. Conclusions High CK2α protein levels are detected in HPV(+) OPSCC tumors and demonstrate an unexpected association with improved survival in a strongly HPV(+) OPSCC cohort. Worse survival outcomes for high CSNK2A1 mRNA levels in HPV(−) HNSCC are consistent with historical data. Given these surprising findings and the rising incidence of HPV(+) OPSCC, further study is needed to understand the biological roles of CK2 in HPV(+) and HPV(−) HNSCC and the potential utility for therapeutic targeting of CK2 in these two disease states.
Collapse
Affiliation(s)
- Janeen H Trembley
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN, United States of America.,Department of Laboratory Medicine and Pathology, University of Minnesota - Twin Cities Campus, Minneapolis, MN, United States of America.,Masonic Cancer Center, University of Minnesota - Twin Cities Campus, Minneapolis, MN, United States of America
| | - Bin Li
- Otolaryngology Section, Minneapolis VA Health Care System, Minneapolis, MN, United States of America.,Department of Otolaryngology, University of Minnesota - Twin Cities Campus, Minneapolis, MN, United States of America.,Current affiliation: Kaiser Permanente Roseville Medical Center, Department of Head and Neck Surgery, Roseville, CA, United States of America
| | - Betsy T Kren
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN, United States of America.,Masonic Cancer Center, University of Minnesota - Twin Cities Campus, Minneapolis, MN, United States of America
| | - Justin Peltola
- Department of Laboratory Medicine and Pathology, University of Minnesota - Twin Cities Campus, Minneapolis, MN, United States of America.,Laboratory Medicine and Pathology Service, Minneapolis VA Health Care System, Minneapolis, MN, United States of America
| | - Juan Manivel
- Department of Laboratory Medicine and Pathology, University of Minnesota - Twin Cities Campus, Minneapolis, MN, United States of America.,Laboratory Medicine and Pathology Service, Minneapolis VA Health Care System, Minneapolis, MN, United States of America
| | - Devi Meyyappan
- Hematology and Oncology Section, Minneapolis VA Health Care System, Minneapolis, MN, United States of America.,Current affiliation: University of Texas Medical Branch, University Blvd, Galveston, TX, United States of America
| | - Amy Gravely
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN, United States of America
| | - Mark Klein
- Masonic Cancer Center, University of Minnesota - Twin Cities Campus, Minneapolis, MN, United States of America.,Hematology and Oncology Section, Minneapolis VA Health Care System, Minneapolis, MN, United States of America.,Department of Medicine, University of Minnesota - Twin Cities Campus, Minneapolis, MN, United States of America
| | - Khalil Ahmed
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN, United States of America.,Department of Laboratory Medicine and Pathology, University of Minnesota - Twin Cities Campus, Minneapolis, MN, United States of America.,Masonic Cancer Center, University of Minnesota - Twin Cities Campus, Minneapolis, MN, United States of America.,Department of Otolaryngology, University of Minnesota - Twin Cities Campus, Minneapolis, MN, United States of America
| | - Emiro Caicedo-Granados
- Masonic Cancer Center, University of Minnesota - Twin Cities Campus, Minneapolis, MN, United States of America.,Otolaryngology Section, Minneapolis VA Health Care System, Minneapolis, MN, United States of America.,Department of Otolaryngology, University of Minnesota - Twin Cities Campus, Minneapolis, MN, United States of America
| |
Collapse
|
7
|
CX-4945 and siRNA-Mediated Knockdown of CK2 Improves Cisplatin Response in HPV(+) and HPV(-) HNSCC Cell Lines. Biomedicines 2021; 9:biomedicines9050571. [PMID: 34070147 PMCID: PMC8158385 DOI: 10.3390/biomedicines9050571] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 12/24/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) can be categorized into human papillomavirus (HPV) positive or negative disease. Elevated protein kinase CK2 level and activity have been historically observed in HNSCC cells. Previous studies on CK2 in HNSCC did not generally include consideration of HPV(+) and HPV(−) status. Here, we investigated the response of HPV(+) and HPV(−) HNSCC cells to CK2 targeting using CX-4945 or siRNA downregulation combined with cisplatin treatment. HNSCC cell lines were examined for CK2 expression levels and activity and response to CX-4945, with and without cisplatin. CK2 levels and NFκB p65-related activity were high in HPV(+) HNSCC cells relative to HPV(−) HNSCC cells. Treatment with CX-4945 decreased viability and cisplatin IC50 in all cell lines. Targeting of CK2 increased tumor suppressor protein levels for p21 and PDCD4 in most instances. Further study is needed to understand the role of CK2 in HPV(+) and HPV(−) HNSCC and to determine how incorporation of the CK2-targeted inhibitor CX-4945 could improve cisplatin response in HNSCC.
