1
|
Gonzalez-Sanchez B, Vega-Rodríguez MA, Santander-Jiménez S. A multi-objective butterfly optimization algorithm for protein encoding. Appl Soft Comput 2023. [DOI: 10.1016/j.asoc.2023.110269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
2
|
Gurjar P, Karuvantevida N, Rzhepakovsky IV, Khan AA, Khandia R. A Synthetic Biology Approach for Vaccine Candidate Design against Delta Strain of SARS-CoV-2 Revealed Disruption of Favored Codon Pair as a Better Strategy over Using Rare Codons. Vaccines (Basel) 2023; 11:487. [PMID: 36851364 PMCID: PMC9967482 DOI: 10.3390/vaccines11020487] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
The SARS-CoV-2 delta variant (B.1.617.2) appeared for the first time in December 2020 and later spread worldwide. Currently available vaccines are not so efficacious in curbing the viral pathogenesis of the delta strain of COVID; therefore, the development of a safe and effective vaccine is required. In the present study, we envisaged molecular patterns in the structural genes' spike, nucleoprotein, membrane, and envelope of the SARS-CoV-2 delta variant. The study was based on determining compositional features, dinucleotide odds ratio, synonymous codon usage, positive and negative codon contexts, rare codons, and insight into relatedness between the human host isoacceptor tRNA and preferred codons from the structural genes. We found specific patterns, including a significant abundance of T nucleotide over all other three nucleotides. The underrepresentation of GpA, GpG, CpC, and CpG dinucleotides and the overrepresentation of TpT, ApA, CpT, and TpG were observed. A preference towards ACT- (Thr), AAT- (Asn), TTT- (Phe), and TTG- (Leu) initiated codons and aversion towards CGG (Arg), CCG (Pro), and CAC (His) was present in the structural genes of the delta strain. The interaction between the host tRNA pool and preferred codons of the envisaged structural genes revealed that the virus preferred the codons for those suboptimal numbers of isoacceptor tRNA were present. We see this as a strategy adapted by the virus to keep the translation rate low to facilitate the correct folding of viral proteins. The information generated in the study helps design the attenuated vaccine candidate against the SARS-CoV-2 delta variant using a synthetic biology approach. Three strategies were tested: changing TpT to TpA, introducing rare codons, and disrupting favored codons. It found that disrupting favored codons is a better approach to reducing virus fitness and attenuating SARS-CoV-2 delta strain using structural genes.
Collapse
Affiliation(s)
- Pankaj Gurjar
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| | - Noushad Karuvantevida
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| | | | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah Universty, Bhopal 462026, India
| |
Collapse
|
3
|
Eldemery F, Ou C, Kim T, Spatz S, Dunn J, Silva R, Yu Q. Evaluation of Newcastle disease virus LaSota strain attenuated by codon pair deoptimization of the HN and F genes for in ovo vaccination. Vet Microbiol 2023; 277:109625. [PMID: 36563582 DOI: 10.1016/j.vetmic.2022.109625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/22/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
In ovo vaccination is an attractive immunization approach for the poultry industry. However, commonly used Newcastle disease virus (NDV) vaccines cannot be administered in ovo because of the reduced hatchability and embryo mortality. The codon pair deoptimization (CPD) approach has been used to efficiently and rapidly attenuate viruses by targeting the virulence genes. In this study, we aimed to attenuate the NDV LaSota (LS) vaccine strain for in ovo vaccination by CPD of the fusion (F) or/and hemagglutinin-neuraminidase (HN) genes with approximately 44 % suboptimal codon substitutions. Three NDV LS recombinants expressing codon deoptimized F (rLS/F-d), HN (rLS/HN-d), or both genes (rLS/F+HN-d) were generated using reverse genetics technology. Biological assays showed that the CPD viruses retained similar hemagglutination activity and growth ability to the parental rLS virus. The CPD of the HN gene slightly attenuated the rLS/HN-d and rLS/F+HN-d viruses, whereas the CPD of the F gene marginally increased the rLS/F-d virus pathogenicity compared to rLS. Nevertheless, all three CPD rLS viruses were still lethal to 10-day-old specific-pathogen-free (SPF) chicken embryos. In ovo inoculation of 18-day-old SPF chicken embryos with the CPD viruses severely reduced chicken's hatch and survival rates. These results suggested that the CPD of the surface glycoprotein genes of the LS strain at the current level of suboptimal codon substitutions could not sufficiently attenuate the virus for use as an in ovo vaccine, and codon deoptimizing a greater proportion of the F and HN genes or additional gene(s) may be required for sufficient attenuation of the LS strain.
