1
|
Sanfaçon H, Alam SB, Ghoshal B, Ghoshal K, Hui E, Jackson AO, Kakani K, Morris TJ, Nagy PD, Simon AE, Sit TL, Smith TJ, White KA, Xiang Y. D'Ann Rochon (1955-2022), a life of passion for plant virology. Virology 2023; 587:109874. [PMID: 37690385 DOI: 10.1016/j.virol.2023.109874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023]
Abstract
D'Ann Rochon passed away on November 29th 2022. She is remembered for her outstanding contributions to the field of plant virology, her strong commitment to high quality science and her dedication to the training and mentorship of the next generation of scientists. She was a research scientist for Agriculture and Agri-Food Canada and an Adjunct Professor for the University of British Columbia. Her research program provided new insights on the infection cycle of tombusviruses and related viruses, including ground-breaking research on the structure of virus particles, the mechanisms of virus transmission by fungal zoospores, and the complexity of plant-virus interactions. She also developed diagnostic antibodies for plum pox virus and little cherry virus 2 that have had a significant impact on the management of these viruses.
Collapse
Affiliation(s)
- Hélène Sanfaçon
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, 4200 Highway 97, V0H 1Z0, Summerland, BC, Canada.
| | - Syed Benazir Alam
- Nanotechnology Research Center, National Research Council Canada, 11421 Saskatchewan Dr NW, T6G 2M9, Edmonton, AB, Canada.
| | - Basudev Ghoshal
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, 4200 Highway 97, V0H 1Z0, Summerland, BC, Canada.
| | - Kankana Ghoshal
- Canadian Food Inspection Agency, Sidney Laboratory, Center for Plant Health, 8801 East Saanich Road, V8L 1H3, Victoria, BC, Canada.
| | - Elizabeth Hui
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
| | | | - Kishore Kakani
- Enzyme/Protein Engineering, Twist Bioscience, 681 Gateway Blvd., South San Francisco, CA 94080, USA.
| | - T Jack Morris
- School of Biological Sciences, University of Nebraska, Lincoln, USA.
| | - Peter D Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, USA.
| | - Anne E Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland - College Park, College Park, MD, USA.
| | - Tim L Sit
- Department of Entomology and Plant Pathology, NC State University, Campus Box 7616, Raleigh, NC 27695-7616, USA.
| | - Thomas J Smith
- University of Texas Medical Branch at Galveston, Department of Biochemistry and Molecular Biology, 301 University Boulevard, Route 0645, Galveston, TX, 77555, USA.
| | - K Andrew White
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada.
| | - Yu Xiang
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, 4200 Highway 97, V0H 1Z0, Summerland, BC, Canada.
| |
Collapse
|
2
|
Zhang G, Bai B, Xu M, Liu Y, Wu Y, Zhao L. Advances in and Prospects for Actinidia Viruses. PLANT DISEASE 2022; 106:1321-1329. [PMID: 34941370 DOI: 10.1094/pdis-10-21-2270-fe] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Kiwifruit (Actinidia spp.) is an economically important fruit crop worldwide. Before 2010, kiwifruit viruses had not received much attention; since then, more than 20 viruses infecting kiwifruit have been discovered. Some of these viruses cause severe yellowing, mosaic, necrosis, ringspots, and other symptoms on leaves, seriously impacting yield and quality. Many of these viruses are widely distributed. This review summarizes recent research advances in the identification, genomic variation, distribution, transmission, detection, incidence, prevention, and control of kiwifruit viruses and proposes directions for future research. Using virus-tested propagation material is the most economical and effective method for controlling kiwifruit viruses.
