1
|
Častorálová M, Sýs J, Prchal J, Pavlů A, Prokopová L, Briki Z, Hubálek M, Ruml T. A myristoyl switch at the plasma membrane triggers cleavage and oligomerization of Mason-Pfizer monkey virus matrix protein. eLife 2024; 13:e93489. [PMID: 38517277 PMCID: PMC11014724 DOI: 10.7554/elife.93489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/10/2024] [Indexed: 03/23/2024] Open
Abstract
For most retroviruses, including HIV, association with the plasma membrane (PM) promotes the assembly of immature particles, which occurs simultaneously with budding and maturation. In these viruses, maturation is initiated by oligomerization of polyprotein precursors. In contrast, several retroviruses, such as Mason-Pfizer monkey virus (M-PMV), assemble in the cytoplasm into immature particles that are transported across the PM. Therefore, protease activation and specific cleavage must not occur until the pre-assembled particle interacts with the PM. This interaction is triggered by a bipartite signal consisting of a cluster of basic residues in the matrix (MA) domain of Gag polyprotein and a myristoyl moiety N-terminally attached to MA. Here, we provide evidence that myristoyl exposure from the MA core and its insertion into the PM occurs in M-PMV. By a combination of experimental methods, we show that this results in a structural change at the C-terminus of MA allowing efficient cleavage of MA from the downstream region of Gag. This suggests that, in addition to the known effect of the myristoyl switch of HIV-1 MA on the multimerization state of Gag and particle assembly, the myristoyl switch may have a regulatory role in initiating sequential cleavage of M-PMV Gag in immature particles.
Collapse
Affiliation(s)
- Markéta Častorálová
- Department of Biochemistry and Microbiology, University of Chemistry and TechnologyPragueCzech Republic
| | - Jakub Sýs
- Department of Biochemistry and Microbiology, University of Chemistry and TechnologyPragueCzech Republic
- Institute of Organic Chemistry and Biochemistry of Czech Academy of SciencePragueCzech Republic
| | - Jan Prchal
- Department of Biochemistry and Microbiology, University of Chemistry and TechnologyPragueCzech Republic
| | - Anna Pavlů
- Department of Biochemistry and Microbiology, University of Chemistry and TechnologyPragueCzech Republic
| | - Lucie Prokopová
- Department of Biochemistry and Microbiology, University of Chemistry and TechnologyPragueCzech Republic
| | - Zina Briki
- Department of Biochemistry and Microbiology, University of Chemistry and TechnologyPragueCzech Republic
| | - Martin Hubálek
- Institute of Organic Chemistry and Biochemistry of Czech Academy of SciencePragueCzech Republic
| | - Tomas Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and TechnologyPragueCzech Republic
| |
Collapse
|
2
|
Miller RM, Knoener RA, Benner BE, Frey BL, Scalf M, Shortreed MR, Sherer NM, Smith LM. Discovery of Dehydroamino Acid Residues in the Capsid and Matrix Structural Proteins of HIV-1. J Proteome Res 2022; 21:993-1001. [PMID: 35192358 PMCID: PMC8976760 DOI: 10.1021/acs.jproteome.1c00867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) remains a deadly infectious disease despite existing antiretroviral therapies. A comprehensive understanding of the specific mechanisms of viral infectivity remains elusive and currently limits the development of new and effective therapies. Through in-depth proteomic analysis of HIV-1 virions, we discovered the novel post-translational modification of highly conserved residues within the viral matrix and capsid proteins to the dehydroamino acids, dehydroalanine and dehydrobutyrine. We further confirmed their presence by labeling the reactive alkene, characteristic of dehydroamino acids, with glutathione via Michael addition. Dehydroamino acids are rare, understudied, and have been observed mainly in select bacterial and fungal species. Until now, they have not been observed in HIV proteins. We hypothesize that these residues are important in viral particle maturation and could provide valuable insight into HIV infectivity mechanisms.
Collapse
Affiliation(s)
- Rachel M Miller
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Rachel A Knoener
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States.,McArdle Laboratory for Cancer Research and Institute for Molecular Virology, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Bayleigh E Benner
- McArdle Laboratory for Cancer Research and Institute for Molecular Virology, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Brian L Frey
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Mark Scalf
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Michael R Shortreed
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Nathan M Sherer
- McArdle Laboratory for Cancer Research and Institute for Molecular Virology, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|