Collapse
Affiliation(s)
- Fatma Eldemery
- Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA; Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Changbo Ou
- Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA; College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Taejoong Kim
- Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA
| | - Stephen Spatz
- Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA
| | - John Dunn
- Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA
| | - Robert Silva
- Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA
| | - Qingzhong Yu
- Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA.
| |
Collapse
|
4
|
Khandia R, Pandey MK, Khan AA, Rzhepakovsky IV, Gurjar P, Karobari MI. Codon Usage and Context Analysis of Genes Modulated during SARS-CoV-2 Infection and Dental Inflammation. Vaccines (Basel) 2022; 10:1874. [PMID: 36366382 PMCID: PMC9695912 DOI: 10.3390/vaccines10111874] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2024] Open
Abstract
The overexpression of SARS-CoV-2 primary receptors and co-receptors (ACE2, TMPRSS2, FURIN, and CD147) enhance the likeliness of SARS-CoV-2 infection. The genes for same receptors are overexpressed in the periodontal tissues of periodontitis patients. On the other hand, BMAL1 is recognized to play a crucial role in regulating pulmonary inflammation and enhancing susceptibility to viral infection. Silenced BMAL1 disrupts circadian transcriptional regulations, enhances vulnerability to SARS-CoV-2 infections, and may trigger the further production of TNF-α and other pro-inflammatory cytokines that propagate the cytokine storm and exacerbate periodontal inflammation. Therefore ACE2, TMPRSS2, FURIN, CD147, and BMAL1 are the crossroads between SARS-CoV-2 and Periodontitis genes. The enhanced expression of ACE2, TMPRSS2, FURIN, and CD147 and the diminished expression of BMAL1 may be a strategy to check both ailments simultaneously. In gene manipulation techniques, oligos are introduced, which contain all the necessary information to manipulate gene expression. The data are derived from the studies on genes' molecular patterns, including nucleotide composition, dinucleotide patterns, relative synonymous codon usage, codon usage bias, codon context, and rare and abundant codons. Such information may be used to manipulate the overexpression and underexpression of the genes at the time of SARS-CoV-2 infection and periodontitis to mitigate both ailments simultaneously; it can be explored to uncover possible future treatments.
Collapse
Affiliation(s)
- Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal 462026, India
| | - Megha Katare Pandey
- Department of Translational Medicine, All India Institute of Medical Sciences, Bhopal 462020, India
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Pankaj Gurjar
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| | - Mohmed Isaqali Karobari
- Conservative Dentistry Unit, School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
- Department of Conservative Dentistry & Endodontics, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences University, Chennai 600077, India
- Department of Restorative Dentistry & Endodontics, University of Puthisastra, Phnom Penh 12211, Cambodia
| |
Collapse
|
5
|
Singh T, Yadav SK, Vainstein A, Kumar V. Genome recoding strategies to improve cellular properties: mechanisms and advances. ABIOTECH 2021; 2:79-95. [PMID: 34377578 PMCID: PMC7675020 DOI: 10.1007/s42994-020-00030-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 10/07/2020] [Indexed: 11/10/2022]
Abstract
The genetic code, once believed to be universal and immutable, is now known to contain many variations and is not quite universal. The basis for genome recoding strategy is genetic code variation that can be harnessed to improve cellular properties. Thus, genome recoding is a promising strategy for the enhancement of genome flexibility, allowing for novel functions that are not commonly documented in the organism in its natural environment. Here, the basic concept of genetic code and associated mechanisms for the generation of genetic codon variants, including biased codon usage, codon reassignment, and ambiguous decoding, are extensively discussed. Knowledge of the concept of natural genetic code expansion is also detailed. The generation of recoded organisms and associated mechanisms with basic targeting components, including aminoacyl-tRNA synthetase-tRNA pairs, elongation factor EF-Tu and ribosomes, are highlighted for a comprehensive understanding of this concept. The research associated with the generation of diverse recoded organisms is also discussed. The success of genome recoding in diverse multicellular organisms offers a platform for expanding protein chemistry at the biochemical level with non-canonical amino acids, genetically isolating the synthetic organisms from the natural ones, and fighting viruses, including SARS-CoV2, through the creation of attenuated viruses. In conclusion, genome recoding can offer diverse applications for improving cellular properties in the genome-recoded organisms.