Collapse
Affiliation(s)
- Guoding Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Bixin Bai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ming Xu
- Shaanxi Rural Science and Technology Development Center, Xi'an 710054, Shaanxi, China
| | - Yuling Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yunfeng Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Lei Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
3
|
Alam SB, Reade R, Maghodia AB, Ghoshal B, Theilmann J, Rochon D. Targeting of cucumber necrosis virus coat protein to the chloroplast stroma attenuates host defense response. Virology 2021; 554:106-119. [PMID: 33418272 DOI: 10.1016/j.virol.2020.10.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 01/17/2023]
Abstract
Cucumber necrosis virus (CNV) is a (+)ssRNA virus that elicits spreading local and systemic necrosis in Nicotiana benthamiana. We previously showed that the CNV coat protein (CP) arm functions as a chloroplast transit peptide that targets a CP fragment containing the S and P domains to chloroplasts during infection. Here we show that several CP arm mutants that inefficiently target chloroplasts, along with a mutant that lacks the S and P domains, show an early onset of more localized necrosis along with protracted induction of pathogenesis related protein (PR1a). Agroinfiltrated CNV CP is shown to interfere with CNV p33 and Tomato bushy stunt virus p19 induced necrosis. Additionally, we provide evidence that a CP mutant that does not detectably enter the chloroplast stroma induces relatively higher levels of several plant defense-related genes compared to WT CNV. Together, our data suggest that targeting of CNV CP to the chloroplast stroma interferes with chloroplast-mediated plant defense.
Collapse
Affiliation(s)
- Syed Benazir Alam
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, V6T 1B4, Canada; Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC, V0H 1Z0, Canada.
| | - Ron Reade
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC, V0H 1Z0, Canada
| | - Ajay B Maghodia
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC, V0H 1Z0, Canada
| | - Basudev Ghoshal
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC, V0H 1Z0, Canada
| | - Jane Theilmann
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC, V0H 1Z0, Canada
| | - D'Ann Rochon
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, V6T 1B4, Canada; Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC, V0H 1Z0, Canada
| |
Collapse
|
4
|
Abstract
Viruses are the most abundant biological entities on Earth. In addition to their impact on animal and plant health, viruses have important roles in ecosystem dynamics as well as in the evolution of the biosphere. Circular Rep-encoding single-stranded (CRESS) DNA viruses are ubiquitous in nature, many are agriculturally important, and they appear to have multiple origins from prokaryotic plasmids. A subset of CRESS-DNA viruses, the cruciviruses, have homologues of capsid proteins encoded by RNA viruses. The genetic structure of cruciviruses attests to the transfer of capsid genes between disparate groups of viruses. However, the evolutionary history of cruciviruses is still unclear. By collecting and analyzing cruciviral sequence data, we provide a deeper insight into the evolutionary intricacies of cruciviruses. Our results reveal an unexpected diversity of this virus group, with frequent recombination as an important determinant of variability. The discovery of cruciviruses revealed the most explicit example of a common protein homologue between DNA and RNA viruses to date. Cruciviruses are a novel group of circular Rep-encoding single-stranded DNA (ssDNA) (CRESS-DNA) viruses that encode capsid proteins that are most closely related to those encoded by RNA viruses in the family Tombusviridae. The apparent chimeric nature of the two core proteins encoded by crucivirus genomes suggests horizontal gene transfer of capsid genes between DNA and RNA viruses. Here, we identified and characterized 451 new crucivirus genomes and 10 capsid-encoding circular genetic elements through de novo assembly and mining of metagenomic data. These genomes are highly diverse, as demonstrated by sequence comparisons and phylogenetic analysis of subsets of the protein sequences they encode. Most of the variation is reflected in the replication-associated protein (Rep) sequences, and much of the sequence diversity appears to be due to recombination. Our results suggest that recombination tends to occur more frequently among groups of cruciviruses with relatively similar capsid proteins and that the exchange of Rep protein domains between cruciviruses is rarer than intergenic recombination. Additionally, we suggest members of the stramenopiles/alveolates/Rhizaria supergroup as possible crucivirus hosts. Altogether, we provide a comprehensive and descriptive characterization of cruciviruses.