Collapse
|
8
|
Basukala O, Sarabia-Vega V, Banks L. Human papillomavirus oncoproteins and post-translational modifications: generating multifunctional hubs for overriding cellular homeostasis. Biol Chem 2021; 401:585-599. [PMID: 31913845 DOI: 10.1515/hsz-2019-0408] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/19/2019] [Indexed: 11/15/2022]
Abstract
Human papillomaviruses (HPVs) are major human carcinogens, causing around 5% of all human cancers, with cervical cancer being the most important. These tumors are all driven by the two HPV oncoproteins E6 and E7. Whilst their mechanisms of action are becoming increasingly clear through their abilities to target essential cellular tumor suppressor and growth control pathways, the roles that post-translational modifications (PTMs) of E6 and E7 play in the regulation of these activities remain unclear. Here, we discuss the direct consequences of some of the most common PTMs of E6 and E7, and how this impacts upon the multi-functionality of these viral proteins, and thereby contribute to the viral life cycle and to the induction of malignancy. Furthermore, it is becoming increasingly clear that these modifications, may, in some cases, offer novel routes for therapeutic intervention in HPV-induced disease.
Collapse
Affiliation(s)
- Om Basukala
- International Centre for Genetic Engineering and Biotechnology, AREA Science Park, Padriciano 99, I-34149Trieste, Italy
| | - Vanessa Sarabia-Vega
- International Centre for Genetic Engineering and Biotechnology, AREA Science Park, Padriciano 99, I-34149Trieste, Italy
| | - Lawrence Banks
- International Centre for Genetic Engineering and Biotechnology, AREA Science Park, Padriciano 99, I-34149Trieste, Italy
| |
Collapse
|
9
|
Ramanujan A, Bansal S, Guha M, Pande NT, Tiwari S. LxCxD motif of the APC/C coactivator subunit FZR1 is critical for interaction with the retinoblastoma protein. Exp Cell Res 2021; 404:112632. [PMID: 33971196 DOI: 10.1016/j.yexcr.2021.112632] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/19/2021] [Accepted: 04/27/2021] [Indexed: 10/21/2022]
Abstract
Retinoblastoma protein (pRB) regulates cell cycle by utilizing different regions of its pocket domain for interacting with E2F family of transcription factors and with cellular and viral proteins containing an LxCxE motif. An LxCxE-like motif, LxCxD, is present in FZR1, an adaptor protein of the multi-subunit E3 ligase complex anaphase-promoting complex/cyclosome (APC/C). The APC/CFZR1 complex regulates the timely degradation of multiple cell cycle proteins for mitotic exit and maintains G1 state. We report that FZR1 interacts with pRB via its LxCxD motif. By using point mutations, we found that the cysteine residue in the FZR1 LxCxD motif is critical for direct interaction with pRb. The direct binding of the LxCxD motif of FZR1 to the pRB LxCxE binding pocket is confirmed by using human papillomavirus protein E7 as a competitor, both in vitro and in vivo. While mutation of the cysteine residue significantly disrupts FZR1 interaction with pRB, this motif does not affect FZR1 and core APC/C association. Expression of the FZR1 point mutant results in accumulation of S-phase kinase-associated protein 2 (SKP2) and Polo-like kinase 1 (PLK1), while p27Kip1 and p21Cip1 proteins are downregulated, indicating a G1 cell cycle defect. Consistently, cells containing point mutant FZR1 enter the S phase prematurely. Together our results suggest that the LxCxD motif of FZR1 is a critical determinant for the interaction between FZR1 and pRB and is important for G1 restriction.
