1
|
Wang H, Chen J, An T, Chen H, Wang Y, Zhu L, Yu C, Xia C, Zhang H. Development and application of quadruplex real time quantitative PCR method for differentiation of Muscovy duck parvovirus, Goose parvovirus, Duck circovirus, and Duck adenovirus 3. Front Cell Infect Microbiol 2024; 14:1448480. [PMID: 39224701 PMCID: PMC11366709 DOI: 10.3389/fcimb.2024.1448480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Muscovy duck parvovirus (MDPV), Goose parvovirus (GPV), Duck circovirus, (DuCV) and Duck adenovirus 3 (DAdV-3) are important pathogens that cause high morbidity and mortality in ducks, causing huge economic loss for the duck industry. Methods The present study, a quadruplex one-step real time quantitative PCR method for the detection of MDPV, GPV, DuCV, and DAdV-3 was developed. Results The results showed that assay had no cross-reactivity with other poultry pathogens [Duck plague virus (DPV), Duck tembusu virus (DTMUV), H6 avian influenza virus (H6 AIV), New duck reovirus (NDRV), Newcastle disease virus (NDV), H4 avian influenza virus (H4 AIV), Escherichia coli (E. coli), Muscovy duck reovirus (MDRV), Egg drop syndrome virus (EDSV), Pasteurella multocida (P. multocida)]. The sensitivity result showed that the limits of detection for MDPV, GPV, DuCV, and DAdV-3 were 10, 10, 1 and 10 copies/µl, respectively; The coefficients of variation intra- and inter-method was 1-2%; The range of linear (109 to 103 copies/µL) demonstrated the R2 values for MDPV, GPV, DuCV, and DAdV-3 as 0.9975, 0.998, 0.9964, and 0.996, respectively. The quadruplex real time quantitative PCR method efficiency was 90.30%, 101.10%, 90.72%, and 90.57% for MDPV, GPV, DuCV, and DAdV-3, respectively. 396 clinical specimens collected in some duck sausages from June 2022 to July 2023 were simultaneously detected using the established quadruplex real time quantitative PCR method and the reported assays. The detection rates for MDPV, GPV, DuCV, and DAdV-3 were 8.33% (33/396), 17.93% (71/396), 33.58% (133/396), and 29.04% (115/396), respectively. The agreement between these assays was greater than 99.56%. Discussion The developed quadruplex real-time quantitative PCR assay can accurately detect these four viruses infecting ducks, providing a rapid, sensitive, specific and accurate technique for clinical testing.
Collapse
Affiliation(s)
- Haojie Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jianxing Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Tongqing An
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongyan Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yue Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Liangquan Zhu
- China Institute of Veterinary Drug Control, Beijing, China
| | - Changqing Yu
- School of Advanced Agricultural Sciences, Yibin Vocational and Technical College, Yibin, China
| | - Changyou Xia
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - He Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
2
|
Chen Y, Yan Z, Liao C, Song Y, Zhou Q, Shen H, Chen F. Recombinant linear multiple epitopes of σB protein protect Muscovy ducks against novel duck reovirus infection. Front Vet Sci 2024; 11:1360246. [PMID: 38803800 PMCID: PMC11129634 DOI: 10.3389/fvets.2024.1360246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/11/2024] [Indexed: 05/29/2024] Open
Abstract
Infection by the novel duck reovirus (NDRV) in ducklings causes high mortality, which leads to substantial economic losses in the duck industry in China. To date, no commercial vaccine is available for this disease. In this study, linear B cell epitopes of the σB protein of the NDRV were predicted and recombinant multiple linear B cell epitopes (MLBEs) were constructed through linkers. The recombinant MLBEs were then expressed and purified. One-day-old Muscovy ducklings were immunized with different doses of MLBEs and challenged with 5 × 104 ELD50 of the virulent CHY strain of NDRV 14 days after immunization. The ducklings vaccinated with 20 and 40 μg of MLBE performed no clinical signs or gross or histopathological lesions, indicating 100% protection against infection. The viral load in the liver and spleens of these birds was significantly lower than that in the control group. Additionally, these ducklings exhibited positive seroconversion at 7 days after vaccination on enzyme-linked immunosorbent assay. These results indicate that MLBE of σB could be used as a candidate for developing vaccines against NDRV infection.
