1
|
Sun Q, Xu H, An T, Cai X, Tian Z, Zhang H. Recent Progress in Studies of Porcine Reproductive and Respiratory Syndrome Virus 1 in China. Viruses 2023; 15:1528. [PMID: 37515213 PMCID: PMC10384046 DOI: 10.3390/v15071528] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Due to the high incidence of PRRSV mutation and recombination, PRRSV infection is difficult to prevent and control in China and worldwide. Two species of PRRSV, Betaarterivirus suid 1 (PRRSV-1) and Betaarterivirus suid 2 (PRRSV-2), exist in China, and PRRSV-1 has always received less attention in China. However, the number of PRRSV-1 strains detected in China has increased recently. To date, PRRSV-1 has spread to more than 23 regions in China. Based on the phylogenetic analysis of ORF5 and the whole genome of PRRSV-1, Chinese PRRSV-1 can be divided into at least seven independent subgroups. Among them, BJEU06-1-like has become the mainstream subgroup in some regions of China. This subgroup of strains has a 5-aa (4 + 1) characteristic discontinuous deletion pattern at aa 357~aa 360 and aa 411 in Nsp2. Previous studies have indicated that the pathogenicity of PRRSV-1 in China is mild, but recent studies found that the pathogenicity of PRRSV-1 was enhanced in China. Therefore, the emergence of PRRSV-1 deserves attention, and the prevention and control of PRRSV-1 infection in China should be strengthened. PRRSV infection is usually prevented and controlled by a combination of virus monitoring, biosafety restrictions, herd management measures and vaccination. However, the use of PRRSV-1 vaccines is currently banned in China. Thus, we should strengthen the monitoring of PRRSV-1 and the biosafety management of pig herds in China. In this review, we summarize the prevalence of PRRSV-1 in China and clarify the genomic characteristics, pathogenicity, vaccine status, and prevention and control management system of PRRSV-1 in China. Consequently, the purpose of this review is to provide a basis for further development of prevention and control measures for PRRSV-1.
Collapse
Affiliation(s)
- Qi Sun
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin 150001, China
| | - Hu Xu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin 150001, China
| | - Tongqing An
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin 150001, China
| | - Xuehui Cai
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin 150001, China
| | - Zhijun Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin 150001, China
| | - Hongliang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin 150001, China
| |
Collapse
|
2
|
Lee MA, Jayaramaiah U, You SH, Shin EG, Song SM, Ju L, Kang SJ, Hyun BH, Lee HS. Molecular Characterization of Porcine Reproductive and Respiratory Syndrome Virus in Korea from 2018 to 2022. Pathogens 2023; 12:757. [PMID: 37375447 DOI: 10.3390/pathogens12060757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is an endemic disease in the Republic of Korea. Surveillance of PRRS virus (PRRSV) types is critical to tailor control measures. This study collected 5062 serum and tissue samples between 2018 and 2022. Open reading frame 5 (ORF5) sequences suggest that subgroup A (42%) was predominant, followed by lineage 1 (21%), lineage 5 (14%), lineage Korea C (LKC) (9%), lineage Korea B (LKB) (6%), and subtype 1C (5%). Highly virulent lineages 1 (NADC30/34/MN184) and 8 were also detected. These viruses typically mutate or recombine with other viruses. ORF5 and non-structural protein 2 (NSP2) deletion patterns were less variable in the PRRSV-1. Several strains belonging to PRRSV-2 showed differences in NSP2 deletion and ORF5 sequences. Similar vaccine-like isolates to the PRRSV-1 subtype 1C and PRRSV-2 lineage 5 were also found. The virus is evolving independently in the field and has eluded vaccine protection. The current vaccine that is used in Korea offers only modest or limited heterologous protection. Ongoing surveillance to identify the current virus strain in circulation is necessary to design a vaccine. A systemic immunization program with region-specific vaccinations and stringent biosecurity measures is required to reduce PRRSV infections in the Republic of Korea.
