1
|
Zhu H, Li X, Li X, Chen H, Qian P. Protection against the H1N1 influenza virus using self-assembled nanoparticles formed by lumazine synthase and bearing the M2e peptide. Virology 2024; 597:110162. [PMID: 38955082 DOI: 10.1016/j.virol.2024.110162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
There is an urgent need for influenza vaccines that offer broad cross-protection. The highly conserved ectodomain of the influenza matrix protein 2 (M2e) is a promising candidate; however, its low immunogenicity can be addressed. In this study, we developed influenza vaccines using the Lumazine synthase (LS) platform. The primary objective of this study was to determine the protective potential of M2e proteins expressed on Lumazine synthase (LS) nanoparticles. M2e-LS proteins, produced through the E. coli system, spontaneously assemble into nanoparticles. The study investigated the efficacy of the M2e-LS nanoparticle vaccine in mice. Mice immunized with M2e-LS nanoparticles exhibited significantly higher levels of intracellular cytokines than those receiving soluble M2e proteins. The M2e-LS protein exhibited robust immunogenicity and provided 100% protection against cross-clade influenza.
Collapse
Affiliation(s)
- Hechao Zhu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Guangxi Yangxiang Co., LTD, Guigang, 537100, China
| | - Xinxin Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xiangmin Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Ping Qian
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
2
|
Yin W, Xu Z, Chang C, Zhao Y, Wang H, Zhang J, Ma F, Zuo X, Tang B, Lu Y. Alginate di-aldehyde-modified metal-organic framework nanocarriers as delivery platform and adjuvant in inactivated pseudorabies vaccination. MATERIALS HORIZONS 2024; 11:2153-2168. [PMID: 38376908 DOI: 10.1039/d3mh02251j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Pseudorabies virus (PRV) is a highly contagious viral disease, which leads to severe financial losses in the breeding industry worldwide. Presently, PRV is mainly controlled using live attenuated and inactivated vaccines. However, these vaccines have an innate tendency to lose their structural conformation upon exposure to environmental and chemical stressors and cannot provide full protection against the emerging prevalent PRV variants. In this work, first, we synthesized aminated ZIF-7/8 nanoparticles (NPs), and then chemical bond-coated alginate dialdehyde (ADA, a type of dioxide alginate saccharide) on their surface via Schiff base reaction to obtain ZIF-7/8-ADA NPs. The as-fabricated ZIF-7/8-ADA NPs exhibited high stability, monodispersity and a high loading ratio of antigen. Furthermore, the ZIF-7/8-ADA NPs showed good biocompatibility in vitro and in vivo. Using ZIF-7/8-ADA NPs as an adjuvant and inactivated PRV as a model antigen, we constructed a PR vaccine through a simple mixture. The immunity studies indicated that ZIF-7/8-ADA induced an enhancement in the Th1/Th2 immune response, which was superior to that of the commercial ISA201, alum adjuvant and ZIF-7/8. Due to the pH-sensitive release of the antigen in lysosomes, the as-prepared PR vaccine subsequently accelerated the antigen presentation and improved the immune responses in vitro and in vivo. The results of PRV challenge using mice as the model demonstrated that ZIF-7/8-ADA achieved the same preventive effect as the commercial ISA201 and was much better than the alum adjuvant, and thus can serve as a promising delivery system and adjuvant to enhance humoral and cellular responses against PRV infection.
Collapse
Affiliation(s)
- Wenzhu Yin
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
| | - Zeyu Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Chen Chang
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Yanhong Zhao
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Haiyan Wang
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Jinqiu Zhang
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Fang Ma
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Xiaoxin Zuo
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Bo Tang
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Lu
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
| |
Collapse
|
3
|
Peng Y, Yan H, Zhang J, Peng R, Feng X, Su J, Yi H, Lu Y, Chen Z. Potent immune responses against thermostable Foot-and-Mouth disease virus VP1 nanovaccine adjuvanted with polymeric thermostable scaffold. Vaccine 2024; 42:732-737. [PMID: 38220487 DOI: 10.1016/j.vaccine.2023.12.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/16/2024]
Abstract
Foot-and-mouth disease (FMD) is an acute zoonosis causes significant economic losses. Vaccines able to stimulate efficient protective immune responses are urgently needed. In this study, Escherichia coli-derived recombinant VP1 of serotype A and O FMD virus (FMDV) was conjugated to thermostable scaffold lumazine synthase (LS) or Quasibacillus thermotolerans encapsulin (QtEnc) using a robust plug-and-display SpyTag/SpyCatcher system to generate multimeric nanovaccines. These nanovaccines induced highly potent antibody responses in vaccinated mice. On day 14 after the first immunisation, antibody titres were approximately 100 times higher than those of monomer antigens. Both vaccines induced high and long-term IgG antibody production. Moreover, the QtEnc-VP1 nanovaccine induced higher antibody titres than the LS-VP1 nanovaccine. The nanovaccines also induced Th1-biased immune responses and higher levels of neutralising antibodies. These data indicated that FMDV nanovaccines generated by conjugating VP1 with a thermostable scaffold are highly immunogenic and ideal candidates for FMDV control in low-resource areas.