Collapse
Affiliation(s)
- Yiquan Chen
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhuanqiang Yan
- Guangdong Enterprise Key Laboratory for Animal Health and Environmental Control, Wen's Foodstuff Group Co. Ltd., Yunfu, China
| | - Changtao Liao
- College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Enterprise Key Laboratory for Animal Health and Environmental Control, Wen's Foodstuff Group Co. Ltd., Yunfu, China
| | - Yiwei Song
- Guangdong Enterprise Key Laboratory for Animal Health and Environmental Control, Wen's Foodstuff Group Co. Ltd., Yunfu, China
| | - Qi Zhou
- Guangdong Enterprise Key Laboratory for Animal Health and Environmental Control, Wen's Foodstuff Group Co. Ltd., Yunfu, China
| | - Hanqin Shen
- Guangdong Enterprise Key Laboratory for Animal Health and Environmental Control, Wen's Foodstuff Group Co. Ltd., Yunfu, China
| | - Feng Chen
- College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
3
|
Tan Y, Raheem MA, Rahim MA, Xin H, Zhou Y, Hu X, Dai Y, Ataya FS, Chen F. Isolation, characterization, evaluation of pathogenicity, and immunomodulation through interferon production of duck adenovirus type-3 (DAdV-3). Poult Sci 2024; 103:103411. [PMID: 38215507 PMCID: PMC10825357 DOI: 10.1016/j.psj.2023.103411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/05/2023] [Accepted: 12/26/2023] [Indexed: 01/14/2024] Open
Abstract
Duck adenovirus type-3 (DAdV-3) is a poorly characterized duck virus. A comprehensive analysis of the DAdV-3 pathogenicity and host immune response could be a valuable addition. Herein, DAdV-3 was isolated from Muscovy duck and virus-specific genes were confirmed by polymerase chain reaction (PCR). The obtained gene fragments were sequenced and compared with the reference sequence. Results confirmed that the clinically isolated virus was DAdV-3, named as HF-AN-2020. To evaluate DAdV-3 host immune response, the expression levels of MDA5, STING, IRF7, MAVS, and NF-κB, and inflammatory cytokines (IFN-β, IFN-γ, and IL-1β) were determined by quantitative reverse transcriptase PCR (qRT-PCR). The expression levels of IFN-β and IFN-γ were 32.6- and 28.6-fold, respectively, higher (P < 0.01) than the control group. It was found that the upregulation of STING and NF-κB pathways was directly involved in the regulation of inflammatory cytokines (IFN-β, IFN-γ, and IL-1β). Furthermore, the gene regulation pathways consecutively upregulated the expression levels of MDA5, STING, IRF7, MAVS, and NF-κB up to 31.6, 10.5, 31.4, 2.2, and 2.6-fold, respectively, higher (P < 0.01) than the control group. The TCID50 of DAdV-3 for Muscovy duck and chicken was 10-3.24/0.1 mL with 0% mortality, indicating low pathogenicity in both Muscovy ducks and chickens, but DAdV-3 can induce higher expression of interferons. Genome analysis showed mutations in 4 amino acids located in ORF19B (Ser to Thr), ORF66 (Leu to Phe, Ile to Leu), and ORF67 (Gly to stop codon). This study provides essential and basic information for further research on the mechanism of the cellular immune responses against adenoviruses.
Collapse
Affiliation(s)
- Yang Tan
- Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, PR China
| | - Muhammad Akmal Raheem
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Tsinghua- Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Muhammad Ajwad Rahim
- Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, PR China
| | - Huang Xin
- Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, PR China
| | - Yuhang Zhou
- Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, PR China
| | - Xuerui Hu
- Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, PR China
| | - Yin Dai
- Anhui Academy of Agricultural Sciences, Hefei 230036, Anhui, PR China
| | - Farid Shokry Ataya
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fangfang Chen
- Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, PR China.