Collapse
Affiliation(s)
- Min-A Lee
- Viral Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin-ro, Gimcheon-si 39660, Republic of Korea
| | - Usharani Jayaramaiah
- Viral Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin-ro, Gimcheon-si 39660, Republic of Korea
| | - Su-Hwa You
- Viral Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin-ro, Gimcheon-si 39660, Republic of Korea
| | - Eun-Gyeong Shin
- Viral Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin-ro, Gimcheon-si 39660, Republic of Korea
| | - Seung-Min Song
- Viral Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin-ro, Gimcheon-si 39660, Republic of Korea
| | - Lanjeong Ju
- Viral Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin-ro, Gimcheon-si 39660, Republic of Korea
| | - Seok-Jin Kang
- Viral Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin-ro, Gimcheon-si 39660, Republic of Korea
| | - Bang-Hun Hyun
- Viral Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin-ro, Gimcheon-si 39660, Republic of Korea
| | - Hyang-Sim Lee
- Viral Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin-ro, Gimcheon-si 39660, Republic of Korea
| |
Collapse
|
3
|
Cui XY, Xia DS, Huang XY, Tian XX, Wang T, Yang YB, Wang G, Wang HW, Sun Y, Xiao YH, Tian ZJ, Cai XH, An TQ. Recombinant characteristics, pathogenicity, and viral shedding of a novel PRRSV variant derived from twice inter-lineage recombination. Vet Microbiol 2022; 271:109476. [PMID: 35679815 DOI: 10.1016/j.vetmic.2022.109476] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 10/18/2022]
|
4
|
Recombination between the Fostera MLV-like Strain and the Strain Belonging to Lineage 1 of Porcine Reproductive and Respiratory Syndrome Virus in Korea. Viruses 2022; 14:v14061153. [PMID: 35746625 PMCID: PMC9229315 DOI: 10.3390/v14061153] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 02/04/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important pathogens in the swine industry worldwide. In Korea, Fostera PRRS commercial modified live virus (MLV) vaccines have been used since 2014 to control the PRRSV infection. In this study, two PRRSV-2 strains (20D160-1 and 21R2-63-1) were successfully isolated, and their complete genomic sequences were determined. Genetic analysis showed that the two isolates have recombination events between the P129-like strain derived from the Fostera PRRS MLV vaccine and the strain of lineage 1. The 20D160-1 indicated that partial ORF2 to partial ORF4 of the minor parental KNU-1902-like strain, which belongs to Korean lineage C (Kor C) of lineage 1, was inserted into the major parental P129-like strain. The 21R2-63-1 revealed that partial ORF1b of the P129-like strain was inserted into the backbone of the NADC30-like strain. This study is the first to report natural recombinant strains between Fostera PRRS MLV-like strain and the field strain in Korea. These results may have significant implications for MLV evolution and the understanding of PRRSV genetic diversity, while highlighting the need for continuous surveillance of PRRSV.
Collapse
|
5
|
Lineage 1 Porcine Reproductive and Respiratory Syndrome Virus Attenuated Live Vaccine Provides Broad Cross-Protection against Homologous and Heterologous NADC30-Like Virus Challenge in Piglets. Vaccines (Basel) 2022; 10:vaccines10050752. [PMID: 35632508 PMCID: PMC9146329 DOI: 10.3390/vaccines10050752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/19/2022] [Accepted: 05/08/2022] [Indexed: 12/20/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is an important pathogen that endangers the swine industry worldwide. Recently, lineage 1 PRRSVs, especially NADC30-like PRRSVs, have become the major endemic strains in many pig-breeding countries. Since 2016, NADC30-like PRRSV has become the predominant strain in China. Unfortunately, current commercial vaccines cannot provide sufficient protection against this strain. Here, an attenuated lineage 1 PRRSV strain, named SD-R, was obtained by passaging an NADC30-like PRRSV strain SD in Marc-145 cells for 125 passages. Four-week-old PRRSV-free piglets were vaccinated intramuscularly with 105.0TCID50 SD-R and then challenged intramuscularly (2 mL) and intranasally (2 mL) with homologous NADC30-like PRRSV SD (1 × 105.0TCID50/mL) and heterologous NADC30-like PRRSV HLJWK108-1711 (1 × 105.0TCID50/mL). The results showed that antibodies against specific PRRSVs in 5 of 5 immunized piglets were positive after a 14-day post-vaccination and did not develop fever or clinical diseases after NADC30-like PRRSV challenges. Additionally, compared with challenge control piglets, vaccinated piglets gained significantly more weight and showed much milder pathological lesions. Furthermore, the viral replication levels of the immunized group were significantly lower than those of the challenge control group. These results demonstrate that lineage 1 PRRSV SD-R is a good candidate for an efficacious vaccine, providing complete clinical protection for piglets against NADC30-like PRRSVs.