Collapse
Affiliation(s)
- Yuanli Peng
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China; NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, 510080, China
| | - Haozhen Yan
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China; NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, 510080, China
| | - Jinsong Zhang
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China; NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, 510080, China
| | - Ruihao Peng
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China; NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, 510080, China
| | - Xiangning Feng
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China; NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, 510080, China
| | - Jiayue Su
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China; NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, 510080, China
| | - Huaimin Yi
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China; NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, 510080, China
| | - Yuying Lu
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China; NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, 510080, China
| | - Zeliang Chen
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China; NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, 510080, China; Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Medical College, Inner Mongolia Minzu University, Tongliao, 028000, P. R. China; Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
4
|
Ren X, Cao N, Tian L, Liu W, Zhu H, Rong Z, Yao M, Li X, Qian P. A self-assembled nanoparticle vaccine based on pseudorabies virus glycoprotein D induces potent protective immunity against pseudorabies virus infection. Vet Microbiol 2023; 284:109799. [PMID: 37327558 DOI: 10.1016/j.vetmic.2023.109799] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/30/2023] [Accepted: 06/04/2023] [Indexed: 06/18/2023]
Abstract
Pseudorabies virus (PRV) mainly causes pseudorabies (PR) or Aujeszky's disease in pigs and can infect humans, raising public health concerns about zoonotic and interspecies transmission of PR. With the emergence of PRV variants in 2011, the classic attenuated PRV vaccine strains have failed to protect many swine herds against PR. Herein, we developed a self-assembled nanoparticle vaccine that induces potent protective immunity against PRV infection. PRV glycoprotein D (gD) was expressed using the baculovirus expression system and further presented on the lumazine synthase (LS) 60-meric protein scaffolds via the SpyTag003/SpyCatcher003 covalent coupling system. In mouse and piglet models, LSgD nanoparticles emulsified with the ISA 201VG adjuvant elicited robust humoral and cellular immune responses. Furthermore, LSgD nanoparticles provided effective protection against PRV infection and eliminated pathological symptoms in the brain and lungs. Collectively, the gD-based nanoparticle vaccine design appears to be a promising candidate for potent protection against PRV infection.
Collapse
Affiliation(s)
- Xujiao Ren
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Nan Cao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Linxing Tian
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Wenqiang Liu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Hechao Zhu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Zhenxiang Rong
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Manman Yao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xiangmin Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, Hubei, China.
| | - Ping Qian
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, Hubei, China.
| |
Collapse
|
5
|
Yang Y, Xia Q, Zhou L, Zhang Y, Guan Z, Zhang J, Li Z, Liu K, Li B, Shao D, Qiu Y, Ma Z, Wei J. B602L-Fc fusion protein enhances the immunogenicity of the B602L protein of the African swine fever virus. Front Immunol 2023; 14:1186299. [PMID: 37426672 PMCID: PMC10324578 DOI: 10.3389/fimmu.2023.1186299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/05/2023] [Indexed: 07/11/2023] Open
Abstract
African swine fever (ASF) is an acute, highly contagious, and deadly infectious disease caused by the African swine fever virus (ASFV) and has a huge impact on the pig industry. A lack of vaccines and effective therapeutic drugs has brought great challenges to the prevention and control of ASF. In this study, insect baculovirus expression system was used to express ASFV B602L protein (B602L) alone and the IgG FC-fused B602L protein (B602L-Fc), and evaluate the immune effect of B602L-Fc in mice model. To be specific, the ASFV B602L protein and B602L-Fc fusion protein were successfully expressed by the insect baculovirus expression system. Then, Functional analysis in vitro revealed that the B602L-Fc fusion protein bound and interacted with the FcRI receptor of antigen-presenting cells and significantly promoted the expression of proteins involved in antigen presentation and various cytokines at mRNA levels in porcine alveolar macrophages. Additionally, immunization using B602L-Fc fusion protein remarkably promoted the Th1-biased cellular immune response and humoral immune response in mice. In conclusion, The B602L-Fc fusion protein could up-regulate the expression of molecules involved in antigen presentation in APCs and enhance the humoral and cellular immune responses in mice. These results suggest that ASFV B602L-Fc recombinant fusion protein may be a promising candidate for subunit vaccine. This study provided useful data for the development of subunit vaccines for ASF.