| |
Collapse
|
4
|
Lin Y, Zhang W, Xie J, Wang W, Xie Q, Li T, Shao H, Qin A, Wan Z, Ye J. Identification of novel B cell epitopes in Fiber-2 protein of duck adenovirus 3 and their application. AMB Express 2023; 13:62. [PMID: 37347456 DOI: 10.1186/s13568-023-01552-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 04/24/2023] [Indexed: 06/23/2023] Open
Abstract
Duck adenovirus 3 (DAdV-3), a newly emerged duck adenovirus, has resulted in significant economic losses to the duck industry across China since 2014. However, little is known about the B cell epitopes in major antigen of DAdV-3 and the serological approach for detection of DAdV-3 is not available. In this study, four monoclonal antibodies (mAbs) specific to Fiber-2 protein of DAdV-3 were first generated and designated as 2G10, 3D9, 5E6, and 6B12. Indirect immunofluorescence assay (IFA) showed that all of the mAbs reacted with the Fiber-2. Moreover, mAbs 2G10, 5E6, and 6B12 demonstrated good activity with Fiber-2 in Western blot. Notably, the Fiber-2 could be immunoprecipitated efficiently by mAb 3D9. Epitope mapping revealed that mAbs 2G10, 3D9, 5E6, and 6B12 recognized 397-429aa, 463-481aa, 67-99aa, and 1-66aa of Fiber-2, respectively. Besides, a novel sandwich ELISA for efficient detection of DAdV-3 was developed based on mAb 3D9 and horseradish peroxidase (HRP) conjugated mAb 3D9. The sandwich ELISA only reacted with DAdV-3 but not with other duck-associated viruses. The limit of detection of the ELISA was 6.25 × 103 TCID50/mL. Overall, the mAbs generated laid the foundation for elucidating the critical role of Fiber-2 in mediating infection and pathogenesis, and the sandwich ELISA approach established here provided efficient and rapid serological diagnostic tool for DAdV-3.
Collapse
Affiliation(s)
- Yun Lin
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Centre for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Wenyuan Zhang
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Centre for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jing Xie
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Centre for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Weikang Wang
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Centre for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Quan Xie
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Centre for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Tuofan Li
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Centre for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Hongxia Shao
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Centre for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Aijian Qin
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Centre for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Zhimin Wan
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Jiangsu Co-innovation Centre for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| | - Jianqiang Ye
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Jiangsu Co-innovation Centre for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
5
|
Guo Y, Lin Y, Xie Q, Zhang W, Xu Z, Chao Y, Cao X, Jiang H, Li H, Li T, Wan Z, Shao H, Qin A, Ye J. A novel recombinant serotype 4 fowl adenovirus expressing fiber-2 protein of duck adenovirus 3. Front Cell Infect Microbiol 2023; 13:1177866. [PMID: 37065194 PMCID: PMC10090666 DOI: 10.3389/fcimb.2023.1177866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023] Open
Abstract
Recently, the highly pathogenic serotype 4 fowl adenovirus (FAdV-4) and duck adenovirus 3 (DAdV-3) were outbroken and widespread, causing substantial economic losses to the duck industry. Therefore, there is an urgent need to generate a recombinant genetic engineering vaccine candidate against both FAdV-4 and DAdV-3. In this study, a novel recombinant FAdV-4 expressing the Fiber-2 protein of DAdV-3, designated as rFAdV-4-Fiber-2/DAdV-3, was generated based on CRISPR/Cas9 and Cre-LoxP systems. Indirect immunofluorescence assay (IFA) and western blot (WB) showed that the Fiber-2 protein of DAdV-3 in rFAdV-4-Fiber-2/DAdV-3 was expressed successfully. Moreover, the growth curve revealed that rFAdV-4-Fiber-2/DAdV-3 replicated efficiently in LMH cells and even showed a stronger replication ability compared to the wild type FAdV-4. The generation of the recombinant rFAdV-4-Fiber-2/DAdV-3 provides a potential vaccine candidate against both FAdV-4 and DAdV-3.