Collapse
|
6
|
Whole-genome sequencing and genetic characteristics of representative porcine reproductive and respiratory syndrome virus (PRRSV) isolates in Korea. Virol J 2022; 19:66. [PMID: 35410421 PMCID: PMC8996673 DOI: 10.1186/s12985-022-01790-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 03/23/2022] [Indexed: 12/04/2022] Open
Abstract
Background Porcine reproductive and respiratory syndrome virus (PRRSV) is a macrophage-tropic arterivirus with extremely high genetic and pathogenic heterogeneity that causes significant economic losses in the swine industry worldwide. PRRSV can be divided into two species [PRRSV1 (European) and PRRSV2 (North American)] and is usually diagnosed and genetically differentiated into several lineages based on the ORF5 gene, which constitutes only 5% of the whole genome. This study was conducted to achieve nonselective amplification and whole-genome sequencing (WGS) based on a simplified sequence-independent, single-primer amplification (SISPA) technique with next-generation sequencing (NGS), and to genetically characterize Korean PRRSV field isolates at the whole genome level. Methods The SISPA-NGS method coupled with a bioinformatics pipeline was utilized to retrieve full length PRRSV genomes of 19 representative Korean PRRSV strains by de novo assembly. Phylogenetic analysis, analysis of the insertion and deletion (INDEL) pattern of nonstructural protein 2 (NSP2), and recombination analysis were conducted. Results Nineteen complete PRRSV genomes were obtained with a high depth of coverage by the SISPA-NGS method. Korean PRRSV1 belonged to the Korean-specific subtype 1A and vaccine-related subtype 1C lineages, showing no evidence of recombination and divergent genetic heterogeneity with conserved NSP2 deletion patterns. Among Korean PRRSV2 isolates, modified live vaccine (MLV)-related lineage 5 viruses, lineage 1 viruses, and nation-specific Korean lineages (KOR A, B and C) could be identified. The NSP2 deletion pattern of the Korean lineages was consistent with that of the MN-184 strain (lineage 1), which indicates the common ancestor and independent evolution of Korean lineages. Multiple recombination signals were detected from Korean-lineage strains isolated in the 2010s, suggesting natural interlineage recombination between circulating KOR C and MLV strains. Interestingly, the Korean strain GGYC45 was identified as a recombinant KOR C and MLV strain harboring the KOR B ORF5 gene and might be the ancestor of currently circulating KOR B strains. Additionally, two novel lineage 1 recombinants of NADC30-like and NADC34-like viruses were detected. Conclusion Genome-wide analysis of Korean PRRSV isolates retrieved by the SISPA-NGS method and de novo assembly, revealed complex evolution and recombination in the field. Therefore, continuous surveillance of PRRSV at the whole genome level should be conducted, and new vaccine strategies for more efficient control of the virus are needed. Supplementary Information The online version contains supplementary material available at 10.1186/s12985-022-01790-6.