Collapse
Affiliation(s)
- Yang Yang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Qiqi Xia
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Lujia Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Yan Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhixin Guan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Junjie Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Zongjie Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ke Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Beibei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Donghua Shao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yafeng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
6
|
Ou B, Yang Y, Lv H, Lin X, Zhang M. Current Progress and Challenges in the Study of Adjuvants for Oral Vaccines. BioDrugs 2023; 37:143-180. [PMID: 36607488 PMCID: PMC9821375 DOI: 10.1007/s40259-022-00575-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2022] [Indexed: 01/07/2023]
Abstract
Over the past 20 years, a variety of potential adjuvants have been studied to enhance the effect of oral vaccines in the intestinal mucosal immune system; however, no licensed adjuvant for clinical application in oral vaccines is available. In this review, we systematically updated the research progress of oral vaccine adjuvants over the past 2 decades, including biogenic adjuvants, non-biogenic adjuvants, and their multi-type composite adjuvant materials, and introduced their immune mechanisms of adjuvanticity, aiming at providing theoretical basis for developing feasible and effective adjuvants for oral vaccines. Based on these insights, we briefly discussed the challenges in the development of oral vaccine adjuvants and prospects for their future development.
Collapse
Affiliation(s)
- Bingming Ou
- School of Life Sciences, Zhaoqing University, Zhaoqing, China
| | - Ying Yang
- College of Animal Science, Guizhou University, Guiyang, China
| | - Haihui Lv
- School of Life Sciences, Zhaoqing University, Zhaoqing, China
| | - Xin Lin
- School of Life Sciences, Zhaoqing University, Zhaoqing, China
| | - Minyu Zhang
- School of Life Sciences, Zhaoqing University, Zhaoqing, China. .,School of Physical Education and Sports Science, South China Normal University, Guangzhou, China.
| |
Collapse
|
7
|
Zhu H, Li X, Ren X, Chen H, Qian P. Improving cross-protection against influenza virus in mice using a nanoparticle vaccine of mini-HA. Vaccine 2022; 40:6352-6361. [PMID: 36175214 DOI: 10.1016/j.vaccine.2022.09.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/02/2022] [Accepted: 09/19/2022] [Indexed: 01/27/2023]
Abstract
This study aimed to investigate the protective effect of mini-hemagglutinin (mini-HA) proteins expressed on lumazine synthase (LS) nanoparticles against influenza. Soluble mini-HA proteins were assembled with LS proteins via SpyTag/SpyCatcher in vitro. The size of mini-HA-LS nanoparticles was characterized by transmission electron microscopy (TEM) and dynamic light scattering (DLS), and the effect of mini-HA-LS nano-vaccines was explored in mice. The results indicate that the diameter of mini-HA-LS nanoparticles was approximately 60-80 nm. The nanoparticles could induce stronger humoral and cellular immune responses and produce cross-clade protection against influenza in mice.
Collapse
Affiliation(s)
- Hechao Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xiangmin Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Xujiao Ren
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Ping Qian
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China.
| |
Collapse
|
8
|
Jendryczko K, Chudzian J, Skinder N, Opaliński Ł, Rzeszótko J, Wiedlocha A, Otlewski J, Szlachcic A. FGF2-Derived PeptibodyF2-MMAE Conjugate for Targeted Delivery of Cytotoxic Drugs into Cancer Cells Overexpressing FGFR1. Cancers (Basel) 2020; 12:E2992. [PMID: 33076489 PMCID: PMC7602595 DOI: 10.3390/cancers12102992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 10/10/2020] [Indexed: 12/23/2022] Open
Abstract
Fibroblast growth factor receptors (FGFRs) are emerging targets for directed cancer therapy. Presented here is a new FGFR1-targeting conjugate, the peptibodyF2, which employs peptibody, a fusion of peptide and the Fc fragment of human IgG as a selective targeting agent and drug carrier. Short peptide based on FGF2 sequence was used to construct a FGFR1-targeting peptibody. We have shown that this peptide ensures specific delivery of peptibodyF2 into FGFR1-expressing cells. In order to use peptibodyF2 as a delivery vehicle for cytotoxic drugs, we have conjugated it with MMAE, a drug widely used in antibody-drug conjugates for targeted therapy. Resulting conjugate shows high and specific cytotoxicity towards FGFR1-positive cells, i.e., squamous cell lung carcinoma NCI-H520, while remaining non-toxic for FGFR1-negative cells. Such peptibody-drug conjugate can serve as a basis for development of therapy for tumors with overexpressed or malfunctioning FGFRs.
