1
|
Shimagaki K, Koga R, Fujino H, Ahagon A, Tateishi H, Otsuka M, Yamaguchi Y, Fujita M. The stability of HIV-2 Vpx and Vpr proteins is regulated by the presence or absence of zinc-binding sites and poly-proline motifs with distinct roles. J Gen Virol 2020; 101:997-1007. [PMID: 32553018 DOI: 10.1099/jgv.0.001456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Vpx and Vpr proteins of human immunodeficiency virus type 2 (HIV-2) are important for virus replication. Although these proteins are homologous, Vpx is expressed at much higher levels than Vpr. Previous studies demonstrated that this difference results from the presence of an HHCC zinc-binding site in Vpx that is absent in Vpr. Vpx has another unique region, a poly-proline motif (PPM) of seven consecutive prolines at the C-terminus. Using PPM point mutants of Vpx, this study demonstrated that these seven consecutive prolines are critical for suppressing proteasome degradation of Vpx in the absence of Gag. Both the PPM and the zinc-binding site stabilize Vpx but do so via different mechanisms. PPM and zinc-binding site mutants overexpressed in Escherichia coli aggregated readily, indicating that these motifs normally prevent exposure of the hydrophobic region outside the structure. Furthermore, introduction of the zinc-binding site and the PPM into Vpr increased the level of Vpr expression so that it was as high as that of Vpx. Intriguingly, HIV-2 has evolved to express Vpx at high levels and Vpr at low levels based on the presence and absence of these two motifs with distinct roles.
Collapse
Affiliation(s)
- Kazunori Shimagaki
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Ryoko Koga
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Haruna Fujino
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Ami Ahagon
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroshi Tateishi
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Masami Otsuka
- Science Farm Ltd, Kumamoto, Japan.,Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | | | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
2
|
Peterson TA, MacLean AG. Current and Future Therapeutic Strategies for Lentiviral Eradication from Macrophage Reservoirs. J Neuroimmune Pharmacol 2018; 14:68-93. [PMID: 30317409 DOI: 10.1007/s11481-018-9814-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 10/02/2018] [Indexed: 12/17/2022]
Abstract
Macrophages, one of the most abundant populations of leukocytes in the body, function as the first line of defense against pathogen invaders. Human Immunodeficiency virus 1 (HIV-1) remains to date one of the most extensively studied viral infections. Naturally occurring lentiviruses in domestic and primate species serve as valuable models to investigate lentiviral pathogenesis and novel therapeutics. Better understanding of the role macrophages play in HIV pathogenesis will aid in the advancement towards a cure. Even with current efficacy of first- and second-line Antiretroviral Therapy (ART) guidelines and future efficacy of Long Acting Slow Effective Release-ART (LASER-ART); ART alone does not lead to a cure. The major challenge of HIV eradication is viral latency. Latency Reversal Agents (LRAs) show promise as a possible means to eradicate HIV-1 from the body. It has become evident that complete eradication will need to include combinations of various effective therapeutic strategies such as LASER-ART, LRAs, and gene editing. Review of the current literature indicates the most promising HIV eradication strategy appears to be LASER-ART in conjunction with viral and receptor gene modifications via the CRISPR/Cas9 system. Graphical abstract A multimodal approach to HIV treatment including gene editing, LASER-ART, and latency reversal agents may provide a means to achieve HIV eradication.
Collapse
Affiliation(s)
- Tiffany A Peterson
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, USA
| | - Andrew G MacLean
- Department of Microbiology & Immunology, Division of Comparative Pathology, Tulane National Primate Research Center, Tulane Center for Aging, Tulane Brain Institute, 18703 Three Rivers Road, Covington, LA, 70433, USA.
| |
Collapse
|