Collapse
Affiliation(s)
- Yiwen Guo
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yun Lin
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- *Correspondence: Yun Lin, ; Jianqiang Ye,
| | - Quan Xie
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Wenyuan Zhang
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhenqi Xu
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yifei Chao
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xudong Cao
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Huiru Jiang
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Han Li
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Tuofan Li
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhimin Wan
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Hongxia Shao
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Aijian Qin
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jianqiang Ye
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
- *Correspondence: Yun Lin, ; Jianqiang Ye,
| |
Collapse
|
6
|
A novel monoclonal antibody efficiently blocks the infection of duck adenovirus 3 by targeting Fiber-2. Vet Microbiol 2023; 277:109635. [PMID: 36563583 DOI: 10.1016/j.vetmic.2022.109635] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/07/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
Duck adenovirus 3 (DAdV-3), identified as the causative agent of a disease characterized by swelling and hemorrhage of liver and kidney, has caused substantial economic losses to duck industry in China. However, the neutralizing epitopes and the infection mechanism of DAdV-3 have not been extensively elucidated. In this study, a novel monoclonal antibody (mAb) targeting Fiber-2 protein of DAdV-3 was generated and designated as mAb 3E7. Indirect immunofluorescence assay showed that mAb 3E7 specifically reacted with the Fiber-2 in LMH cells transfected with pcDNA3.1-Fiber-2 or infected with DAdV-3. Moreover, mAb 3E7 could immunoprecipitate the Fiber-2 and efficiently inhibit the infection of DAdV-3 in vitro. Further epitope mapping revealed mAb 3E7 recognized the epitope 108LALGDGLE115 in Fiber-2, which was highly conserved among DAdV-3 strains. These findings not only identified a novel neutralizing epitope in Fiber-2, but also paved the way for further elucidating the vital roles of Fiber-2 in the infection and pathogenesis of DAdV-3.
Collapse
|
7
|
Gu L, Liu Y, Zhang W, Li J, Chang C, Su Y, Yang Y. Novel extraction technologies and potential applications of egg yolk proteins. Food Sci Biotechnol 2022; 32:121-133. [PMID: 36590017 PMCID: PMC9795146 DOI: 10.1007/s10068-022-01209-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 12/29/2022] Open
Abstract
The high nutritional value and diverse functional properties of egg yolk proteins have led to its widespread use in the fields of food, medicine, and cosmetics. Various extraction methods have been reported to obtain the proteins from egg yolk, however, their utilization is limited due to the relatively low extraction efficiency and/or toxic solvents involved. Several simpler and greener technologies, especially physical fields (ultrasound), have been successfully developed to improve the extraction efficiency. The egg yolk proteins may exert multiple biological activities, enabling them to be a promising tool in improve human health and wellbeing, such as anti-obesity, anti-atherosclerosis, anti-osteoporosis, diagnosis and therapy for SARS-CoV-2 infections. This article summarizes the novel extraction technologies and latest applications of the egg yolk proteins in the recent 5 years, which should stimulate their utilization as health-promoting functional ingredients in foods and other commercial products.
Collapse
Affiliation(s)
- Luping Gu
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyCollaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122 China ,Hunan Engineering & Technology Research Center for Food Flavors and Flavorings, Jinshi, 415400 Hunan China
| | - Yufang Liu
- College of Food Engineering and Nutritional Science, Shanxi Normal University, Xi’an, China
| | - Wanqiu Zhang
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyCollaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122 China
| | - Junhua Li
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyCollaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122 China
| | - Cuihua Chang
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyCollaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122 China
| | - Yujie Su
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyCollaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122 China ,Hunan Engineering & Technology Research Center for Food Flavors and Flavorings, Jinshi, 415400 Hunan China
| | - Yanjun Yang
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyCollaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122 China ,Hunan Engineering & Technology Research Center for Food Flavors and Flavorings, Jinshi, 415400 Hunan China
| |
Collapse
|
8
|
Zhang M, Zhang L, Yang J, Zhao D, Han K, Huang X, Liu Q, Xiao Y, Gu Y, Li Y. An IgY Effectively Prevents Goslings from Virulent GAstV Infection. Vaccines (Basel) 2022; 10:vaccines10122090. [PMID: 36560500 PMCID: PMC9781778 DOI: 10.3390/vaccines10122090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Goose astrovirus (GAstV) leads to viscera and joints urate deposition in 1- to 20-day-old goslings, with a mortality rate of up to 50%, posing a severe threat to entire colonies; however, there is no efficient prevention and control method for GAstV infection. This study describes a prophylactic anti-GAstV strategy based on the specific immunoglobulin Y (IgY) from egg yolk. The specific IgY was produced by 22-week-old laying hens intramuscularly immunized with the inactivated GAstV three consecutive times, with 2-week intervals. The egg yolk was collected weekly after the immunization and the anti-GAstV IgY titer was monitored using an agar gel immune diffusion assay (AGID). The results revealed that the AGID titer began to increase on day 7, reached a peak on day 49, and remained at a high level until day 77 after the first immunization. The specific IgY was prepared from the combinations of egg yolk from day 49 to day 77 through PEG-6000 precipitation. Animal experiments were conducted to evaluate the effects of prevention and treatment. The result of the minimum prophylactic dose of the IgY showed that the protection rate was 90.9% when 2.5 mg was administrated. Results of the prevention and the treatment experiments showed prevention and cure rates of over 80% when yolk antibody was administered in the early stages of the GAstV infection. These results suggested that the specific IgY obtained from immunized hens with the inactivated GAstV could be a novel strategy for preventing and treating GAstV infection.