Collapse
Affiliation(s)
- Karolina Jendryczko
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, 50383 Wroclaw, Poland; (K.J.); (J.C.); (N.S.); (Ł.O.); (J.R.); (J.O.)
| | - Julia Chudzian
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, 50383 Wroclaw, Poland; (K.J.); (J.C.); (N.S.); (Ł.O.); (J.R.); (J.O.)
| | - Natalia Skinder
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, 50383 Wroclaw, Poland; (K.J.); (J.C.); (N.S.); (Ł.O.); (J.R.); (J.O.)
| | - Łukasz Opaliński
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, 50383 Wroclaw, Poland; (K.J.); (J.C.); (N.S.); (Ł.O.); (J.R.); (J.O.)
| | - Jakub Rzeszótko
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, 50383 Wroclaw, Poland; (K.J.); (J.C.); (N.S.); (Ł.O.); (J.R.); (J.O.)
| | - Antoni Wiedlocha
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway;
- Department of Radiobiology and Radiation Protection, Military Institute of Hygiene and Epidemiology, 01163 Warsaw, Poland
- Center for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0379 Oslo, Norway
| | - Jacek Otlewski
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, 50383 Wroclaw, Poland; (K.J.); (J.C.); (N.S.); (Ł.O.); (J.R.); (J.O.)
| | - Anna Szlachcic
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, 50383 Wroclaw, Poland; (K.J.); (J.C.); (N.S.); (Ł.O.); (J.R.); (J.O.)
| |
Collapse
|
9
|
Chen Y, Hu Y, Chen H, Li X, Qian P. A ferritin nanoparticle vaccine for foot-and-mouth disease virus elicited partial protection in mice. Vaccine 2020; 38:5647-5652. [PMID: 32624251 DOI: 10.1016/j.vaccine.2020.06.063] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 12/17/2022]
Abstract
Foot-and-mouth disease (FMD) is an acute, febrile, and highly contagious infectious disease common in cloven-hoofed animals. Outbreaks and epidemics of FMD can result in major economic losses of livestock. Using ferritin nanoparticles as the scaffold for an antigen can enhance the immunogenicity of the subunit vaccine and provide possible protection against FMD. We used a baculovirus expression system to express four recombinant proteins (VP1, VP1-Ft, G-H loop-Ft, and ferritin) and the protective immunity of the FMD ferritin nanoparticle vaccines was evaluated in mice. The recombinant subunit vaccines containing VP1, VP1-Ft, and G-H loop-Ft proteins significantly increased FMDV-specific IgG and IgG subclass antibody titers compared with the PBS group, as well as enhancing splenocyte proliferation and the expression of IL-4 and IFN-γ. The VP1 and VP1-Ft vaccines provided survival rates of 55.6% and 66.7%, respectively. The G-H loop-Ft vaccine provided a 77.8% survival rate compared with 100% survival in the inactivated vaccine group. The partial survival provided by the ferritin nanoparticle vaccines indicated that further study of the effects of the fused ferritin nanoparticle FMDV vaccines in animals is warranted.
Collapse
Affiliation(s)
- Yibao Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Yi Hu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Xiangmin Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Ping Qian
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
10
|
Li J, Li X, Ma H, Ren X, Hao G, Zhang H, Zhao Z, Fang K, Li X, Rong Z, Sun S, Chen H, Qian P. Efficient mucosal vaccination of a novel classical swine fever virus E2-Fc fusion protein mediated by neonatal Fc receptor. Vaccine 2020; 38:4574-4583. [PMID: 32417139 DOI: 10.1016/j.vaccine.2020.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/23/2022]
Abstract
Classical swine fever (CSF) remains one of the most important highly contagious and fatal viral disease of swine with high morbidity and mortality. CSF is caused by classical swine fever virus (CSFV), a small, enveloped RNA virus of the genus Pestivirus. The aim of this study was to construct the a novel CSFV Fc-fusion recombinant protein and evaluate the efficacy as a vaccine against CSFV. Here, we obtained a novel subunit vaccine expressing CSFV E2 recombinant fusion protein in CHO-S cells. Functional analysis revealed that CSFV Fc-fusion recombinant protein (CSFV-E2-Fc) could bind to FcγRI on antigen-presenting cells (APCs) and significantly increase IgA levels in serum and feces, inducing stronger mucosal immune response in swine. Additionally, CSFV-E2-Fc immunization enhanced CSFV-specific T cell immune response with a Th1-like pattern of cytokine secretion, remarkably stimulated the Th1-biased cellular immune response and humoral immune response. Further, the protective effects of CSFV-E2-Fc subunit vaccines were confirmed. The data suggest that CSFV E2-Fc recombinant fusion protein may be a promising candidate subunit vaccine to elicit immune response and protect against CSFV.
Collapse
Affiliation(s)
- Jianglong Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xiangmin Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Hui Ma
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xujiao Ren
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Genxi Hao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Huawei Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Zekai Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Kui Fang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xinxin Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Zhenxiang Rong
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Shaohua Sun
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Ping Qian
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China.
| |
Collapse
|