Collapse
Affiliation(s)
- Tanya Singh
- Department of Botany, School of Basic Sciences, Central University of Punjab, Bathinda, 151001 India
| | | | - Alexander Vainstein
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Vinay Kumar
- Department of Botany, School of Basic Sciences, Central University of Punjab, Bathinda, 151001 India
| |
Collapse
|
6
|
Song H, Zhong LP, He J, Huang Y, Zhao YX. Application of Newcastle disease virus in the treatment of colorectal cancer. World J Clin Cases 2019; 7:2143-2154. [PMID: 31531310 PMCID: PMC6718777 DOI: 10.12998/wjcc.v7.i16.2143] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/21/2019] [Accepted: 07/20/2019] [Indexed: 02/05/2023] Open
Abstract
Colorectal cancer (CRC) is one of the main reasons of tumor-related deaths worldwide. At present, the main treatment is surgery, but the results are unsatisfactory, and the prognosis is poor. The majority of patients die due to liver or lung metastasis or recurrence. In recent years, great progress has been made in the field of tumor gene therapy, providing a new treatment for combating CRC. As oncolytic viruses selectively replicate almost exclusively in the cytoplasm of tumor cells and do not require integration into the host genome, they are safer, more effective and more attractive as oncolytic agents. Newcastle disease virus (NDV) is a natural RNA oncolytic virus. After NDV selectively infects tumor cells, the immune response induced by NDV’s envelope protein and intracellular factors can effectively kill the tumor without affecting normal cells. Reverse genetic techniques make NDV a vector for gene therapy. Arming the virus by inserting various exogenous genes or using NDV in combination with immunotherapy can also improve the anti-CRC capacity of NDV, and good results have been achieved in animal models and clinical treatment trials. This article reviews the molecular biological characteristics and oncolytic mechanism of NDV and discusses in vitro and in vivo experiments on NDV anti-CRC capacity and clinical treatment. In conclusion, NDV is an excellent candidate for cancer treatment, but more preclinical studies and clinical trials are needed to ensure its safety and efficacy.
Collapse
Affiliation(s)
- Hui Song
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Li-Ping Zhong
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Jian He
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yong Huang
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yong-Xiang Zhao
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
7
|
Song Y, Pei Y, Yang YL, Xue J, Zhang GZ. The Ntail region of nucleocapsid protein is associated with the pathogenicity of pigeon paramyxovirus type 1 in chickens. J Gen Virol 2019; 100:950-957. [PMID: 31050626 DOI: 10.1099/jgv.0.001264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The nucleoprotein (NP) of pigeon paramyxovirus type 1 (PPMV-1) and other paramyxoviruses plays an important role in virus proliferation. A previous study found that NP is associated with the low pathogenicity of PPMV-1 strains in chickens. Here, we investigated which domain of NP is responsible for regulating the pathogenicity of PPMV-1. We found that the Ntail sequences were more diverse for different viral genotypes compared to Ncore sequences. The chimeric rBJ-SG10Ntail strain caused more severe clinical symptoms than the parental rBJ strain, increased the viral copy number in sampled tissues and induced higher IFN-γ gene expression. This demonstrated that the Ntail sequence plays a role in regulating viral virulence. These findings increase our understanding of the Ntail of NP protein and the virulence factors associated with PPMV-1.
Collapse
Affiliation(s)
- Yang Song
- 1 Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Yu Pei
- 1 Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Yan-Ling Yang
- 1 Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Jia Xue
- 1 Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Guo-Zhong Zhang
- 1 Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| |
Collapse
|