Collapse
Affiliation(s)
- Ajeena Ramanujan
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Shivangee Bansal
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Manalee Guha
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Nupur T Pande
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Swati Tiwari
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
10
|
Modeling and Molecular Dynamics of the 3D Structure of the HPV16 E7 Protein and Its Variants. Int J Mol Sci 2021; 22:ijms22031400. [PMID: 33573298 PMCID: PMC7866783 DOI: 10.3390/ijms22031400] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/12/2021] [Accepted: 01/26/2021] [Indexed: 01/21/2023] Open
Abstract
The oncogenic potential of high-risk human papillomavirus (HPV) is predicated on the production of the E6 and E7 oncoproteins, which are responsible for disrupting the control of the cell cycle. Epidemiological studies have proposed that the presence of the N29S and H51N variants of the HPV16 E7 protein is significantly associated with cervical cancer. It has been suggested that changes in the amino acid sequence of E7 variants may affect the oncoprotein 3D structure; however, this remains uncertain. An analysis of the structural differences of the HPV16 E7 protein and its variants (N29S and H51N) was performed through homology modeling and structural refinement by molecular dynamics simulation. We propose, for the first time, a 3D structure of the E7 reference protein and two of Its variants (N29S and H51N), and conclude that the mutations induced by the variants in N29S and H51N have a significant influence on the 3D structure of the E7 protein of HPV16, which could be related to the oncogenic capacity of this protein.
Collapse
|
11
|
Basukala O, Mittal S, Massimi P, Bestagno M, Banks L. The HPV-18 E7 CKII phospho acceptor site is required for maintaining the transformed phenotype of cervical tumour-derived cells. PLoS Pathog 2019; 15:e1007769. [PMID: 31116803 PMCID: PMC6530875 DOI: 10.1371/journal.ppat.1007769] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/18/2019] [Indexed: 01/06/2023] Open
Abstract
The Human Papillomavirus E7 oncoprotein plays an essential role in the development and maintenance of malignancy, which it achieves through targeting a number of critical cell control pathways. An important element in the ability of E7 to contribute towards cell transformation is the presence of a Casein Kinase II phospho-acceptor site within the CR2 domain of the protein. Phosphorylation is believed to enhance E7 interaction with a number of different cellular target proteins, and thereby increase the ability of E7 to enhance cell proliferation and induce malignancy. However, there is little information on how important this site in E7 is, once the tumour cells have become fully transformed. In this study, we have performed genome editing of the HPV-18 E7 CKII recognition site in C4-1 cervical tumour-derived cells. We first show that mutation of HPV18 E7 S32/S34 to A32/A34 abolishes CKII phosphorylation of E7, and subsequently we have isolated C4-1 clones containing these mutations in E7. The cells continue to proliferate, but are somewhat more slow-growing than wild type cells, reach lower saturation densities, and are also more susceptible to low nutrient conditions. These cells are severely defective in matrigel invasion assays, partly due to downregulation of matrix metalloproteases (MMPs). Mechanistically, we find that phosphorylation of E7 plays a direct role in the ability of E7 to activate AKT signaling, which in turn is required for optimal levels of MMP secretion. These results demonstrate that the E7 CKII phospho-acceptor site thus continues to play an important role for E7's activity in cells derived from cervical cancers, and suggests that blocking this activity of E7 could be expected to have therapeutic potential.
Collapse
Affiliation(s)
- Om Basukala
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Suruchi Mittal
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Paola Massimi
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Marco Bestagno
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Lawrence Banks
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
- * E-mail:
| |
Collapse
|
12
|
The free energy landscape of the oncogene protein E7 of human papillomavirus type 16 reveals a complex interplay between ordered and disordered regions. Sci Rep 2019; 9:5822. [PMID: 30967564 PMCID: PMC6456579 DOI: 10.1038/s41598-019-41925-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 03/19/2019] [Indexed: 11/20/2022] Open
Abstract
When present, structural disorder makes it very challenging to characterise the conformational properties of proteins. This is particularly the case of proteins, such as the oncogene protein E7 of human papillomavirus type 16, which contain both ordered and disordered domains, and that can populate monomeric and oligomeric states under physiological conditions. Nuclear magnetic resonance (NMR) spectroscopy is emerging as a powerful method to study these complex systems, most notably in combination with molecular dynamics simulations. Here we use NMR chemical shifts and residual dipolar couplings as structural restraints in replica-averaged molecular dynamics simulations to determine the free energy landscape of E7. This landscape reveals a complex interplay between a folded but highly dynamical C-terminal domain and a disordered N-terminal domain that forms transient secondary and tertiary structures, as well as an equilibrium between a high-populated (98%) dimeric state and a low-populated (2%) monomeric state. These results provide compelling evidence of the complex conformational heterogeneity associated with the behaviour and interactions of this disordered protein associated with disease.