Collapse
Affiliation(s)
- Mengran Zhang
- College of Animal Science, Anhui Science and Technology University, Fengyang 233100, China
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
| | - Lijiao Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
| | - Jing Yang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
| | - Dongmin Zhao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
| | - Kaikai Han
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
| | - Xinmei Huang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
| | - Qingtao Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
| | - Yichen Xiao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
| | - Youfang Gu
- College of Animal Science, Anhui Science and Technology University, Fengyang 233100, China
| | - Yin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
- Correspondence:
| |
Collapse
|
9
|
Chen S, Lin F, Jiang B, Xiao S, Jiang D, Lin C, Wang S, Cheng X, Zhu X, Dong H, Chen X, Yu B, Zhang S, Chen S. Isolation and characterization of a novel strain of duck aviadenovirus B from Muscovy ducklings with acute hepatitis in China. Transbound Emerg Dis 2021; 69:2769-2778. [PMID: 34921519 DOI: 10.1111/tbed.14428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 11/28/2022]
Abstract
A new disease designated as Pale liver disease (PLD) has been circulating in Chinese Muscovy duck flocks since 2014, which is characterized by fatigue, diarrhoea, sudden death and acute hepatitis with pale and haemorrhagic liver. In this study, the etiological agents of PLD were isolated, causing a significant cytopathic effect (CPE) by cell rounding. Virus particles were observed by transmission electron microscopic (TEM) observation. The same disease was reproduced by experimental infection with the isolate BG61. The whole genomes of isolates were 43,842 nt in length with a GC content of 47.11%, similar to French Muscovy duck adenovirus strain GR with a GC content of 46.08%. The isolates shared 99.71-99.95% and 93.31-93.33% identity with Chinese Muscovy duck adenovirus isolates and GR strain, respectively. The DNA polymerase gene of all Muscovy duck adenovirus strains formed a separate genetic lineage with 99.55-100% amino acid sequence identity. All Chinese Muscovy duck adenovirus isolates contained two fibre genes. In contrast, only one fibre gene was found in GR, the only representative strain in species Duck aviadenovirus B. Anti-DAdV-2 serum antibodies had a weak neutralizing activity against Chinese Muscovy duck adenovirus isolates. The phylogenetic trees of the complete genome, hexon and fibre proteins revealed that all Muscovy duck adenovirus strains formed a major genetic lineage consisting of two clades. Thus, both GR and Chinese Muscovy duck adenovirus strains were proposed to be included in the same species of Duck aviadenovirus B belonging to the genus Aviadenovirus. The species Duck aviadenovirus B included two serotypes or genotypes, such as GR, which represents the strain of serotype 1 or genotype 1 (DAdV B1) and Chinese Muscovy duck adenovirus strains, which belong to serotype 2 or genotype 2 (DAdV B2).