Collapse
|
5
|
Byrne MJ, Steele JFC, Hesketh EL, Walden M, Thompson RF, Lomonossoff GP, Ranson NA. Combining Transient Expression and Cryo-EM to Obtain High-Resolution Structures of Luteovirid Particles. Structure 2019; 27:1761-1770.e3. [PMID: 31611039 PMCID: PMC6899511 DOI: 10.1016/j.str.2019.09.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/17/2019] [Accepted: 09/20/2019] [Indexed: 02/03/2023]
Abstract
The Luteoviridae are pathogenic plant viruses responsible for significant crop losses worldwide. They infect a wide range of food crops, including cereals, legumes, cucurbits, sugar beet, sugarcane, and potato and, as such, are a major threat to global food security. Viral replication is strictly limited to the plant vasculature, and this phloem limitation, coupled with the need for aphid transmission of virus particles, has made it difficult to generate virus in the quantities needed for high-resolution structural studies. Here, we exploit recent advances in heterologous expression in plants to produce sufficient quantities of virus-like particles for structural studies. We have determined their structures to high resolution by cryoelectron microscopy, providing the molecular-level insight required to rationally interrogate luteovirid capsid formation and aphid transmission, thereby providing a platform for the development of preventive agrochemicals for this important family of plant viruses.
Collapse
Affiliation(s)
- Matthew J Byrne
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - John F C Steele
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| | - Emma L Hesketh
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Miriam Walden
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| | - Rebecca F Thompson
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - George P Lomonossoff
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK.
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
6
|
Shrestha N, Weber PH, Burke SV, Wysocki WP, Duvall MR, Bujarski JJ. Next generation sequencing reveals packaging of host RNAs by brome mosaic virus. Virus Res 2018; 252:82-90. [PMID: 29753892 DOI: 10.1016/j.virusres.2018.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/05/2018] [Accepted: 05/09/2018] [Indexed: 12/28/2022]
Abstract
Although RNA viruses evolved the mechanisms of specific encapsidation, miss-packaging of cellular RNAs has been reported in such RNA virus systems as flock house virus or cucumber necrosis virus. To find out if brome mosaic virus (BMV), a tripartite RNA virus, can package cellular RNAs, BMV was propagated in barley and in Nicotiana benthamiana hosts, purified by cesium chloride (CsCl) gradient ultracentrifugation followed by nuclease treatment to remove any contaminating cellular (host) RNAs. The extracted virion RNA was then sequenced by using next-generation sequencing (NGS RNA-Seq) with the Illumina protocol. Bioinformatic analysis revealed the content of host RNAs ranging from 0.07% for BMV extracted from barley to 0.10% for the virus extracted from N. benthamiana. The viruses from two sources appeared to co-encapsidate different patterns of host-RNAs, including ribosomal RNAs (rRNAs), messenger RNAs (mRNAs) but also mitochondrial and plastid RNAs and, interestingly, transposable elements, both transposons and retrotransposons. Our data reveal that BMV virions can carry host RNAs, having a potential to mediate horizontal gene transfer (HGT) in plants.
Collapse
Affiliation(s)
- N Shrestha
- Department of Biological Sciences and Plant Molecular and Bioinformatics Center, Northern Illinois University, DeKalb, IL 60115, USA
| | - P H Weber
- Department of Biological Sciences and Plant Molecular and Bioinformatics Center, Northern Illinois University, DeKalb, IL 60115, USA.
| | - S V Burke
- Department of Biological Sciences and Plant Molecular and Bioinformatics Center, Northern Illinois University, DeKalb, IL 60115, USA
| | - W P Wysocki
- Department of Biological Sciences and Plant Molecular and Bioinformatics Center, Northern Illinois University, DeKalb, IL 60115, USA.
| | - M R Duvall
- Department of Biological Sciences and Plant Molecular and Bioinformatics Center, Northern Illinois University, DeKalb, IL 60115, USA
| | - J J Bujarski
- Department of Biological Sciences and Plant Molecular and Bioinformatics Center, Northern Illinois University, DeKalb, IL 60115, USA; Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| |
Collapse
|