Collapse
|
7
|
Akter F, Roychoudhury P, Dutta TK, Subudhi PK, Kumar S, Gali JM, Behera P, Singh YD. Isolation and molecular characterization of GP5 glycoprotein gene of Betaarterivirus suid 2 from Mizoram, India. Virusdisease 2021; 32:748-756. [PMID: 34458505 PMCID: PMC8378527 DOI: 10.1007/s13337-021-00735-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 08/04/2021] [Indexed: 11/25/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a serious swine disease causing great economic impact worldwide. The emergence of highly pathogenic strains in Asian countries is associated with large scale mortality in all age groups of pigs besides the classical presentation of severe respiratory distress, pneumonia, and a series of reproductive disorders in sows, like late-term abortion, premature farrowing, and an increased number of stillborn piglets. The present study was designed with the aim of isolation and characterization of the Betaarterivirus suid 2 from outbreaks in Mizoram in primary porcine alveolar macrophage and subsequently characterized the GP5 gene sequence of the isolate in terms of phylogenetic analysis and deduce amino acid sequence comparison. Virus propagation was performed in the porcine alveolar macrophage (PAM) primary cell culture and confirmed by immunoperoxidase test, FAT, and nested RT-PCR. The full-length GP5 gene (603nt) was amplified from the isolate and subsequently cloned and sequenced (MN928985). Phylogenetic analysis and sequence comparison of the present isolate was found to have similarity 98.7-98.8% with Myanmar HP-PRRS strains, 98-98.5% with Vietnam strains, 98.2-98.3% with China strains, indicating a close lineage with highly pathogenic PRRS strains. In deduced amino acid sequence analysis, one mutation was found in the primary neutralizing epitope (PNE) at position 39L → I39 and one more mutation was also found in the decoy epitope (DCE) at position 30 N → D30. The amino acid at this position is an N-linked glycosylation site, and mutation of the N-linked glycosylation is an immune escaped strategy adopted by this virus causing a persistent infection in the natural host.
Collapse
Affiliation(s)
- Fatema Akter
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, CAU, Aizawl, Mizoram India
| | - Parimal Roychoudhury
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, CAU, Aizawl, Mizoram India
| | - Tapan Kumar Dutta
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, CAU, Aizawl, Mizoram India
| | - Prasant Kumar Subudhi
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, CAU, Aizawl, Mizoram India
| | - Sanjeev Kumar
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, CAU, Aizawl, Mizoram India
| | - Jagan Mohanarao Gali
- Department of Veterinary Physiology and Biochemistry, College of Veterinary Sciences and Animal Husbandry, CAU, Aizawl, Mizoram India
| | - Parthasarathi Behera
- Department of Veterinary Physiology and Biochemistry, College of Veterinary Sciences and Animal Husbandry, CAU, Aizawl, Mizoram India
| | - Yengkhom Damodar Singh
- Department of Veterinary Pathology, College of Veterinary Sciences and Animal Husbandry, CAU, Aizawl, Mizoram India
| |
Collapse
|
8
|
Zhao J, Zhu L, Huang J, Yang Z, Xu L, Gu S, Huang Y, Zhang R, Sun X, Zhou Y, Xu Z. Genetic characterization of a novel recombined porcine reproductive and respiratory syndrome virus 2 among Nadc30-like, Jxa1-like and TJ-like strains. Vet Med Sci 2020; 7:697-704. [PMID: 33277984 PMCID: PMC8136965 DOI: 10.1002/vms3.402] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 02/03/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the most economically devastating viral diseases in the global pig industry, including China. Recently, we successfully isolated a porcine reproductive and respiratory syndrome virus (PRRSV) from lung tissue and peripheral blood of piglets at a farm from Dujiangyan in Sichuan, China, and named it the DJY-19 strain. The full-length genome sequence of DJY-19 shared 86.8%-94.1% nucleotide similarity with NADC30-like and NADC30 PRRSV strains. We compared the open reading frame (ORF) 5 gene of DJY-19 with 34 PRRSV strains from Genbank. Phylogenetic analysis showed that DJY-19 clustered with NADC30 strains, characterized by a predicted 131-amino-acid deletion in the nonstructural protein (NSP) 2. The results of homology analysis showed that the homology between DJY-19 and NADC30 (JN654459.1) strains was the highest (95.9%), whereas homology with other domestic strains was lower (80.9%-92.6%). Furthermore, we identified four recombination breakpoints in the DJY-19 genome; they separated the DJY-19 genome into four regions. The 8106-9128 nucleotide (nt) region of DIY-19 was highly similar to the TJ strain, and the 12106-12580 nt region of DIY-19 was highly similar to the JXA1-R strain. Our findings demonstrate that DJY-19 arose from the recombination of North America NADC30 strain and TJ strain and JXA1-R in China. The application of multiple attenuated vaccine strains has led to complex recombination of PRRSV strains in China. This study provides a theoretical basis for making a more reasonable PRRS virus control and prevention strategy.