Collapse
Affiliation(s)
- Shilong Chen
- Laboratory of Animal Virology, Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou, China.,Engineering Research Center for the Prevention and Control of Animal Original Zoonosis, College of Life Science, Longyan University, Longyan, China
| | - Fengqiang Lin
- Laboratory of Animal Virology, Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou, China
| | - Bin Jiang
- Laboratory of Animal Virology, Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou, China
| | - Shifeng Xiao
- Laboratory of Animal Virology, Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou, China
| | - Dandan Jiang
- Laboratory of Animal Virology, Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou, China
| | - Chang Lin
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shao Wang
- Laboratory of Animal Virology, Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou, China
| | - Xiaoxia Cheng
- Laboratory of Animal Virology, Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou, China
| | - Xiaoli Zhu
- Laboratory of Animal Virology, Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou, China
| | - Hui Dong
- Laboratory of Animal Virology, Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou, China
| | - Xiuqin Chen
- Laboratory of Animal Virology, Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou, China
| | - Bo Yu
- Laboratory of Animal Virology, Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou, China
| | - Shizhong Zhang
- Laboratory of Animal Virology, Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou, China
| | - Shaoying Chen
- Laboratory of Animal Virology, Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou, China
| |
Collapse
|
10
|
Yin D, He L, Zhu E, Fang T, Yue J, Wen M, Wang K, Cheng Z. A fowl adenovirus serotype 4 (FAdV-4) Fiber2 subunit vaccine candidate provides complete protection against challenge with virulent FAdV-4 strain in chickens. Vet Microbiol 2021; 263:109250. [PMID: 34649009 DOI: 10.1016/j.vetmic.2021.109250] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/02/2021] [Indexed: 12/21/2022]
Abstract
Hypervirulent fowl adenovirus serotype 4 (FAdV-4)-induced hepatitis-hydropericardium syndrome (HHS) with high mortality causes huge economic losses to the poultry industry worldwide. However, commercially available vaccines against FAdV-4 infection remain scarce. Here, we prepared a subunit vaccine candidate derived from the bacterially expressed recombinant Fiber2 protein (termed as rFiber2 subunit vaccine) of FAdV-4 GZ-QL strain (a hypervirulent strain isolated in Guizhou province) and a recombinant plasmid pVAX1-Fiber2 as DNA vaccine candidate (termed as Fiber2 DNA vaccine). The immune effects of different dosages (50, 100, and 150 μg) of these were evaluated through immunization and challenge studies in chickens. Three injections of the rFiber2 subunit vaccine or the Fiber2 DNA vaccine induced robust humoral and cellular immune responses in chickens, which was assessed based on the secretion of high-level neutralizing antibodies, Th1- (IL-2, IFN-γ) and Th2-type cytokines (IL-4, IL-6). Importantly, the efficacy of the rFiber2 subunit vaccine was significantly higher (80 %-100 %) compared with the Fiber2 DNA vaccine (50 %-60 %) and a commercial inactivated vaccine (80 %). Collectively, these results suggest that the rFiber2 subunit and Fiber2 DNA vaccine candidate induced remarkable humoral and cellular immune responses, while the rFiber2 subunit vaccine candidate possesses better potential in the fight against FAdV-4 infection, laying foundations for the effective control of HHS in chickens.
Collapse
Affiliation(s)
- Dejing Yin
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, 550025, China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Ling He
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, 550025, China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Erpeng Zhu
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, 550025, China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Tian Fang
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, 550025, China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Jun Yue
- Animal Disease Prevention and Control Center of Guizhou Province, Guiyang, 550001, China
| | - Ming Wen
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, 550025, China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Kaigong Wang
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, 550025, China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Zhentao Cheng
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, 550025, China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
11
|
Fei D, Guo Y, Fan Q, Li M, Sun L, Ma M, Li Y. Codon optimization, expression in Escherichia coli, and immunogenicity analysis of deformed wing virus (DWV) structural protein. PeerJ 2020; 8:e8750. [PMID: 32201647 PMCID: PMC7071823 DOI: 10.7717/peerj.8750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/14/2020] [Indexed: 11/20/2022] Open
Abstract
Background Deformed wing virus (DWV) is a serious threat to honey bees (Apis mellifera) and is considered a major cause of elevated losses of honey bee colonies. However, lack of information on the immunogenicity of DWV structural proteins has hindered the development of effective biocontrol drugs. Methods We optimized the VP1, VP2 and VP3 codons of DWV surface capsid protein genes on the basis of an Escherichia coli codon bias, and the optimized genes of roVP1, roVP2 and roVP3 were separately expressed in E. coli and purified. Next, the three recombinant proteins of roVP1, roVP2 and roVP3 were intramuscularly injected into BALB/c and the immunogenicity was evaluated by the levels of specific IgG and cytokines. Furthermore, anti-roVP-antisera (roVP1 or roVP2 or roVP3) from the immunized mice was incubated with DWV for injecting healthy white-eyed pupae for the viral challenge test, respectively. Results The optimized genes roVP1, roVP2 and roVP3 achieved the expression in E. coli using SDS-PAGE and Western blotting. Post-immunization, roVP2 and roVP3 exhibited higher immunogenicity than roVP1 and stimulated a stronger humoral immune response in the mice, which showed that the recombinant proteins of roVP3 and roVP2 induced a specific immune response in the mice. In the challenge test, data regarding quantitative real-time RT-PCR (qRT-PCR) from challenged pupae showed that the level of virus copies in the recombinant protein groups was significantly lower than that of the virus-only group at 96 h post-inoculation (P < 0.05). Among them, the degree of neutralization using antibodies raised to the recombinant proteins are between approximately 2-fold and 4-fold and the virus copies of the roVP3 group are the lowest in the three recombinant protein groups, which indicated that specific antibodies against recombinant proteins roVP1, roVP2 and roVP3 of DWV could neutralize DWV to reduce the virus titer in the pupae. Collectively, these results demonstrated that the surface capsid protein of DWV acted as candidates for the development of therapeutic antibodies against the virus.