Collapse
|
13
|
Selenko P. Quo Vadis Biomolecular NMR Spectroscopy? Int J Mol Sci 2019; 20:ijms20061278. [PMID: 30875725 PMCID: PMC6472163 DOI: 10.3390/ijms20061278] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 02/06/2023] Open
Abstract
In-cell nuclear magnetic resonance (NMR) spectroscopy offers the possibility to study proteins and other biomolecules at atomic resolution directly in cells. As such, it provides compelling means to complement existing tools in cellular structural biology. Given the dominance of electron microscopy (EM)-based methods in current structure determination routines, I share my personal view about the role of biomolecular NMR spectroscopy in the aftermath of the revolution in resolution. Specifically, I focus on spin-off applications that in-cell NMR has helped to develop and how they may provide broader and more generally applicable routes for future NMR investigations. I discuss the use of ‘static’ and time-resolved solution NMR spectroscopy to detect post-translational protein modifications (PTMs) and to investigate structural consequences that occur in their response. I argue that available examples vindicate the need for collective and systematic efforts to determine post-translationally modified protein structures in the future. Furthermore, I explain my reasoning behind a Quinary Structure Assessment (QSA) initiative to interrogate cellular effects on protein dynamics and transient interactions present in physiological environments.
Collapse
Affiliation(s)
- Philipp Selenko
- Weizmann Institute of Science, Department of Biological Regulation, 234 Herzl Street, Rehovot 76100, Israel.
| |
Collapse
|
14
|
Darling AL, Uversky VN. Intrinsic Disorder and Posttranslational Modifications: The Darker Side of the Biological Dark Matter. Front Genet 2018; 9:158. [PMID: 29780404 PMCID: PMC5945825 DOI: 10.3389/fgene.2018.00158] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/17/2018] [Indexed: 01/05/2023] Open
Abstract
Intrinsically disordered proteins (IDPs) and intrinsically disordered protein regions (IDPRs) are functional proteins and domains that devoid stable secondary and/or tertiary structure. IDPs/IDPRs are abundantly present in various proteomes, where they are involved in regulation, signaling, and control, thereby serving as crucial regulators of various cellular processes. Various mechanisms are utilized to tightly regulate and modulate biological functions, structural properties, cellular levels, and localization of these important controllers. Among these regulatory mechanisms are precisely controlled degradation and different posttranslational modifications (PTMs). Many normal cellular processes are associated with the presence of the right amounts of precisely activated IDPs at right places and in right time. However, wrecked regulation of IDPs/IDPRs might be associated with various human maladies, ranging from cancer and neurodegeneration to cardiovascular disease and diabetes. Pathogenic transformations of IDPs/IDPRs are often triggered by altered PTMs. This review considers some of the aspects of IDPs/IDPRs and their normal and aberrant regulation by PTMs.
Collapse
Affiliation(s)
- April L Darling
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Vladimir N Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.,Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
15
|
Structural Insights in Multifunctional Papillomavirus Oncoproteins. Viruses 2018; 10:v10010037. [PMID: 29342959 PMCID: PMC5795450 DOI: 10.3390/v10010037] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 02/08/2023] Open
Abstract
Since their discovery in the mid-eighties, the main papillomavirus oncoproteins E6 and E7 have been recalcitrant to high-resolution structure analysis. However, in the last decade a wealth of three-dimensional information has been gained on both proteins whether free or complexed to host target proteins. Here, we first summarize the diverse activities of these small multifunctional oncoproteins. Next, we review the available structural data and the new insights they provide about the evolution of E6 and E7, their multiple interactions and their functional variability across human papillomavirus (HPV) species.
Collapse
|