Collapse
Affiliation(s)
- Jun Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhu
- College of Veterinary Medicine, Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jianbo Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zexiao Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lei Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sirui Gu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yao Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Rubo Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiangang Sun
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuancheng Zhou
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Zhiwen Xu
- College of Veterinary Medicine, Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
9
|
Assessment of the Impact of the Recombinant Porcine Reproductive and Respiratory Syndrome Virus Horsens Strain on the Reproductive Performance in Pregnant Sows. Pathogens 2020; 9:pathogens9090772. [PMID: 32967283 PMCID: PMC7559163 DOI: 10.3390/pathogens9090772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 11/18/2022] Open
Abstract
This study assessed the impact of a PRRSV (porcine reproductive and respiratory syndrome virus) recombinant strain (Horsens strain) on the reproductive performance of naïve pregnant sows in the last third of gestation. Fifteen sows were included: four negative reproductive controls (NTX), five infected with a PRRSV-1 field strain (Olot/91, T01), and six infected with the recombinant PRRSV-1 strain (Horsens strain, T02). Piglets were monitored until weaning. Reproductive performance was the primary variable. In sows, viremia and nasal shedding (T01 and T02 groups), and, in piglets, viral load in blood and in lungs, as well as macroscopic lung lesions (T01 and T02 groups), were the secondary variables. The reproductive performance results were numerically different between the two challenged groups. Moreover, viral loads in blood were 1.83 × 106 ± 9.05 × 106 copies/mL at farrowing, 1.05 × 107 ± 2.21 × 107 copies/mL at weaning from piglets born from T01 animals and 1.64 × 103 ± 7.62 × 103 copies/mL at farrowing, 1.95 × 103 ± 1.17 × 104 copies/mL at weaning from piglets born from T02 sows. Overall, 68.8% of T01 piglets and 38.1% of T02 piglets presented mild lung lesions. In conclusion, the results suggest that Horsens strain is less virulent than the field strain Olot/91 under these experimental conditions.
Collapse
|
10
|
Molecular and Cellular Mechanisms for PRRSV Pathogenesis and Host Response to Infection. Virus Res 2020; 286:197980. [PMID: 32311386 PMCID: PMC7165118 DOI: 10.1016/j.virusres.2020.197980] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/13/2020] [Accepted: 04/13/2020] [Indexed: 12/11/2022]
Abstract
PRRSV has evolved to arm with various strategies to modify host antiviral response. Viral modulation of homeostatic cellular processes provides favorable conditions for PRRSV survival during infection. PRRSV modulation of cellular processes includes pathways for interferons, apoptosis, microRNAs, cytokines, autophagy, and viral genome recombination.
Porcine reproductive and respiratory syndrome virus (PRRSV) has caused tremendous amounts of economic losses to the swine industry for more than three decades, but its control is still unsatisfactory. A significant amount of information is available for host cell-virus interactions during infection, and it is evident that PRRSV has evolved to equip various strategies to disrupt the host antiviral system and provide favorable conditions for survival. The current study reviews viral strategies for modulations of cellular processes including innate immunity, apoptosis, microRNAs, inflammatory cytokines, and other cellular pathways.
Collapse
|