Collapse
Affiliation(s)
- Dongliang Fei
- College of Animal Medicine, Northeast Agricultural University, Haerbin, Heilongjiang, China
- Laboratory Animal Center, Jinzhou Normal University, Jinzhou, Liaoning, China
| | - Yaxi Guo
- College of Animal Medicine, Northeast Agricultural University, Haerbin, Heilongjiang, China
| | - Qiong Fan
- Jinzhou Agricultural and Rural Comprehensive Service Center, Jinzhou, Liaoning, China
| | - Ming Li
- Laboratory Animal Center, Jinzhou Normal University, Jinzhou, Liaoning, China
| | - Li Sun
- Laboratory Animal Center, Jinzhou Normal University, Jinzhou, Liaoning, China
| | - Mingxiao Ma
- Laboratory Animal Center, Jinzhou Normal University, Jinzhou, Liaoning, China
| | - Yijing Li
- College of Animal Medicine, Northeast Agricultural University, Haerbin, Heilongjiang, China
| |
Collapse
|
12
|
Chen C, Wan C, Shi S, Cheng L, Chen Z, Fu G, Liu R, Zhu C, Huang Y. Development and application of a fiber2 protein-based indirect ELISA for detection of duck adenovirus 3. Mol Cell Probes 2019; 48:101447. [PMID: 31518643 DOI: 10.1016/j.mcp.2019.101447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/28/2019] [Accepted: 09/10/2019] [Indexed: 10/26/2022]
Abstract
Duck adenovirus 3 (DAdV-3) is a newly identified duck adenovirus that has recently emerged in China. The incidence of duck infection caused by this virus is very high, with very large economic losses to the poultry industry. Thus, there is an urgent need for a serological assay for the specific detection of DAdV-3. To this end, prokaryotic expression of the fiber2 protein of DAdV-3 was used as a coating antigen to establish an indirect enzyme linked immunosorbent assay (ELISA) method for the specific detection of antibodies against DAdV-3. The method was found to be specific, repeatable and more sensitive than the agarose gel precipitation test (AGP). This indirect ELISA method based on the recombinant fiber2 protein may be used for the clinical detection of DAdV-3 infection and for monitoring antibody levels after vaccine immunization and is of great significance for the effective prevention and control of the disease.
Collapse
Affiliation(s)
- Cuiteng Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Provincial Key Laboratory for Avian Diseases Control, Prevention/Fujian Animal Diseases Control Technology Development Center, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, People's Republic of China
| | - Chunhe Wan
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Provincial Key Laboratory for Avian Diseases Control, Prevention/Fujian Animal Diseases Control Technology Development Center, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, People's Republic of China.
| | - Shaohua Shi
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Provincial Key Laboratory for Avian Diseases Control, Prevention/Fujian Animal Diseases Control Technology Development Center, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, People's Republic of China
| | - Longfei Cheng
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Provincial Key Laboratory for Avian Diseases Control, Prevention/Fujian Animal Diseases Control Technology Development Center, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, People's Republic of China
| | - Zhen Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Provincial Key Laboratory for Avian Diseases Control, Prevention/Fujian Animal Diseases Control Technology Development Center, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, People's Republic of China
| | - Guanghua Fu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Provincial Key Laboratory for Avian Diseases Control, Prevention/Fujian Animal Diseases Control Technology Development Center, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, People's Republic of China
| | - Rongchang Liu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Provincial Key Laboratory for Avian Diseases Control, Prevention/Fujian Animal Diseases Control Technology Development Center, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, People's Republic of China
| | - Chunhua Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Provincial Key Laboratory for Avian Diseases Control, Prevention/Fujian Animal Diseases Control Technology Development Center, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, People's Republic of China
| | - Yu Huang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Provincial Key Laboratory for Avian Diseases Control, Prevention/Fujian Animal Diseases Control Technology Development Center, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, People's Republic of China.
| |
Collapse
|